DWPF Air Lift Pump Life Cycle Evaluation

PDF Version Also Available for Download.

Description

The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they ... continued below

Physical Description

vp.

Creation Information

IMRICH, KENNETH March 15, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they were porous and did not have an adverse effect on the operation of the pump. The technique used to secure the platinum/rhodium nozzles to the 690 housing appeared to be adequate with only minor oxidation of the 690 threads and glass in-leakage. Galvanic attack was observed where the nozzle formed a seal with the 690. Significant pitting of the 690 was observed around the entire seal. Intergranular cracking of the Pt/Rh alloy was extensive but the cause could not be determined. Testing would be required to evaluate the degradation. Data from the performance test and the metallurgical evaluation are being used to modify the design of the first DWPF production air lift pump. It will be fabricated entirely from 690 and use argon as the purge gas. It is intended to have a service life of 6 months. Recommendations for insertion, operation, and inspection of the pump are also included in this report. Performance data collected from the operation of the production pump will be used to further optimize the design. Laboratory exposure tests should also be performed to evaluate the galvanic effect between platinum/rhodium and 690.

Physical Description

vp.

Source

  • Other Information: PBD: 15 Mar 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: WSRC-TR-2003-00426
  • Grant Number: AC09-96SR18500
  • DOI: 10.2172/822142 | External Link
  • Office of Scientific & Technical Information Report Number: 822142
  • Archival Resource Key: ark:/67531/metadc789107

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 15, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 4, 2016, 11:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

IMRICH, KENNETH. DWPF Air Lift Pump Life Cycle Evaluation, report, March 15, 2004; South Carolina. (digital.library.unt.edu/ark:/67531/metadc789107/: accessed September 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.