Cover Sheet for a Hanford Historical Document
Released for Public Availability

Released 1995

Prepared for the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ATOMIC WEAPON DATA

1. O.H. Woods
2. R.B. Richards
3. F.W. Albaugh
4. R.S. Bell
5. O.F. Hill - R.H. Reas
6. K.M. Harmon
7. V.R. Cooper
8. P.E. Collins - R.E. Isaacson - File PA-1
9. Extra File
10. Extra File
11. 700 File
12. Yellow File

October 3, 1952

This document consists of 10 pages, No. 12 of 12 copies. Series

To: File

From: P.E. Collins - Leader
234-5 Building, Process Assistance
Separations Technology Unit
Technical Section
by R.E. Isaacson - Engineer

PURITY DATA ON REDOX START-UP MATERIAL
THROUGH THE 231 AND 234-5 BUILDINGS
INTRODUCTION

Redox effluent for production was first processed in the 231 Building on February 4, 1952. Samples of process streams were taken after each purification step to evaluate the adequacy of purification processes in the 231 and 234-5 Buildings and to provide close control of this material.

Data regarding pile residence histories, radiation surveys of "Sample Cans", reduction yields, C/Q values, and product purity after purification steps were accumulated and are presented in this report to establish preliminary data which may be used to evaluate future process changes.

SUMMARY

1. Purity of the product obtained from Redox effluent proved adequate to meet specifications (See Tables V and VI).

2. Purification factors for the major impurities are given below to indicate the magnitude of purification achieved. (Purification factors less than 2 are omitted inasmuch as the spectro-chemical analyses are considered to be accurate within ±2X.

<table>
<thead>
<tr>
<th>Impurity</th>
<th>2 Peroxide Precipitations</th>
<th>1 Oxalate Precipitation</th>
<th>Reduction of PuF₄ to Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>150</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>Ba</td>
<td>15</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>Bi</td>
<td>--</td>
<td>4</td>
<td>--</td>
</tr>
<tr>
<td>Ca</td>
<td>7</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>Cr</td>
<td>10</td>
<td>35</td>
<td>--</td>
</tr>
<tr>
<td>Fe</td>
<td>10</td>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>La</td>
<td>20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mn</td>
<td>--</td>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>Na</td>
<td>NaOH added</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Pb</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Sb</td>
<td>--</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Zn</td>
<td>3</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*Based on Table V
3. The C/Q value for an average of 40 buttons (calculated from B-1 analyses) produced on the RM and RG Lines are as follows:

<table>
<thead>
<tr>
<th>Origin</th>
<th>Process Line</th>
<th>Max.</th>
<th>Ave.</th>
<th>Min.</th>
<th>Ave. for Mg</th>
<th>Ave. for others</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-plant</td>
<td>RM</td>
<td>1.951</td>
<td>0.935</td>
<td>0.435</td>
<td>0.676</td>
<td>0.259</td>
</tr>
<tr>
<td>S-plant</td>
<td>RG</td>
<td>1.711</td>
<td>0.794</td>
<td>0.252</td>
<td>0.591</td>
<td>0.203</td>
</tr>
<tr>
<td>T-plant</td>
<td>RG</td>
<td>0.981</td>
<td>0.540</td>
<td>0.276</td>
<td>0.338</td>
<td>0.202</td>
</tr>
</tbody>
</table>

The average C/Q value for magnesium is included to indicate that the major portion of the C/Q value is due to Mg which is introduced during reduction of PuF₄ in an MgO crucible. Concentrations of Mg vary excessively, 20 to 500 parts per million parts plutonium. Omitting Mg, a fair comparison of light element impurities and their contribution to the C/Q value results.

4. Reduction yields in the RG Line, calculated from

\[
\frac{(\text{wt. of metal}- (70-58 +
\text{Recycle})) \times 239}{\text{wt. of PuF}_4 \text{ charged} \times \frac{315}{315}} \times 100, \text{ averaged 98.11\% for 120 runs}
\]

reduced from processed Redox effluent as compared to 97.74\% for 200 runs reduced from material from the bismuth-phosphate process during the same period.

TABLES

Spectro-chemical analyses of S-Plant material are included in Tables I to IV to indicate the purification achieved by the major purification steps. The corresponding sample codes are:

1. P-1, - analyses of Redox effluent.

2. AT, - analysis of the product after the Isolation Building treatment of 2 peroxide precipitations.

3. DC-1,- analysis of the plutonium oxalate cake.

4. B-1, - analysis of the metal button reduced from plutonium fluoride.

Table I includes 7 batches showing items 1, 2, 3, and 4 above.

Table II includes 9 batches showing items 2, 3, and 4 above.
Table III includes 10 batches showing items 2 and 3 above.

Table IV includes 4 batches showing items 2 and 3, and 3 batches showing items 3 and 4 above.

Tables I - IV also includes pile residence in MWD, 231 Building "Sample Can" surveys in MR/hr., fluoride to metal reduction yields, and C/Q values for each batch.

Table V includes the maximum, average, and minimum impurity concentration in parts per million parts plutonium for 7 P-1, 26 AT, 48 DC-1, and 40 B-1 analyses.

Table VI includes maximum, average, and minimum impurity concentrations in parts per million parts plutonium for metal reduced from PuF$_4$ in the RM Line.
<table>
<thead>
<tr>
<th>REDUCED NUMBER</th>
<th>MOLD</th>
<th>231 BATCH NUMBER</th>
<th>SURVEY</th>
<th>X UN NUMBER</th>
<th>Y RUN NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-02-02-72-26</td>
<td>260</td>
<td>12-B-126</td>
<td>4</td>
<td>12-B-127</td>
<td>122-103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-127</td>
<td>12-2-103</td>
</tr>
<tr>
<td>S-02-02-72-27</td>
<td>260</td>
<td>12-B-127</td>
<td>1</td>
<td>12-B-128</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-128</td>
<td>12-2-103</td>
</tr>
<tr>
<td>8575-02-02-1-28</td>
<td>260</td>
<td>(12-B-129)</td>
<td>4</td>
<td>12-B-128</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-129</td>
<td>12-2-103</td>
</tr>
<tr>
<td>6175-02-02-1-29</td>
<td>260</td>
<td>(12-B-142)</td>
<td>1.5</td>
<td>12-2-173</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td>3975-02-02-1-26</td>
<td>260</td>
<td>(12-B-143)</td>
<td>1.5</td>
<td>12-2-173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-142</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td>7755-02-02-1-30</td>
<td>567</td>
<td>(12-B-143)</td>
<td>1.5</td>
<td>12-B-146</td>
</tr>
<tr>
<td></td>
<td>6375-02-02-1-29</td>
<td>260</td>
<td>(12-B-143)</td>
<td>1.5</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-143</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td>4255-02-02-1-31</td>
<td>567</td>
<td>(12-B-143)</td>
<td>1.5</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td>5275-02-02-1-44</td>
<td>12-B-146</td>
<td>4</td>
<td>12-B-146</td>
<td>12-2-103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-B-146</td>
<td>12-2-103</td>
</tr>
<tr>
<td>S-02-02-1-10</td>
<td>553</td>
<td>12-C-104</td>
<td>5</td>
<td>12-C-104</td>
<td>12-4-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-C-104</td>
<td>12-4-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-3-103</td>
<td>12-4-3</td>
</tr>
<tr>
<td>Ca</td>
<td>Cd</td>
<td>Cr</td>
<td>Cu</td>
<td>Fe</td>
<td>Hg</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>100</td>
<td>1.25</td>
<td>1.15</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>80</td>
<td>1.50</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>100</td>
<td>1.50</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>REDOX TCH NUMBER</td>
<td>MNO</td>
<td>23 BAT NUMBER</td>
<td>RUN NUMBER</td>
<td>Y RUN NUMBER</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>---------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>S-02-03-L-5</td>
<td>553</td>
<td>12-C-94</td>
<td>5</td>
<td>12-3-93</td>
<td>12-4-1</td>
</tr>
<tr>
<td>S-02-03-L-6</td>
<td>553</td>
<td>12-C-97</td>
<td>3</td>
<td>12-3-96</td>
<td>12-3-54</td>
</tr>
<tr>
<td>S-02-03-L-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-3-54</td>
</tr>
<tr>
<td>S-02-03-L-8</td>
<td>553</td>
<td>12-C-100</td>
<td>2</td>
<td></td>
<td>12-3-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-3-54</td>
</tr>
<tr>
<td>S-02-03-L-9</td>
<td>553</td>
<td>12-C-101</td>
<td>2</td>
<td>12-3-100</td>
<td>12-4-1</td>
</tr>
<tr>
<td>S-02-03-L-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-4-3</td>
</tr>
<tr>
<td>S-02-03-L-9</td>
<td>553</td>
<td>12-C-102</td>
<td>2</td>
<td></td>
<td>12-3-101</td>
</tr>
<tr>
<td>S-02-03-L-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-4-5</td>
</tr>
<tr>
<td>S-02-03-L-10</td>
<td>553</td>
<td>12-C-104</td>
<td>5</td>
<td></td>
<td>12-3-103</td>
</tr>
<tr>
<td>S-02-03-L-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-4-3</td>
</tr>
<tr>
<td>S-02-03-L-11</td>
<td>553</td>
<td>12-C-106</td>
<td>2</td>
<td>12-3-105</td>
<td>12-4-15</td>
</tr>
<tr>
<td>S-02-03-L-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-4-15</td>
</tr>
<tr>
<td>S-02-03-L-15</td>
<td>566</td>
<td>12-C-132</td>
<td>1</td>
<td></td>
<td>12-4-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12-4-15</td>
<td>12-4-15</td>
</tr>
<tr>
<td>Y-Run Number</td>
<td>Reduction Yield</td>
<td>Σ M₀</td>
<td>Sample Code</td>
<td>Ag</td>
<td>Al</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>------</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>12-4-1</td>
<td>99.2% 0.07%</td>
<td>0.063</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-3-54</td>
<td>99.0% 0.08%</td>
<td>0.053</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-1</td>
<td>99.2% 0.07%</td>
<td>0.063</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-3</td>
<td>99.9% 0.08%</td>
<td>0.063</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-5</td>
<td>99.3% 0.09%</td>
<td>0.063</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-15</td>
<td>100.7% 0.17%</td>
<td>0.156</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-15</td>
<td>100.7% 0.17%</td>
<td>0.156</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-4-15</td>
<td>100.7% 0.17%</td>
<td>0.156</td>
<td>B-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Sb</td>
<td>Sn</td>
<td>Sr</td>
<td>V</td>
<td>Zn</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>50</td>
<td>P*</td>
<td>10</td>
<td>L4</td>
<td>L13</td>
<td>L100</td>
</tr>
<tr>
<td>10</td>
<td>* 20</td>
<td>L4</td>
<td>L13</td>
<td>L120</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L13</td>
<td>L200</td>
<td>L100</td>
</tr>
<tr>
<td>10</td>
<td>L100</td>
<td>10</td>
<td>L25</td>
<td>L150</td>
<td>L640</td>
</tr>
<tr>
<td>50</td>
<td>P*</td>
<td>15</td>
<td>L13</td>
<td>L100</td>
<td>L300</td>
</tr>
<tr>
<td>*</td>
<td>L100</td>
<td>10</td>
<td>L25</td>
<td>L150</td>
<td>L640</td>
</tr>
<tr>
<td>20</td>
<td>P*</td>
<td>15</td>
<td>L1</td>
<td>L20</td>
<td>L100</td>
</tr>
<tr>
<td>L640</td>
<td>L100</td>
<td>5</td>
<td>L25</td>
<td>L100</td>
<td>L50</td>
</tr>
<tr>
<td>10</td>
<td>L10</td>
<td>P*</td>
<td>5</td>
<td>L25</td>
<td>L100</td>
</tr>
<tr>
<td>20</td>
<td>L100</td>
<td>5</td>
<td>L25</td>
<td>L100</td>
<td>L50</td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>20</td>
<td>L25</td>
<td>L100</td>
<td>L700</td>
</tr>
<tr>
<td>20</td>
<td>L100</td>
<td>5</td>
<td>L25</td>
<td>L100</td>
<td>L300</td>
</tr>
<tr>
<td>10</td>
<td>L100</td>
<td>20</td>
<td>L25</td>
<td>L100</td>
<td>L300</td>
</tr>
<tr>
<td>50</td>
<td>P*</td>
<td>15</td>
<td>L15</td>
<td>L100</td>
<td>L300</td>
</tr>
<tr>
<td>50</td>
<td>P*</td>
<td>15</td>
<td>L15</td>
<td>L100</td>
<td>L300</td>
</tr>
</tbody>
</table>

Note: In Table II, Ride, 1988.

High As, Cd, Cu, Zn, probably Fe, Sn, Zn.

DECLASSIFIED
<table>
<thead>
<tr>
<th>Ca</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>K</th>
<th>Li</th>
<th>Mg</th>
<th>Mn</th>
<th>Na</th>
<th>Ni</th>
<th>P</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.50</td>
<td>1.50</td>
<td>200</td>
<td>10</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>20</td>
<td>1.5</td>
<td>5</td>
<td>130</td>
<td>L1</td>
</tr>
<tr>
<td>100</td>
<td>1.50</td>
<td>1.50</td>
<td>50</td>
<td>50</td>
<td>150</td>
<td>L5</td>
<td>200</td>
<td>100</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>150</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>250</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>350</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>400</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>450</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>500</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>550</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>600</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>650</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>700</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>750</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>800</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>850</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>900</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>950</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>1.50</td>
<td>1.50</td>
<td>100</td>
<td>100</td>
<td>1500</td>
<td>L10</td>
<td>50</td>
<td>200</td>
<td>1.5</td>
<td>150</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>b</td>
<td>Sb</td>
<td>Si</td>
<td>Sn</td>
<td>Sr</td>
<td>V</td>
<td>Zn</td>
<td>Tl</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>10</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>10</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>10</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>15</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L100</td>
<td>5</td>
<td>L1</td>
<td>L8</td>
<td>L100</td>
<td>L50</td>
<td>L200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
- * - Interference
- ?* - Detection Uncertain
- B - Samples not taken
- L - Less Than

DECLASSIFIED
<table>
<thead>
<tr>
<th>Pb</th>
<th>Sb</th>
<th>Si</th>
<th>Sn</th>
<th>Sr</th>
<th>V</th>
<th>Zn</th>
<th>Ti</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>5</td>
<td>1</td>
<td>15</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>L</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>L</td>
<td>1</td>
<td>15</td>
<td>L100</td>
<td>50</td>
<td>L</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>L</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>L</td>
<td>1</td>
<td>15</td>
<td>L100</td>
<td>100</td>
<td>L</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>L</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>L</td>
<td>1</td>
<td>15</td>
<td>L100</td>
<td>100</td>
<td>L</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>L</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>L</td>
<td>1</td>
<td>15</td>
<td>L100</td>
<td>100</td>
<td>L</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>L</td>
<td>9</td>
<td>100</td>
<td>50</td>
<td>L</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L 1.0</td>
</tr>
</tbody>
</table>

L - Less Than
** - Detection Uncertain
* - Interference
G - Greater Than

Notes: Na content makes analysis for other elements difficult.
TABLE V RANGE OF IMPURITIES AFTER VARIOUS PURIFICATION STEPS

(From Spectro-Chemical Analyses Reports)

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>P-1</th>
<th>A.T.</th>
<th>RX-D C.</th>
<th>RG.B-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impurity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>25000</td>
<td>5686</td>
<td>1600</td>
<td>1000</td>
</tr>
<tr>
<td>Al</td>
<td>1600</td>
<td>L44</td>
<td>L50</td>
<td>L250</td>
</tr>
<tr>
<td>As</td>
<td>1.3</td>
<td>L1</td>
<td>20</td>
<td>6.6</td>
</tr>
<tr>
<td>Ba</td>
<td>10.2</td>
<td>L0.09</td>
<td>L0.03</td>
<td>L0.02</td>
</tr>
<tr>
<td>Bi</td>
<td>5.0</td>
<td>30.5</td>
<td>L1</td>
<td>50</td>
</tr>
<tr>
<td>Ca</td>
<td>1000</td>
<td>350</td>
<td>130</td>
<td>250</td>
</tr>
<tr>
<td>Cd</td>
<td>L250</td>
<td>L110</td>
<td>L50</td>
<td>G1000</td>
</tr>
<tr>
<td>Ce</td>
<td>L1000</td>
<td>L173</td>
<td>L130</td>
<td>L1200</td>
</tr>
<tr>
<td>Cr</td>
<td>10000</td>
<td>3129</td>
<td>300</td>
<td>1600</td>
</tr>
<tr>
<td>Cu</td>
<td>1000</td>
<td>49.4</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>Fe</td>
<td>S-10 only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1.000</td>
<td>L3050</td>
<td>L1300</td>
<td>L2000</td>
</tr>
<tr>
<td>Mn</td>
<td>L400</td>
<td>L213</td>
<td>L130</td>
<td>L400</td>
</tr>
<tr>
<td>Zn</td>
<td>5000</td>
<td>L3560</td>
<td>20</td>
<td>UX10</td>
</tr>
<tr>
<td>Cr</td>
<td>3000</td>
<td>997</td>
<td>L400</td>
<td>500</td>
</tr>
<tr>
<td>La</td>
<td>G2X10</td>
<td>320</td>
<td>5</td>
<td>L800</td>
</tr>
<tr>
<td>Mg</td>
<td>25</td>
<td>11.3</td>
<td>5</td>
<td>L25</td>
</tr>
<tr>
<td>Mn</td>
<td>L200</td>
<td>L125</td>
<td>50</td>
<td>L200</td>
</tr>
<tr>
<td>Na</td>
<td>5000</td>
<td>3560</td>
<td>20</td>
<td>UX10</td>
</tr>
<tr>
<td>Ni</td>
<td>3000</td>
<td>997</td>
<td>L400</td>
<td>500</td>
</tr>
<tr>
<td>P</td>
<td>L610</td>
<td>L393</td>
<td>L200</td>
<td>L1000</td>
</tr>
<tr>
<td>Pb</td>
<td>L610</td>
<td>L393</td>
<td>L200</td>
<td>L1000</td>
</tr>
<tr>
<td>Sr</td>
<td>L61</td>
<td>L14</td>
<td>L3</td>
<td>L20</td>
</tr>
<tr>
<td>Zn</td>
<td>L1000</td>
<td>330</td>
<td>L30</td>
<td>1000</td>
</tr>
<tr>
<td>Tl</td>
<td>L610</td>
<td>L374</td>
<td>L200</td>
<td>L1000</td>
</tr>
</tbody>
</table>

Symbol
- **L**: LESS THAN
- **G**: MORE THAN

Numerical Values = Parts per Million Parts Plutonium

Interference, results questionable.

HW-25834
Table VI

RM Line Metal Impurities

(From Spectro-Chemical Analyses Reports)

<table>
<thead>
<tr>
<th>Impurity</th>
<th>Max.</th>
<th>Ave.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td>Al</td>
<td>L50</td>
<td>L19</td>
<td>L1</td>
</tr>
<tr>
<td>As</td>
<td>L100</td>
<td>L1.8</td>
<td>L1</td>
</tr>
<tr>
<td>B</td>
<td>1.9</td>
<td>0.7</td>
<td>L5</td>
</tr>
<tr>
<td>Ba</td>
<td>L100</td>
<td>39</td>
<td>L0.1</td>
</tr>
<tr>
<td>Be</td>
<td>L0.1</td>
<td>L0.06</td>
<td>L1</td>
</tr>
<tr>
<td>Bi</td>
<td>L5</td>
<td>L1.8</td>
<td>L1</td>
</tr>
<tr>
<td>Ca</td>
<td>500</td>
<td>51.3</td>
<td>8</td>
</tr>
<tr>
<td>Cd</td>
<td>L80</td>
<td>50</td>
<td>L30</td>
</tr>
<tr>
<td>Ce</td>
<td>L800</td>
<td>391</td>
<td>L200</td>
</tr>
<tr>
<td>Cr</td>
<td>100</td>
<td>15</td>
<td>L1</td>
</tr>
<tr>
<td>Cu</td>
<td>100</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>325</td>
<td>156</td>
<td>L50</td>
</tr>
<tr>
<td>In</td>
<td>L20</td>
<td>L14.2</td>
<td>L10</td>
</tr>
<tr>
<td>K</td>
<td>L80</td>
<td>10</td>
<td>L1</td>
</tr>
<tr>
<td>La</td>
<td>200</td>
<td>148</td>
<td>L8</td>
</tr>
<tr>
<td>Li</td>
<td>L5</td>
<td>L1.2</td>
<td>L1</td>
</tr>
<tr>
<td>Mg</td>
<td>500</td>
<td>227</td>
<td>100</td>
</tr>
<tr>
<td>Mn</td>
<td>500</td>
<td>97</td>
<td>15</td>
</tr>
<tr>
<td>Na</td>
<td>80</td>
<td>13</td>
<td>L5</td>
</tr>
<tr>
<td>Ni*</td>
<td>500</td>
<td>183</td>
<td>20</td>
</tr>
<tr>
<td>P</td>
<td>200</td>
<td>113</td>
<td>L100</td>
</tr>
<tr>
<td>Pb</td>
<td>20</td>
<td>10</td>
<td>L5</td>
</tr>
<tr>
<td>Sb</td>
<td>L100</td>
<td>L100</td>
<td>L100</td>
</tr>
<tr>
<td>Si</td>
<td>10</td>
<td>6</td>
<td>L5</td>
</tr>
<tr>
<td>Sn</td>
<td>20</td>
<td>9</td>
<td>L1</td>
</tr>
<tr>
<td>Sr</td>
<td>L13</td>
<td>7</td>
<td>L5</td>
</tr>
<tr>
<td>V</td>
<td>L100</td>
<td>L100</td>
<td>L100</td>
</tr>
<tr>
<td>Zn</td>
<td>L100</td>
<td>L60.4</td>
<td>L50</td>
</tr>
<tr>
<td>Tl</td>
<td>L320</td>
<td>L181</td>
<td>L130</td>
</tr>
</tbody>
</table>

* Does not include RMX-12-4-2 which had 2000 ppm Ni due to processing in an inconel boat.