Equation-of-State Measurements with Z-Pinch Sources

PDF Version Also Available for Download.

Description

Validation of material models in a variety of scientific and technological applications requires accurate data regarding the high-pressure thermodynamic and mechanical properties. Traditional laboratory techniques for striking these measurements involve light gas guns to generate the required thermodynamic states, and the use of high-resolution time-resolved diagnostics to measure the desired material properties. EOS and constitutive material properties of importance to modeling needs include high-pressure Hugoniot curves and off-Hugoniot properties, such as. material strength and isentropic compression and decompression [1]. Conventional light gas guns are limited to impact pressures of about 7 Mbar in high-impedance materials. Pulsed radiation sources, such as ... continued below

Physical Description

6 p.

Creation Information

Asay, J.R.; Hall, C.; Bailey, J.E.; Knudson, M.D.; Holland, K.G.; Hanson, D.L. et al. July 22, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Validation of material models in a variety of scientific and technological applications requires accurate data regarding the high-pressure thermodynamic and mechanical properties. Traditional laboratory techniques for striking these measurements involve light gas guns to generate the required thermodynamic states, and the use of high-resolution time-resolved diagnostics to measure the desired material properties. EOS and constitutive material properties of importance to modeling needs include high-pressure Hugoniot curves and off-Hugoniot properties, such as. material strength and isentropic compression and decompression [1]. Conventional light gas guns are limited to impact pressures of about 7 Mbar in high-impedance materials. Pulsed radiation sources, such as high-intensity lasers, and pulsed power techniques significantly extend the accessible pressures and are becoming accepted methods for meeting the needs of material models in regimes inaccessible by gas guns. A present limitation of these new approaches is that samples must necessarily be small, typically a few tens of microns in thickness, which severely limits the accuracy of EOS measurements that can be made and also the ability to perform a variety of off-Hugoniot measurements. However, recent advances in z-pinch techniques for high-pressure material response studies provide potential opportunities for achieving accuracies comparable with gas guns because of the significantly larger samples that can be studied. Sample thicknesses approaching 1 mm may be possible with advances presently being made. These sample dimensions are comparable with gas gun sample dimensions so that accuracies should be comparable. The Sandia Z accelerator [2] is a recently developed facility that generates x-ray energies of about 2 MJ over time scales of 5-10 ns with resulting temperatures of 100-150 eV in containment fixtures, referred to as hohlraums, that are a few cubic centimeters in volume. This intense radiation source can be used to ablatively drive shock waves to about pressures of about 10 Mbar in a variety of materials. Because of the large source. In this paper, we discuss recent developments in the use of the Sandia Z accelerator for Hugoniot and off-Hugoniot measurements. Preliminary data on high-pressure dynamic response include Hugoniot EOS data on aluminum to about 5 Mbar using the z-pinch technique and isentropic compression data on iron and copper to about 300 and 130 kbar, respectively, using the direct current mode on Z. The isentropic compression experiments are performed on sample thicknesses to 0.8 mm and allow determination of the cx-s phase transition and the kinetic properties of this transition. Specifically, isentropic compression data on iron have been analyzed with a two-phase rate dependent model of the bcc-hcp phase transition, which shows that the relatively slow rates of pressure application achieved with this technique result in observable kinetic effects that can be easily analyzed. Other work in progress with the Z Accelerator includes EOS studies of liquid deutenum and the development of uniform, constant pressure drives that will provide higher accuracy in EOS measurements.

Physical Description

6 p.

Notes

INIS; OSTI as DE00009506

Medium: P; Size: 6 pages

Source

  • AIRAPT-17, International Conference on High Pressure Science and Technology, Honolulu, HI (US), 07/25/1999--07/30/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-0450C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9506
  • Archival Resource Key: ark:/67531/metadc791621

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 22, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 11, 2017, 1:04 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Asay, J.R.; Hall, C.; Bailey, J.E.; Knudson, M.D.; Holland, K.G.; Hanson, D.L. et al. Equation-of-State Measurements with Z-Pinch Sources, article, July 22, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc791621/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.