Design of a Five-Axis Flux-Gate Magnetic-Gradiometer System
Tracking Code: #93-SR-035

Ronald W. Hoard
Steven Hunter

March 6, 1995

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

RECEIVED
AUG 0 4 1995
OSTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Title: Design of a Five-Axis Flux-Gate Magnetic-Gradiometer System
Tracking Code: #93-SR-035
Principal Investigators: Ronald W. Hoard and Steven Hunter

During the past few decades several worldwide researchers have started using magnetometers to monitor the extremely-low-frequency (ELF) electromagnetic signals sometimes emitted prior to major earthquakes. On April 26, 1992 a single-axis magnetic gradiometer magnetometer (operated by the first author at LLNL) serendipitously detected unexplained fluctuations in the vertical gradient of the earth’s local magnetic field starting four and one-half hours prior to the Ferndale, Ca. earthquake. A build-up of similar ELF signals were reported by Stanford University researchers several days before the October 17, 1989 San Francisco Bay-Area earthquake.

Our goal for this LDRD project was to construct and field two five-axis flux-gate magnetic-gradiometer magnetometers. A five-axis gradiometer sensor arrangement not only measures the magnetic-field variations but also yields information on the direction, distance and size of the source responsible for the magnetic disturbance. Previously the US Navy used these instruments to track submarine traffic and locate sunken ships. This is the first time that such equipment is being fielded for earthquake research. If these low-frequency magnetic fluctuations correspond to phenomenon occurring at or near the earthquake’s epicenter a monitoring station equipped with this instrument may provide research data on the location and size of epicenters prior to major earthquakes.

This LDRD project is a joint partnership between the US Geological Survey, LLNL and Applied Physics Systems (APS) in Mountain View, Ca. The USGS allowed us to piggy-back onto two of their existing seismic research monitoring stations; one located at their Valecitos station, outside of Livermore, Ca. and the other is in the hills at Parkside, Ca. APS is the Bay-Area magnetics measurements company building the five-axis sensors. Since we did not receive the capital equipment funds until the last quarter of FY-93, their scheduled delivery date for the sensors slipped to middle calendar year 1994. We completed site preparation (set up solar cells and battery power) and installed a single-axis gradiometer at each site to obviate the final sensor installation slated for March 1995. The data links and communications are a combination of microwave and data phone-lines between the monitoring sites, LLNL and the USGS at Menlo Park, Ca.

We show the project tasks and expenditures below.

<table>
<thead>
<tr>
<th>Task Description</th>
<th>Capital Costs</th>
<th>Operating Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sensor Design</td>
<td></td>
<td>$30,000</td>
</tr>
<tr>
<td>2. Sensor Fabrication</td>
<td>$30,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>3. Software Design</td>
<td></td>
<td>$10,500</td>
</tr>
<tr>
<td>4. Initial Site Prepartion</td>
<td></td>
<td>$6,000</td>
</tr>
<tr>
<td>5. Geophys. Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>$30,000</td>
<td>$66,500</td>
</tr>
</tbody>
</table>