Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

PDF Version Also Available for Download.

Description

The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys ... continued below

Physical Description

9 p.

Creation Information

Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S. & Cetel, A.D. July 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

Physical Description

9 p.

Notes

OSTI as DE00009241

Medium: P; Size: 9 pages

Source

  • Other Information: PBD: 1 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: ORNL/TM-1999/126
  • Report No.: C/ORNL94-0325T
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/9241 | External Link
  • Office of Scientific & Technical Information Report Number: 9241
  • Archival Resource Key: ark:/67531/metadc791703

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Nov. 2, 2017, 3:10 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S. & Cetel, A.D. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications, report, July 1, 1999; Tennessee. (digital.library.unt.edu/ark:/67531/metadc791703/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.