Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

PDF Version Also Available for Download.

Description

High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation ... continued below

Physical Description

4 p.

Creation Information

Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W. et al. August 5, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

Physical Description

4 p.

Notes

OSTI as DE00009696

Medium: P; Size: 4 pages

Source

  • 1999 Pulsed Power Conference, Monterey, CA (US), 06/27/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2049C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 9696
  • Archival Resource Key: ark:/67531/metadc791538

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 5, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • April 10, 2017, 7:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W. et al. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers, article, August 5, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc791538/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.