Protective coating on stainless steel interconnect for SOFCs:Oxidation kinetics and electrical properties

PDF Version Also Available for Download.

Description

An effective, dense and well adherent coating was produced on 430SS that has the result of significantly reducing the oxidation rate of this alloy at elevated temperatures. The coating is essentially a Mn-Co-O spinel, applied in powder form, and compacted to improve its green density. A simplified model is presented that allows an assessment of the effects of the contact and scale geometries. For 850 C, an ASR can be predicted of approximately 0.5 cm2, after 50,000hrs in air, taking in to account a factor of 10 penalty for unfavorable contact geometries. The effect of the densified Mn-Co spinel coating ... continued below

Creation Information

Chen, Xuan; Hou, Peggy Y.; Jacobson, Craig P.; Visco, Steven J. & De Jonghe, Lutgard C. April 1, 2004.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An effective, dense and well adherent coating was produced on 430SS that has the result of significantly reducing the oxidation rate of this alloy at elevated temperatures. The coating is essentially a Mn-Co-O spinel, applied in powder form, and compacted to improve its green density. A simplified model is presented that allows an assessment of the effects of the contact and scale geometries. For 850 C, an ASR can be predicted of approximately 0.5 cm2, after 50,000hrs in air, taking in to account a factor of 10 penalty for unfavorable contact geometries. The effect of the densified Mn-Co spinel coating is to reduce significantly Cr2O3 sub-scale formation, lower the thermal expansion mismatch, and increase the electronic conductivity of the scale. The findings point to several potential remedies for achieving coatings on 430 SS that allow for metal interconnects with a service life of 50,000 hrs or more. Considering contact geometries, such service life is unlikely to be possible above operating temperatures of about 700 C, unless highly specialized alloys are used, with potential processing and cost penalties.

Source

  • Journal Name: Solid State Ionics; Journal Volume: 176; Journal Issue: 5-6; Related Information: Journal Publication Date: 02/14/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--55541
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 861164
  • Archival Resource Key: ark:/67531/metadc789016

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:42 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, Xuan; Hou, Peggy Y.; Jacobson, Craig P.; Visco, Steven J. & De Jonghe, Lutgard C. Protective coating on stainless steel interconnect for SOFCs:Oxidation kinetics and electrical properties, article, April 1, 2004; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc789016/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.