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Abstract

In this paper, we report on recent advances in teras-
cale simulations of the beam-beam interaction in Teva-
tron, RHIC and LHC. Computational methods for self-
consistent calculation of beam-beam forces are reviewed.
A new method for solving the two-dimensional Poisson
equation with open boundary conditions is proposed and
tested. This new spectral-finite difference method is a fac-
tor of four faster than the widely used FFT based Green
function method for beam-beam interaction on axis. We
also present applications to the study of antiproton losses
during the injection stage at Tevatron, to the study of mul-
tiple bunch coherent beam-beam modes at RHIC, and to
the study of beam-beam driven emittance growth at LHC.

INTRODUCTION

Beam-beam interaction plays an important role in high
energy storage ring colliders. At interaction points, the
nonlinear electromagnetic fields generated by one beam fo-
cus or defocus the opposite beam. This nonlinear beam-
beam force can cause emittance growth and reduce the
beam lifetime in the machine. An accurate modeling of
the beam-beam interaction on terascale parallel computer
will help to optimize the current machine operation and the
future machine design.

To calculate the beam-beam force, a soft Gaussian ap-
proximation is sometimes used to obtain the electromag-
netic fields of the beams at the collision point [1, 2, 3].
While this approximation has the advantage of computa-
tional speed, it is not self-consistent because it assumes
a Gaussian distribution for the macroparticles even when
the actual distribution might differ substantially from the
Gaussian shape. To take into account the effects of the
beam distribution self-consistently, one has to solve the
Poisson equation numerically during each collision for the
actual macroparticle distribution at that instant. A number
of methods have been used to solve the Poisson equation.
A five-point finite difference method with Fourier analy-
sis and cyclic reduction (FACR) has been used by Krish-
nagopal [4] and Cai et al. [5]. This method solves the Pois-
son equation efficiently with finite domain boundary con-
ditions. For the open boundary conditions, which are ap-
propriate in typical beam-beam simulations, the method re-
quires finding an effective boundary condition on the prob-
lem boundary; this can be computationally expensive. In
addition, this method is not efficient to handle the case
�
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with two widely separated beams, where the domain of the
source particles (particle domain) and the domain of the
electric field (field domain) are different. Another method
based on the fast multipole expansion has been used by
Herr et al. [6] to solve the Poisson equation. In this method,
the computational cost scales linearly with the number of
particles or with the number of total mesh points for the
open boundary condition. The efficiency of this method is
independent of the distribution of the source particles and
the field domain, which makes it suitable to handle the sit-
uation with two separated beams. However, this method is
an approximate algorithm in the sense that the accuracy of
the expansion depends on the radius of convergence. The
computational speed depends on the number of polynomi-
als required in the multipole expansion.

A widely used method to solve the Poisson equation in
beam-beam simulations is the Green function method with
fast Fourier transform (FFT) on uniform grid [7, 8, 9, 10,
11]. In this method, the electric potential is written as a
discrete convolution of the Green function and the charge
density distribution. The original computational domain is
doubled to construct a new periodic Green function and a
new periodic charge density distribution. The convolution
from the new Green function and charge density can be cal-
culated very efficiently using the FFT method. This convo-
lution gives the same electric potential inside the original
domain [12]. The computational cost scales as �����
	������� ,
where � is the number of grid points in each dimension.
By defining a new shifted integrated Green function, this
method can handle the separated beams, and beams with
large aspect ratio [8, 13].

SPECTRAL-FINITE DIFFERENCE
SOLUTION OF THE POISSON EQUATION

The standard FFT based Green function method requires
doubling the computational grid in both horizontal and
vertical directions. This causes a factor of three increase
of computational cost and storage. In the following, we
will describe a new numerical method to solve the two-
dimensional Poisson equation with open boundary condi-
tions. We write the Poisson equation in cylindric coordi-
nates as:
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Since both the electric potential and the charge density dis-
tributionare periodic function of
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��� 
� � � � �

����� �	��
�
�� � ����� � �

  � �������  �����
� � (2)

� � 
� � � � �

� � � �	��
�
�� � ����� �

�   � ���	���  �����
� � (3)

Substituting equations 2 and 3 into the original Poisson
equation 1, we obtain a group of decoupled ordinary dif-
ferential equations as:

� � � ��� �
����

� � ��� � �
�� � �

�����

  �!#"
(4)

The solution of above equation outside the particle domain
has the form:
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Inside the particle domain, using a second-order finite dif-
ference scheme, we obtain
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where C is an integer between � ( �D�E� ) or � ( ���F� ) and
maximum grid number � . Matching the solution outside
the particle domain with the solution inside the domain at
maximum grid � , we obtain
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Together with the boundary condition at
�
�M� , it forms

� �ON
( �P�Q� ) and � � � ( � �R� ) tri-diagonal linear

algebra equations which can be solved with order of � op-
erations.

As a test example of above algorithm, we have computed
the electric field for a Gaussian density beam with horizon-
tal to transverse aspect ratio of five. Fig. 1 shows the hori-
zontal electric field along positive horizontal axis together
with the analytical solution. Fig. 2 shows the vertical elec-
tric field along positive vertical axis together with the ana-
lytical solution. We see that the numerical solutions and
the analytical solutions agree with each other very well.

APPLICATIONS TO TEVATRON, RHIC
AND LHC BEAM-BEAM STUDIES

As the first example of applications, we have done pa-
rameter scan study of antiproton losses during the injection
stage with energy of �TS � GeV in the Tevatron [14]. In the
simulation, we have assumed a strong-weak beam-beam
interaction model since the antiproton intensity is much
smaller than the proton intensity (typically a factor of � � ).
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Figure 1: Horizontal electric field along the positive hori-
zontal axis together with analytical solution.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

E
y

y

numerical solution
analytical solution

Figure 2: Vertical electric field along the positive vertical
axis together with analytical solution.

We have also assumed an “aperture” size of U*V N SXW , where
the W is the horizontal or vertical rms size at each colli-
sion point. The choice of the aperture size is based on the
particle tracking study of the dynamic aperture in the Teva-
tron [15]. The noise amplitude is set as

NZY � � �1[ which
gives a few pi-mm-mrad antiproton emittance growth af-
ter one hour machine operation. Fig. 3 shows a plot of the
antiproton losses at the injection energy of �TS � GeV with
different proton intensities from the simulation. It is seen
that with increasing proton intensity, more antiproton gets
lost. This is in qualitatively agreement with the experimen-
tal observation.

The second example of applications is to study coherent
modes of multi-bunch collisions at RHIC through strong-
strong beam-beam simulations. Fig. 4 gives a schematic
plot of two colliding beams at RHIC. Here each beam has
three bunches. The six bunches couple with each other
through collisions at four interaction points, IP2, IP6, IP8
and IP10. The coherent modes of multi-bunch beam-beam
interaction are first studied using a rigid beam approxima-
tion since the mode frequency can be checked with the ana-
lytical calculation [16]. Fig. 5 shows power spectra of hor-
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Figure 3: Normalized antiproton intensity evolution for dif-
ferent proton intensities.

Figure 4: A schematic plot of two colliding beams at RHIC.

izontal centroid motion of one bunch from a rigid beam ap-
proximation. There are only four coherent modes observed
from the simulation instead of six eigenmodes. The degen-
eration of the eigenmodes is due to the symmetric structure
of the collision at RHIC. This is also verified from the ana-
lytical calculation. Fig. 6 shows power spectra of horizon-
tal centroid motion of three bunches from self-consistent
strong-strong beam-beam simulation. There are only two
distinct eigenmodes, the � mode (180 degree out of phase)
and the W mode (in phase), which are observable in this ex-
ample. The other four modes are degenerated and buried
into the incoherent continuous spectra. The � mode tune
shift is

� V�� ����� which is about of a factor of 4 times the
single bunch � tune shift � V N ��� . This is in agreement with
the analytical calculation of Yokoya et. al. [17]. The large
tune shift of the � mode due to the multi-bunch collisions
presents a potential instability since it can not be damped
out by the continuous spectra through the Landau damping.
In above example, we have assumed that the two beams
have the same parameters. In reality, the parameters of two
rings can be controlled so that the two colliding beams have
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Figure 5: Power spectra (arbitrary normalization) of the
horizontal centroid motion of one bunch at RHIC from a
rigid beam approximation.
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Figure 6: Power spectra (arbitrary normalization) of the
horizontal centroid motion of three bunches at RHIC.

different tunes. Fig. 7 gives power spectra of horizontal
centroid motion of three bunches with the horizontal tune
of the second beam set as � V

N
while the first beam is set

as � V
NXN

. The two colliding beams lose the coherent motion
and the dipole mode disappears into the continuous spectra.

The third example of applications is to study the emit-
tance growth and halo formation driven by the mismatched
and time-modulated beam-beam interaction at LHC. We
have tracked the macroparticles for one million turns to be
related to the real machine measurement which is normally
done on the order of minutes. Here, one million turns at
LHC corresponds to about � V S minutes. Unfortunately, for
such a long time simulation, the emittance growth driven
by numerical collisionality of finite macroparticle noise is
no longer negligible. To understand and to control this ef-
fect, we have done simulations using different charge de-
position and field interpolation schemes, different numer-
ical mesh size, different number of macroparticles for the
nominal LHC beam-beam parameters. Here, we have in-
cluded only one head-on collision in the simulation. Fig. 8
shows the averaged emittance growth using a linear depo-
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Figure 7: Power spectra (arbitrary normalization) of the
horizontal centroid motion of three bunches with different
tune in each ring of RHIC.

sition/interpolation, a quadratic deposition/linear interpo-
lation, and a quadratic deposition/interpolation scheme. It
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Figure 8: Averaged emittance growth with linear and
quadratic deposition/interpolation scheme.

is seen that the quadratic charge deposition and quadratic
field interpolation gives the lowest emittance growth. This
is because the quadratic deposition/interpolation generates
a smoother density and field data than the linear deposi-
tion/interpolation,which reduces macroparticle noise in the
simulation. On the other hand, the macroparticle noise can
also be reduced using a coarser computational grid. This
corresponds to a larger size of macroparticle. Fig. 9 shows
the averaged emittance growth using � N � Y � N � and � � Y � �
grid points. Using a coarser grid does help to reduce the
numerical emittance growth driven by the macroparticle
noise. The number of macroparticles used also affects the
numerical collisional noise. With more macroparticle used,
the charge of each macroparticle is is closer to that of a real
particle, and the numerical collisional noise gets smaller.
Fig. 10 shows the averaged emittance growth with � V S mil-
lion, � million and

N
million macroparticles. It is seen that

with more macroparticles, the numerical emittance growth
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Figure 9: Averaged emittance growth with 128x128 and
64x64 grid points.

 1

 1.0005

 1.001

 1.0015

 1.002

 1.0025

 1.003

 1.0035

 1.004

 1.0045

 0  200000  400000  600000  800000  1e+06

rm
s 

em
itt

an
ce

 g
ro

w
th

turn

2M particles
1M particles

0.5M particles

Figure 10: Averaged emittance growth with 0.5M, 1M and
2M macroparticles.

has dropped significantly. The emittance growth in this fig-
ure is characterized by a least square fitting of the emit-
tance growth as a function of time (in the unit of turn) and
macroparticle number:

! �� �  !  � � � � V �X��� �
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This suggests that the numerical emittance growth is about
inversely proportional to the macroparticle number. In
this figure, we have used a linear deposition/interpolation
scheme with

N S � Y N S � grid points. These factors will also
affect the numerical emittance growth as we discussed be-
fore.

A sweeping beam detector has been proposed as a de-
vice to monitor and to optimize the luminosity at the LHC.
In this scheme, one of the beams is deliberately made to ro-
tate about a fixed axis as it collides with the opposite beam.
To study the emittance growth for such time-modulated
beam-beam interaction, we have carried out a strong-strong
simulation using � V

N S million particles, � V S million parti-
cles, � million particles and

N
million particles for � mil-

lion turns. The average emittance growth after � million
turns as a function of macroparticle number is shown in



Fig. 11. The real emittance growth after one million turns
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Figure 11: Emittance growth as a function of number of
macroparticles after 1M turns.

can be estimated from the extrapolation, which gives about

� V � S�� emittance growth. It can be seen that for a quarter
million macroparticles, the numerical emittance growth is
much higher than the real emittance growth.

When two beams collide with a mismatch of beam size,
the large amplitude particles of one beam receive strong
nonlinear forces from the opposite beam. This could cause
the growth of tail particles to form a halo. In high intensity
beam study, � �*V�� � emittance has been used to characterize
the halo distribution. Here, � �*V�� � emittance is defined as
the emittance which contains � �*V�� � particles [18]. Fig. 12
shows the averaged � �*V�� � emittance evolution from the
beam-beam interaction with equal beam size and � � � mis-
matched beam size. We see that the mismatched beam-
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Figure 12: � �*V�� � emittance growth with equal beam size
and with � � � beam size mismatch.

beam interaction has resulted in a larger emittance growth
than the nominal case. This might be due to some high
order resonance observed at SPS collider [19].
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