Developments on the Toroid Ion Trap Analyzer

PDF Version Also Available for Download.

Description

Investigations into several areas of research have been undertaken to address the performance limitations of the toroid analyzer. The Simion 3D6 (2) ion optics simulation program was used to determine whether the potential well minimum of the toroid trapping field is in the physical center of the trap electrode structure. The results (Figures 1) indicate that the minimum of the potential well is shifted towards the inner ring electrode by an amount approximately equal to 10% of the r0 dimension. A simulation of the standard 3D ion trap under similar conditions was performed as a control. In this case, the ... continued below

Physical Description

2 pages

Creation Information

Lammert, S.A.; Thompson, C.V. & Wise, M.B. June 13, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Investigations into several areas of research have been undertaken to address the performance limitations of the toroid analyzer. The Simion 3D6 (2) ion optics simulation program was used to determine whether the potential well minimum of the toroid trapping field is in the physical center of the trap electrode structure. The results (Figures 1) indicate that the minimum of the potential well is shifted towards the inner ring electrode by an amount approximately equal to 10% of the r0 dimension. A simulation of the standard 3D ion trap under similar conditions was performed as a control. In this case, the ions settle to the minimum of the potential well at a point that is coincident with the physical center (both radial and axial) of the trapping electrodes. It is proposed that by using simulation programs, a set of new analyzer electrodes can be fashioned that will correct for the non- linear fields introduced by curving the substantially quadrupolar field about the toroid axis in order to provide a trapping field similar to the 3D ion trap cross- section. A new toroid electrode geometry has been devised to allow the use of channel- tron style detectors in place of the more expensive multichannel plate detector. Two different versions have been designed and constructed - one using the current ion trap cross- section (Figure 2) and another using the linear quedrupole cross- section design first reported by Bier and Syka (3).

Physical Description

2 pages

Source

  • 47th ASMS Conference on Mass Spectrometry and Allied Topics, Dallas, TX, June 13-17, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00009364
  • Report No.: ORNL/CP-103852
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 9364
  • Archival Resource Key: ark:/67531/metadc791487

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 13, 1999

Added to The UNT Digital Library

  • Dec. 19, 2015, 7:14 p.m.

Description Last Updated

  • Feb. 15, 2016, 12:19 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lammert, S.A.; Thompson, C.V. & Wise, M.B. Developments on the Toroid Ion Trap Analyzer, article, June 13, 1999; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc791487/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.