Self-effect in expanding electron beam plasma

PDF Version Also Available for Download.

Description

An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are ... continued below

Physical Description

649 Kilobytes pages

Creation Information

Garcia, M May 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

Physical Description

649 Kilobytes pages

Source

  • The 26th IEEE International Conference on Plasma Science, Monterey, CA (US), 06/20/1999--06/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-ID-134375
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 9100
  • Archival Resource Key: ark:/67531/metadc791547

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 7, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • May 6, 2016, 3:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Garcia, M. Self-effect in expanding electron beam plasma, article, May 7, 1999; California. (digital.library.unt.edu/ark:/67531/metadc791547/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.