Novel method for making semiconductor chips. Seventh quarterly and final report, January 7, 1995--May 7, 1995

PDF Version Also Available for Download.

Description

Work under DOE Grant No. DE-FG47-93R701314, to investigate a Novel Process for Fabricating MOSFET Devices, has progressed to a point where feasibility of producing MOSFETS using Chromium Disilicide Schottky barrier junctions at Source and Drain has been shown. Devices fabricated, however, show inconsistent operating characteristics from device to device, and further work is required to overcome the defects. Some fabrication procedures have produced a relatively high, (e.g., ninety-five (95%) percent), yield of devices on a substrate which show at least some transistor action, while others have resulted in very low yield, (e.g., five (5%) percent). Consistency of results from device ... continued below

Physical Description

291 p.

Creation Information

Creator: Unknown. July 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Creator

  • We've been unable to identify the creator(s) of this report.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Work under DOE Grant No. DE-FG47-93R701314, to investigate a Novel Process for Fabricating MOSFET Devices, has progressed to a point where feasibility of producing MOSFETS using Chromium Disilicide Schottky barrier junctions at Source and Drain has been shown. Devices fabricated, however, show inconsistent operating characteristics from device to device, and further work is required to overcome the defects. Some fabrication procedures have produced a relatively high, (e.g., ninety-five (95%) percent), yield of devices on a substrate which show at least some transistor action, while others have resulted in very low yield, (e.g., five (5%) percent). Consistency of results from device to device is less than desired. However, considering that the University of Nebraska at Lincoln (UNL) Electrical Engineering Fabrication Lab is not what industry can provide, it is reasonable to project that essentially one-hundred (99.99+%) percent yield should be achievable in an industrial setting because of the simplicity in the fabrication procedure.

Physical Description

291 p.

Notes

OSTI as DE95014927

Source

  • Other Information: PBD: [1995]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95014927
  • Report No.: DOE/R7/01314--T7
  • Grant Number: FG47-93R701314
  • DOI: 10.2172/88616 | External Link
  • Office of Scientific & Technical Information Report Number: 88616
  • Archival Resource Key: ark:/67531/metadc791588

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Jan. 29, 2016, 8:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Novel method for making semiconductor chips. Seventh quarterly and final report, January 7, 1995--May 7, 1995, report, July 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc791588/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.