Airflow design for cleanrooms and its economic implications

PDF Version Also Available for Download.

Description

A cleanroom is designed to control the concentration of airborne particles. As a result, large amount of cleaned air is often required to remove or dilute contaminants for satisfactory operations in critical cleanroom environment. Cleanroom environmental systems (HVAC systems) in semiconductor, pharmaceutical, and healthcare industries are much more energy intensive compared to their counterparts (HVAC systems) serving commercial buildings such as typical office buildings. There is a tendency in cleanroom design and operation, however, to provide excessive airflow rates by HVAC systems, largely due to design conservatism, lack of understanding in airflow requirements, and more often, concerns such as cleanliness ... continued below

Physical Description

7 pages

Creation Information

Xu, Tengfang August 20, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A cleanroom is designed to control the concentration of airborne particles. As a result, large amount of cleaned air is often required to remove or dilute contaminants for satisfactory operations in critical cleanroom environment. Cleanroom environmental systems (HVAC systems) in semiconductor, pharmaceutical, and healthcare industries are much more energy intensive compared to their counterparts (HVAC systems) serving commercial buildings such as typical office buildings. There is a tendency in cleanroom design and operation, however, to provide excessive airflow rates by HVAC systems, largely due to design conservatism, lack of understanding in airflow requirements, and more often, concerns such as cleanliness reliability, design and operational liabilities. A combination of these likely factors can easily result in HVAC systems' over-design. Energy use of cleanroom environmental systems varies with the system design, cleanroom functions, and critical parameter control including temperatures and humidities. In particular, cleanroom cleanliness requirements specified by ''cleanliness class'' [1],[2] often cast large impact on energy use. A review of studies on cleanroom operation costs indicated that energy costs could amount to 65-75% of the total annual cost associated with cleanroom operation and maintenance in some European countries[3]. Depending on cleanroom cleanliness classes, annual cleanroom electricity use for cooling and fan energy ranged approximately between 1,710 kWh/m{sup 2} and 10,200 kWh/m{sup 2} (or 160 kWh/ft{sup 2} and 950 kWh/ft{sup 2}) in California[4], USA. Cleanroom fan energy use typically consumed half of total HVAC energy use in three states in the USA[5]. For cleanrooms in a wafer-process semiconductor factory in Japan[6], HVAC systems used 43% of power consumption of an entire cleanroom factory, while air delivery systems account for 30% of the total power consumption. Fan energy use for cleanrooms of ISO Classes 3,4,5 collectively account for approximately 80% of the fan energy use for cleanrooms of all classes[7]. It is evident that biggest factors dictating cleanroom operating energy costs often include the magnitude of cleanroom airflow and how efficiently the HVAC systems deliver the cleaned and conditioned air to cleanrooms. Since energy generally represents a significant operating cost for cleanroom facilities, improving energy efficiency in cleanrooms can potentially contribute to significant cost savings. Because the number of cleanrooms in the world has been growing rapidly in the last decade and involves many industries, improvement in energy efficiency is becoming more important. Even during economy downturns, with industry profit margins lessening, the ratio of cleanroom energy costs to a company's profits naturally increases. This can lead to a higher return of investment if cleanroom owners and engineers effectively take appropriate energy efficiency measures. While effective contamination control is the main purpose to operate a cleanroom, how to achieve efficient contamination control operations in cleanrooms presents constant challenges to many engineers in the industries. This paper examines how the real environmental systems in ISO Cleanliness Class-5 cleanrooms actually performed, in terms of airflow and energy use required by fan systems, and presents opportunities and benefits in energy efficient cleanroom designs. The objectives of this paper are to (1) present performance analysis for HVAC systems in seven ISO Cleanliness Class-5 cleanrooms; (2) identify ways to increase cleanroom energy efficiency, while achieving effective cleanroom contamination control; and (3) illustrate benefits of energy efficient cleanroom designs.

Physical Description

7 pages

Notes

OSTI as DE00832942

Source

  • 5th China International Academic Forum and Products Exposition on Contamination Control Technology, Beijing (CN), 11/27/2002--11/29/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--51549
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 832942
  • Archival Resource Key: ark:/67531/metadc788910

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 20, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Sept. 1, 2016, 6:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Xu, Tengfang. Airflow design for cleanrooms and its economic implications, article, August 20, 2002; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc788910/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.