Zinc Treatment Effects on Corrosion Behavior of Alloy 600 in High Temperature, Hydrogenated Water

PDF Version Also Available for Download.

Description

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to reduce the corrosion rate of Alloy 600 (UNS N06600) by about 40% relative to a non-zinc baseline test [2]. Characterizations of the corrosion oxide layer via SEM/TEM and grazing incidence X-ray diffraction confirmed the presence of a chromite-rich oxide phase and recrystallized nickel. The oxide crystals had an approximate surface density of 3500 {micro}m{sup -2} and an average size of 11 {+-} 5 nm. Application of X-ray photoelectron spectroscopy with argon ion milling, followed by target factor analyses, permitted speciated ... continued below

Physical Description

532 Kilobytes pages

Creation Information

Ziemniak, S. E. & Hanson, M. E. November 16, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Lockheed Martin
    Publisher Info: Lockheed Martin Corporation, Schenectady, NY 12301 (United States)
    Place of Publication: Schenectady, New York

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to reduce the corrosion rate of Alloy 600 (UNS N06600) by about 40% relative to a non-zinc baseline test [2]. Characterizations of the corrosion oxide layer via SEM/TEM and grazing incidence X-ray diffraction confirmed the presence of a chromite-rich oxide phase and recrystallized nickel. The oxide crystals had an approximate surface density of 3500 {micro}m{sup -2} and an average size of 11 {+-} 5 nm. Application of X-ray photoelectron spectroscopy with argon ion milling, followed by target factor analyses, permitted speciated composition vs. depth profiles to be obtained. Numerical integration of the profiles revealed that: (1) alloy oxidation occurred non-selectively and (2) zinc(II) ions were incorporated into the chromite-rich spinel: (Zn{sub 0.55}Ni{sub 0.3}Fe{sub 0.15})(Fe{sub 0.25}Cr{sub 0.75}){sub 2}O{sub 4}. Spinel stoichiometry places the trivalent ion composition in the single phase oxide region, consistent with the absence of the usual outer, ferrite-rich solvus layer. By comparison with compositions of the chromite-rich spinel obtained in the non-zinc baseline test, it is hypothesized that zinc(II) ion incorporation was controlled by the equilibrium for 0.55 Zn{sup 2+}(aq) + (Ni{sub 0.7}Fe{sub 0.3})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}(s) {r_equilibrium} 0.40 Ni{sup 2+}(aq) + 0.15 Fe{sup 2+}(aq) + (Zn{sub 0.55}Ni{sub 0.3}Fe{sub 0.15})(Fe{sub 0.3}Cr{sub 0.7}){sub 2}O{sub 4}(s). It is estimated that only 8% of the Ni(II) ions generated during non-selective oxidation of the alloy were retained as Ni(II) in the corrosion layer; the remainder either recrystallized to Ni(0) (38%) or were released to the aqueous phase (54%).

Physical Description

532 Kilobytes pages

Notes

INIS; OSTI as DE00837668

Source

  • Other Information: PBD: 16 Nov 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LM-04K144
  • Grant Number: AC 12-00-SN39357
  • DOI: 10.2172/837668 | External Link
  • Office of Scientific & Technical Information Report Number: 837668
  • Archival Resource Key: ark:/67531/metadc789017

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 16, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 28, 2016, 9:44 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ziemniak, S. E. & Hanson, M. E. Zinc Treatment Effects on Corrosion Behavior of Alloy 600 in High Temperature, Hydrogenated Water, report, November 16, 2004; Schenectady, New York. (digital.library.unt.edu/ark:/67531/metadc789017/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.