Structures and shear response of lipid monolayers. Progress report, August 1, 1993--January 31, 1996

PDF Version Also Available for Download.

Description

Of the many systems now classified as {open_quotes}soft condensed matter{close_quotes}, lipids are some of the best known and most studied. Lipids occur most commonly in membranes, but the artificially created lipid systems known as Langmuir films (on water) and Langmuir-Blodgett films (on solid substrates) are in some ways better-defined and more easily controlled systems with which to address many of the same questions. Studies of these systems have a long and distinguished history, but in the past decade there has been an explosion of activity in this area, driven by the availability of a or more powerful experimental probes but ... continued below

Physical Description

9 p.

Creation Information

Dutta, P. & Ketterson, J.B. August 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 14 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Of the many systems now classified as {open_quotes}soft condensed matter{close_quotes}, lipids are some of the best known and most studied. Lipids occur most commonly in membranes, but the artificially created lipid systems known as Langmuir films (on water) and Langmuir-Blodgett films (on solid substrates) are in some ways better-defined and more easily controlled systems with which to address many of the same questions. Studies of these systems have a long and distinguished history, but in the past decade there has been an explosion of activity in this area, driven by the availability of a or more powerful experimental probes but also in part by the hope of producing new structured molecular materials and devices. Today the focus of device-oriented research is shifting to self-assembled (chemisorbed) films, because it is recognized that these films are somewhat more stable under application conditions. This trend has resulted in a generally more appropriate view of Langmuir and Langmuir Blodgett films as model systems with which to study the properties of organized molecular assemblies. These films are part of a larger class that includes membranes, lamellar paraffins and liquid crystals as well as self-assembled films, but with certain experimental and conceptual advantages (such as the ease with which the density may be varied, and the tethering to a flat plane). This report describes the continued studies of the phase diagrams of Langmuir monolayers, and efforts to understand the variables that affect the structures formed. It also describes studies of the structure of a transferred monolayer, and how this evolves as further layers are added. Finally, the authors describe their studies of the mechanical response of Langmuir-Blodgett films using a small-strain torsion balance at the center of a circular trough.

Physical Description

9 p.

Notes

INIS; OSTI as DE95016564

Medium: P; Size: 9 p.

Source

  • Other Information: PBD: Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95016564
  • Report No.: DOE/ER/45125--13
  • Grant Number: FG02-84ER45125
  • DOI: 10.2172/93729 | External Link
  • Office of Scientific & Technical Information Report Number: 93729
  • Archival Resource Key: ark:/67531/metadc791706

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 19, 2018, 10:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 14

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Dutta, P. & Ketterson, J.B. Structures and shear response of lipid monolayers. Progress report, August 1, 1993--January 31, 1996, report, August 1, 1995; Evanston, Illinois. (digital.library.unt.edu/ark:/67531/metadc791706/: accessed July 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.