Performance of high plutonium-containing glasses for the immobilization of surplus fissile materials

PDF Version Also Available for Download.

Description

Plutonium from dismantled weapons is being evaluated for geological disposal. While a final waste form has not been chosen, borosilicate glass will be one of the waste forms to be evaluated. The reactivity of the reference blend glass containing the standard amount of Pu ({approximately}0.01 wt %) to be produced by the Defense Waste Processing Facility (DWPF) is compared to that of glasses made from the same nominal frit composition but doped with 2 and 7 wt % Pu, and also equal mole percentages of Gd{sub 2}O{sub 3}. The Gd is added to act as a neutron poison to address ... continued below

Physical Description

9 p.

Creation Information

Bates, J.K.; Emery, J.W.; Hoh, J.C. & Johnson, T.R. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Plutonium from dismantled weapons is being evaluated for geological disposal. While a final waste form has not been chosen, borosilicate glass will be one of the waste forms to be evaluated. The reactivity of the reference blend glass containing the standard amount of Pu ({approximately}0.01 wt %) to be produced by the Defense Waste Processing Facility (DWPF) is compared to that of glasses made from the same nominal frit composition but doped with 2 and 7 wt % Pu, and also equal mole percentages of Gd{sub 2}O{sub 3}. The Gd is added to act as a neutron poison to address criticality concerns. The four different glasses have been reacted using the PCT-B method with a SA/V of 20,000 m{sup {minus}1} and the Argonne Vapor Hydration Test (VHT) method. Both test methods accelerate the reaction of the glass. PCT-B is used to determine the reactivity of the glass by analyzing the solution and reacted test components, while the VHT is used to evaluate the long-term reactivity of the glass and the distribution of Pu to secondary phases that will control the long-term reaction of the glass. The results of the tests with high levels of Pu are compared to those with the nominal levels to be produced in the standard DWPF glass.

Physical Description

9 p.

Notes

INIS; OSTI as DE95013773

Source

  • 97. annual meeting of the American Ceramic Society, Cincinnati, OH (United States), 30 Apr - 1 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95013773
  • Report No.: ANL/CMT/CP--84590
  • Report No.: CONF-950401--16
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 82337
  • Archival Resource Key: ark:/67531/metadc789074

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Dec. 18, 2015, 4:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bates, J.K.; Emery, J.W.; Hoh, J.C. & Johnson, T.R. Performance of high plutonium-containing glasses for the immobilization of surplus fissile materials, article, July 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc789074/: accessed November 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.