Short-term power fluctuations from wind farms may affect interconnected-grid operating costs and stability. With the increasing availability of wind power worldwide, this has become a concern for some utilities. Under electric industry restructuring in the United States, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. However, the magnitude of the impact and the effect of aggregation of multiple turbines are not well quantified due to a lack of actual wind farm power data. This paper analyzes individual turbine and aggregate power output data from the German ''250-MW Wind'' data ...
continued below
Publisher Info:
National Renewable Energy Lab., Golden, CO (United States)
Place of Publication:
Golden, Colorado
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
Short-term power fluctuations from wind farms may affect interconnected-grid operating costs and stability. With the increasing availability of wind power worldwide, this has become a concern for some utilities. Under electric industry restructuring in the United States, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. However, the magnitude of the impact and the effect of aggregation of multiple turbines are not well quantified due to a lack of actual wind farm power data. This paper analyzes individual turbine and aggregate power output data from the German ''250-MW Wind'' data project. Electric system load following and regulation impacts are examined as a function of the number of turbines and turbine spacing in order to quantify the impacts of aggregation. The results show a significant decrease in the relative system regulation burden with increasing number of turbines, even if the turbines are in close proximity.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Ernst, B. (Institut fur Solare Energieversorgungstechnik); Wan, Y.-H. (National Renewable Energy Laboratory) & Kirby, B. (Oak Ridge National Laboratory).Short-Term Power Fluctuation of Wind Turbines: Analyzing Data from the German 250-MW Measurement Program from the Ancillary Services Viewpoint,
article,
July 26, 1999;
Golden, Colorado.
(digital.library.unt.edu/ark:/67531/metadc791544/:
accessed February 21, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.