
 

 
On-Line Monitoring and Diagnostics of the Integrity of 
Nuclear Plant Steam Generators and Heat Exchangers 

 
 

Final Report 
 

Report No. DE-FG07-01ID14114/UTNE-07 
NEER Grant Number: DE-FG07-01ID14114 

 
Volume 1 

 
Experimental and Hybrid Modeling Approach for Monitoring Heat 

Exchanger System Performance 
 

Belle R. Upadhyaya 
J. Wesley Hines 

(Principal Investigators) 
 

Baofu Lu 
Xuedong Huang 
Rosani L. Penha 
Sergio R. Perillo 

Ke Zhao 
 

The University of Tennessee 
Nuclear Engineering Department 
209 Pasqua Engineering Building 

Knoxville, TN 37996-2300 
E-mail: bupadhya@utk.edu 

 
 

DOE Program Manager for NEER 
Idaho Operations Office 

Nancy A. Elizondo 
 

September 2004 
 
 

 
 



 1

 
EXECUTIVE SUMMARY 

 
 The overall purpose of this Nuclear Engineering Education Research (NEER) project 

was to integrate new, innovative, and existing technologies to develop a fault diagnostics and 

characterization system for nuclear plant steam generators (SG) and heat exchangers (HX).  

Issues related to system level degradation of SG and HX tubing, including tube fouling, 

performance under reduced heat transfer area, and the damage caused by stress corrosion 

cracking, are the important factors that influence overall plant operation, maintenance, and 

economic viability of nuclear power systems.  The research at The University of Tennessee 

focused on the development of techniques for monitoring process and structural integrity of 

steam generators and heat exchangers. 

 

 The objectives of the project were accomplished by the completion of the following 

tasks.  All the objectives were accomplished during the project period.  This report 

summarizes the research and development activities, results, and accomplishments during 

June 2001 – September 2004. 

  

• Development and testing of a high-fidelity nodal model of a U-tube steam generator 

(UTSG) to simulate the effects of fouling and to generate a database representing 

normal and degraded process conditions.  Application of the group method of data 

handling (GMDH) method for process variable prediction. 

• Development of a laboratory test module to simulate particulate fouling of HX tubes 

and its effect on overall thermal resistance.  Application of the GMDH technique to 

predict HX fluid temperatures, and to compare with the calculated thermal resistance. 

• Development of a hybrid modeling technique for process diagnosis and its evaluation 

using laboratory heat exchanger test data. 

• Development and testing of a sensor suite using piezo-electric devices for monitoring 

structural integrity of both flat plates (beams) and tubing.  Experiments were 

performed in air, and in water with and without bubbly flow. 
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• Development of advanced signal processing methods using wavelet transforms and 

image processing techniques for isolating flaw types. 

• Development and implementation of a new nonlinear and non-stationary signal 

processing method, called the Hilbert-Huang transform (HHT), for flaw detection and 

location.  This is a more robust and adaptive approach compared to the wavelet 

transform. 

• Implementation of a moving-window technique in the time domain for detecting and 

quantifying flaw types in tubular structures.  A window zooming technique was also 

developed for flaw location in tubes. 

• Theoretical study of elastic wave propagation (longitudinal and shear waves) in 

metallic flat plates and tubing with and without flaws. 

• Simulation of the Lamb wave propagation using the finite-element code ABAQUS.  

This enabled the verification of the experimental results. 

 

The research tasks included both analytical research and experimental studies.  The 

experimental results helped to enhance the robustness of fault monitoring methods and to 

provide a systematic verification of the analytical results.  The results of this research were 

disseminated in scientific meetings.  A journal manuscript was submitted for publication.  

The new findings of this research have potential applications in aerospace and civil 

structures.  The report contains a complete bibliography that was developed during the course 

of the project. 
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1. INTRODUCTION, BACKGROUND, AND OBJECTIVES 

 
1.1. Background and Objectives 

 

The objective of the research project at The University of Tennessee was to develop a 

system for On-line Monitoring and Diagnostics of Integrity of Nuclear Plant Steam 

Generators and Heat Exchangers.  Both structural and process integrity of these components 

were considered.  Steam generators (SG) and heat exchangers (HX) constitute a significant 

part of power generation systems, and their reliability and availability influence plant 

operation, maintenance, and cost control issues.  Such issues are especially important for the 

next generation reactors, which require remote monitoring for both system integrity and for 

increasing the maintenance interval necessitated by increased fuel cycle lengths.  

Furthermore, the incorporation of an on-line monitoring system must be considered during 

the design phase, thus increasing its effectiveness and avoiding unnecessary retrofitting.  The 

three-year project achieved the integration of new, innovative, and existing technologies to 

develop an automated structural fault diagnostics and characterization system for nuclear 

plant heat exchangers and steam generators. 

 A nuclear plant steam generator is one of the critical components of a nuclear power 

plant.  There are thousands of tubes in a steam generator.  The U-tube steam generator 

(UTSG) in a typical four-loop, 1,300 MWe pressurized water reactor (PWR), consists of 

about 3,600 tubes.  Tube degradation can occur due to thermal and mechanical stresses, 

fouling and deposits, fatigue and creep, wear and fretting, and stress corrosion cracking and 

intergranular attack.  Depending on the nature of plant operating conditions, one or more of 

the above causes may result in tube damage.  The degradation of tubes in a steam generator is 

the primary cause of its reduced performance and of its structural failure.  A remedy often 

used by the industry is to plug damaged and leaking tubes.  This, in turn, results in decreased 

operational efficiency with time.  The cost of replacement of a large UTSG in a 1,300 MWe 

four-loop PWR is about $150 million.  Several operating PWR units in the U.S. have either 

replaced steam generators or are seriously considering this upgrading.  These provide a 

strong argument for the development of continuous on-line monitoring of their structural 

integrity and incipient fault detection and isolation. 
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 The use of a distributed and embedded sensor suite and extracting information from 

sensor arrays would result in a smart structure with self-inspection capability.  Since the 

project emphasized he application of this technology to next generation reactors, the creation 

of hybrid database for use in predictive models, was given high priority.  Figure 1.1 is a 

schematic of the integration of plant monitoring, diagnosis, and prognosis modules.  It is 

anticipated that this system will provide timely decision-making information about the status 

of plant devices and components to operational personnel. 

The capability and experience of The University of Tennessee in system monitoring 

and diagnosis and new methods being developed under this project are being directed 

towards implementation in the next generation nuclear power plants.  Features such as the 

use of this technology in plant design-phase, wireless communication, Internet-based e-

maintenance, and other remote technologies must also being considered in technology 

implementation. 
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Figure 1.1. Schematic of a plant monitoring, diagnosis, and prognosis system. 
 
 
1.2. Summary of Research Tasks and Significant Results 
 

The following major tasks were completed during the project.  All the originally 

stated milestones were accomplished during the project period. 

1. Review of literature on the various tasks considered for research in this project.  A 

complete Bibliography is given at the end of the report. 

 

2. Development of a MATLAB-Simulink™ code to simulate the dynamic performance of a 

U-tube steam generator (UTSG) in a typical 1,140 MWe PWR.  This multi-nodal model 

was used to simulate the effects of tube fouling, tube plugging, leakage and other 

process-related phenomenon.  The UTSG model is coupled to the whole plant system in 
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order to provide realistic simulation results.  The nodal structure was expanded to account 

for spatial variations in the physical parameters.  For example, the effect of fouling in the 

sub-cooled region has a higher influence on the steam pressure compared to a similar 

effect in the boiling region. 

3. The high-fidelity nodal model of the UTSG was used to simulate the effects of fouling.  

Application of the group method of data handling (GMDH) method for process variable 

prediction.  The model was used to generate a database representing normal and degraded 

process conditions. 

4. Development of a laboratory heat exchanger system that was used to generate normal 

operation data and data under faulty device operation.  This portable test rig was 

equipped with flow and pressure transmitters, flow meters, and thermocouples to measure 

fluid temperatures. 

5. Development of a laboratory test module to simulate particulate fouling of HX tubes and 

its effect on overall thermal resistance.  Application of the GMDH technique to predict 

HX fluid temperatures, and to compare with the calculated thermal resistance. 

6. Development of a hybrid first principle and data-based model that was used to update and 

fine-tune the model using process data.  Predictive artificial neural network and nonlinear 

data-driven models were used for process monitoring and diagnosis.  The hybrid models 

were classified into serial hybrid and parallel hybrid models.  The serial modeling 

exhibited a better performance in predicting process variables compared to the parallel 

modeling.  A simple heat exchanger model was used for this study. 

7. Development of a laboratory piezo-device sensor suite for structural monitoring and a 

data acquisition system for measuring both input excitation signal and the response 

signal.  This uses metal flat plates and tubing specimen.  The comparison of the input 

excitation signal (transmitted signal) and the signal received at another location in the 

plate show excellent frequency response characteristics.  The frequency characteristics 

changed when there was a flaw in the plate (or tubing) such as a crack, inclusion, deposit, 

etc.  This task included the review of elastic wave propagation in plates under normal and 

fault conditions.  Experiments were performed in air, and in water with and without 

bubbly flow.  A review of wireless and Internet signal transmission was also performed 

as part of this experiment. 
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8. Development of advanced signal processing and defect classification algorithms.  The 

transient data were analyzed using time-frequency techniques such as the wavelet 

transforms and the Hilbert-Huang transform (HHT).  The HHT was found to be highly 

effective in processing non-stationary and nonlinear signals from the piezo-transducers. 

9. Development of a moving-window technique in the time domain for detecting and 

quantifying flaw types in tubular structures.  A window zooming technique was also 

developed for flaw location in tubes. 

10. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic 

flat plates and tubing with and without flaws. 

11. Simulation of Lamb wave propagation using the finite-element code ABAQUS.  This 

enables the verification of the experimental results. 

12. The following is a list of publications under this project.  These were used for 

information dissemination.  

12.1. B. Lu, B.R. Upadhyaya, and J.W. Hines, “Application of Hilbert-Huang Transform for 
Acoustic Signal Analysis for Steam generator Structural Integrity Diagnosis,” 
Transactions of the American Nuclear Society, Vol. 91, November 2004. 

 
12.2. B. Lu, B.R. Upadhyaya, and J.W. Hines, “Feature Extraction from Lamb Wave Signals 

for Structural Flaw Classification,” Transactions of the American Nuclear Society, 
Vol. 90, pp. 64-65, June 2004. 

 
12.3. B.R. Upadhyaya, J.W. Hines, B. Lu, and X. Huang, “Structural Integrity Monitoring of 

Nuclear Plant Steam Generators,” Transactions of the American Nuclear Society, Vol. 
89, pp. 481-482, November 2003. 

  
12.4. B.R. Upadhyaya, B. Lu, J.W. Hines, and S.R.P. Perillo, “Defect Monitoring in  
 Steam Generator Structures Using Piezoelectric Transducers and Time-Frequency  
 Analysis,” Transactions of the American Nuclear Society, Vol. 88, pp. 504-505,    
 June 2003. 
 
12.5. B. Lu, B.R. Upadhyaya, J.W. Hines, and S.R.P. Perillo, "Time-Frequency Analysis     

of Acoustic Signals for Flaw Monitoring in Steam Generator Structures, Proceedings 
of MARCON 2003, Knoxville, TN, May 2003. 
 

12.6. X. Huang, B.R. Upadhyaya, and J.W. Hines, "Particulate Fouling and its Effects on U-
Tube Steam Generator Thermal Performance," Proceedings of MARCON 2003, 
Knoxville, TN, May 2003. 

 



 11

12.7. B.R. Upadhyaya, J.W. Hines, X. Huang, N.A. Johansen, A.V. Gribok, and S.R.P. 
Perillo, “Automated Monitoring and Diagnostics of the Integrity of Nuclear Plant 
Steam Generators,” Transactions of the American Nuclear Society, Vol. 86, p. 188, 
2002. 

 
12.8. R.L. Penha, J.W. Hines, and B.R. Upadhyaya, "Application of Hybrid Modeling for 

Monitoring Heat Exchangers," Proceedings of ANES 2002, Miami, October 2002. 
 
12.9. S.R.P. Perillo, B.R. Upadhyaya, and J.W. Hines, "Structural Monitoring of Steam 

Generators and Heat Exchangers Using Piezoelectric Devices," Proceedings of ANES 
2002, Miami, October 2002. 

 
12.10.S.R.P. Perillo and B.R. Upadhyaya, "Applications of Piezoelectric Devices in 

Engineering Systems," Proceedings of MARCON 2002, Knoxville, TN, May 2002. 
 
12.11.R.L. Penha and J.W. Hines, “Hybrid System Modeling for Process Diagnostics,” 

Proceedings of MARCON 2002, Knoxville, TN, May 2002. 
 
12.12. B. Lu, B.R. Upadhyaya, and R.B. Perez, “Structural Integrity Monitoring of Steam 

Generator Tubing Using Transient Acoustical Signal Analysis,” submitted for 
publication in IEEE Transactions on Nuclear Science, 2004. 

 
 
1.3. Project Personnel 
 
Principal Investigator:   B.R. Upadhyaya 
Co-Principal Investigator:  J.W. Hines 
 
Graduate Research Assistant:  B. Lu 
     X. Huang 
     K. Zhao 
 
Visiting Scholars:   S.R. Perillo 
     R.L. Penha 
 
1.4. Outline of the Report - Volume 1 
 
 The review of steam generator degradation mechanisms and the current status of in-

service inspection are presented in Section 2.  The development of a simulation model of the 

UTSG and the results of simulating both normal and degraded operation are described in 

Section 3.  Experimental studies on tube fouling are presented in Section 4.  Section 5 

presents the technique and the results of monitoring tube fouling using the GMDH approach.  

Section 6 presents the details of the hybrid modeling approach and the results of application 



 12

to a tubular heat exchanger.  The development of data driven models from operational data 

and applications to a helical coil steam generator are described in Section 7.  Concluding 

remarks on the tasks and results presented in Volume 1 of the report are summarized in 

Section 8.  The report contains an extensive bibliography of literature review. 
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2. REVIEW OF DEGRADATION MECHANISMS IN NUCLEAR PLANT 
STEAM GENERATORS AND HEAT EXCHANGERS 

 
2.1. Introduction 
         

Pressurized water reactors (PWRs) use steam generators (SGs) to convert water into 

steam in the secondary side from heat produced in the reactor core (primary side).  Figure 2.1 

shows a simplified schematic of a recirculating-type nuclear steam generator [58].  The steam 

generators are large components, that measure up to 70 feet in height and weigh as much as 

800 tons.  Inside the steam generators, hot radioactive water is pumped through thousands of 

feet of tubing -- each steam generator can contain anywhere from 3,000 to 10,000 tubes, each 

about 0.75-inch diameter (the number of tubes depends on the type of SG, U-tube or once-

through type) -- under high pressure.  The water flowing through the inside of the tubes heats 

non-radioactive water on the outside of the tubes and converts the secondary water into 

steam.  The steam (saturated or superheated) flows into several stages of a turbine that is 

coupled to electrical generators.  The steam from the last stage of the turbine is condensed 

into water and is pumped back to the steam generator. 

         The steam generator tubes have an important safety role because they constitute one of 

the primary barriers between the radioactive and non-radioactive sides of the plant.  For this 

reason, the integrity of the tubing is essential in minimizing the leakage of water between the 

two sides of the plant.  There is the potential that if a tube ruptures during plant operation, 

radioactivity from the primary loop could escape directly to the atmosphere along with the 

steam. 

Operating results show that about one-half of the PWR nuclear power plants in the 

world were plugging or sleeving steam generator tubes in any given year of the first half of 

1990s.  The total number of steam generator tubes plugged per year has ranged from about 

10,000 to 12,000 tubes.  Moreover, more than 48,000 steam generator tubes were sleeved as 

of December 1994.  This indicates that it is of great significance to maintain the structural 

integrity of SGs for efficient electricity production and safe operation of nuclear power units.  

To achieve this goal, it is necessary to get a good understanding of steam generator flaws and 

degradation mechanisms. 
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Figure 2.1. Simplified schematic of a recirculating type nuclear steam generator [Ref. 58]. 

 
 
2.2. Review of SG Defects and Degradation Mechanisms 

 
An extensive literature review on SG defects and degradation mechanisms has been 

made [57-60].  The discussion in this section is taken from Ref. [58].  Generally, there exist 

various degradation modes for SG (mainly for the tubing). The degradation modes are 

somewhat different for UTSG and OTSG systems.  However, the following modes are 
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generally true: (a) Stress Corrosion Cracking, (b) Intergranular attack (IGA), (c) Denting, (d) 

Pitting, (e) Fretting, Wear, and Thinning, (f) High-cycle Fatigue and Wastage.  Fouling is 

often not regarded as a degradation mode of tubing.  It may be regarded of as a degradation 

cause, which is influenced by other sources (water chemistry, impurities, etc).  Fouling will 

be further discussed in the following section.  From the point of view of SG integrity and 

heat transfer, fouling mainly results in SG degradation by changing the heat transfer.  Almost 

all other degradation mechanisms lead to loss of structural integrity of the SG and also the 

degradation in the SG thermal performance.  If they are severe enough they may initiate an 

accident, such as steam generator tube rupture (SGTR).  Hence it is of great importance to 

monitor both the structural and process the integrity of steam generators. 

Steam generator (SG) defects mainly include SG materials discontinuity, or loss of SG 

structural integrity and capability of normal heat transfer and steam generation.  Dominant 

forms of SG degradation forms have changed over time.  From the early time to mid-1970s, 

thinning of steam generator tube walls due to the chemistry of water flowing around them 

was the dominant cause of tube degradation.  However, all plants have changed their water 

chemistry control programs since then, almost completely eliminating the problem with tube 

thinning. 

After tube thinning, tube denting became a primary concern.  Denting results from the 

corrosion of the carbon steel support plates and the buildup of corrosion product in the 

crevices between tubes and tube support plates.  Measures have been taken to control 

denting, including changes in the chemistry of the secondary side, the non-radioactive side of 

the plant.  But other phenomena continue to cause tube cracking. 

 
Some of the newer steam generators have features that make the tubes less susceptible 

to corrosion-related damage. These include using stainless-steel tube support plates to 

minimize the likelihood of denting; new fabrication techniques to minimize mechanical 

stress on tubes; and the use of more corrosion-resistant tube materials, such as thermally 

treated Alloy 600 and Alloy 690.  Though for different types of SGs, there exist some 

differences and characteristics in their degradation mechanisms, the following general 

categories of SG degradation mechanisms have been identified. 
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2.2.1. Stress Corrosion Cracking (SCC) 
 

 Stress corrosion cracking occurs under the combined action of corrosion and stress, 

either applied or residual.  Depending on the metal and corrosive medium, the cracking may 

be either intergranular or transgranular.  SCC can occur on both the primary (inside) and 

secondary (outside) sides of SG tubes, which are named respectively as PWSCC (Primary 

Water Stress Corrosion Cracking) and ODSCC (Outer Diameter Stress Corrosion Cracking).  

SCC increases in severity (frequency of occurrence and speed of crack growth) as stresses 

increase, as the environment becomes more severe (higher temperature, more aggressive 

chemical environment, etc.), and as the material susceptibility increases.  Typical locations 

for SCC are at dents (see Figure 2.2), in the roll expansion regions at the tube sheet (see 

Figure 2.3), and in areas with concentrated impurities [58]. 

 

Figure 2.2. Illustration showing the typical locations for SCC occurring at dents [Ref. 58]. 
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Figure 2.3. Illustration showing the typical locations for SCC occurring in the roll expansion 
regions at the tube sheet [Ref. 58]. 

 

2.2.2. Intergranular Attack (IGA) 

Intergranular attack of SG tubes proceeds along the grain boundaries of the metal, 

starting at the surface on the secondary side (see Figure 2.4).  It also occurs to a smaller 

extent on the primary side.  This form of corrosion proceeds in the absence of stress, but may 

be accelerated by stress.  IGA can occur both in sludge piles (see Figure 2.5) and in tube 

support regions, and it may be a precursor to subsequent intergranular stress corrosion 

cracking (IGSCC) [58]. 
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Figure 2.4. Illustration showing the intergranular attack of SG tubes starting at the surface on 
the secondary side [Ref. 58]. 

 

 

Figure 2.5. Illustration showing the intergranular attack of SG tubes near sludge piles [Ref. 58]. 
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 2.2.3. Denting 
 

Denting is a process in which the SG tubes are squeezed inward and deformed at a 

carbon steel tube support plate intersection or within the tube sheet as a result of the 

corrosion of carbon steel supports, which produces a buildup of corrosion products between 

the tube support structure and the outer surface of the tube.  Stresses are introduced and can 

lead to stress corrosion cracking and other types of tube failures (see Figure 2.6) [58]. 

 

Figure 2.6. Illustration showing denting and other types of tube failures [Ref. 58]. 

2.2.4. Pitting 

           Pitting corrosion essentially acts like a chemical drill and is not focused on structural 

features such as grain boundaries (see Figure 2.7) [58].  This degradation has been observed 

on the secondary side of SG tubes in both the hot and cold legs, primarily on tube surfaces in 

the sludge piles in the cold leg.  Pitting occurs because of the presence of oxidizing 

impurities (oxygen and copper) and acidic forming impurities (chloride and sulfate).  Any 
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barriers to diffusion such as sludge accumulation on tube wall will accelerate the pitting 

process by enhancing the chemical concentrations.  

 

Figure 2.7. Illustration showing pitting degradation [Ref. 58]. 

  2.2.5. Fretting, Wear, and Thinning 

           These steam generator degradation types are also broad characterized as mechanically-

induced or aided degradation mechanisms.  Degradation from small amplitude, oscillatory 

motion, between continuously rubbing surfaces, is generally termed fretting.  Tube vibration 

of relatively large amplitude, resulting in intermittent sliding contact between tube and 

support, is termed sliding wear, or wear.  Concurrent effects of vibration and corrosion 

generally cause thinning.  However, thinning occurs at some locations where flow-induced 

vibrations are not expected, so it is not certain that tube motion is required for this 

mechanism; in some cases it may simply be the result of corrosion wastage.  
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           The major stressor in fretting and wear is the flow-induced vibration.  When anti-

vibration bars (AVBs) are used in the U-bend regions of tube bundles of recirculating steam 

generators to stiffen the tubes and limit vibration amplitudes, the anti-vibration bar 

fretting/wear can occur.  

2.2.6. High-Cycle Fatigue 

The combination of high vibration amplitude and low strength may lead to catastrophic 

fatigue failures. Vibration occurs in steam generators with high recirculation flow factors 

(causing flow-induced vibrations in the U-bend region) and improper AVB support.  A high 

mean stress (e.g. residual stress) or a tube defect (fretting mark or crack) significantly 

reduces the fatigue strength.  Therefore, tubes with dents, fret marks, or cracks at the top tube 

support plate in U-bend region of the recirculating SGs are susceptible to high-cycle fatigue 

failure. 

Wastage of the peripheral tubes near the lower support plates on the cold leg sides of 

the recirculating SGs in a few plants might also have been caused by acidic sulfates. Resin 

leakage from the condensate polisher beds could have produced the acidic sulfate 

environment.  The phosphate corrosion or wastage is transgranular and may lead to 

significant thinning and, ultimately, to local ductile rupture and leakage.  Phosphate wastage 

was the major cause of tube failures in PWR SGs until around 1976.  However, it is no 

longer an active degradation mechanism in most of the PWR plants since phosphate water 

chemistry is no longer used in most plants. 

 
2.2.7. Wastage 

 
Wastage is the relatively uniform corrosion and thinning of a SG tube on its outside 

surface (secondary-side of the SG).  This degradation tends to occur in relatively stagnant 

regions in recirculating SGs with secondary-side phosphate water chemistry. These regions 

include the tube-to-tube sheet crevices, the tube-to-tube support plate annuli, and the sludge 

pile on the tube sheet, or the short radius U-bends in the vicinity of AVBs. 

Table 1 gives a summary of PWR recirculating steam generator tube degradation 

mechanisms [59]. 
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2.3. Review of Fouling in Heat Exchangers and Steam Generators 

 
There is an extensive amount of literatures on fouling [62-73].  Over the past several 

years, an increasing number of pressurized water reactor (PWR) plants have begun to 

experience degradation in steam generator thermal performance, which is often manifested as 

a decrease in SG steam pressure during operation.  Such degradation can result in costly 

reductions in the electrical generating capacity of the plant.  Even a 1% decrease in electrical 

generation approximately corresponds to $2 million in lost revenues per year for a typical 

PWR.  Numerous causes of SG thermal performance degradation have been identified, 

including primary and secondary tube fouling, dryer clogging, flow resistance due to scaling, 

and tube plugging and sleeving.  Hence, fouling-related degradation is one of the major 

problems in steam generators as well as in heat exchangers.  Therefore in this research, we 

focused part of our effort for the study of fouling, including a literature review, modeling, 

experimental study, and monitoring and diagnosis of fouling using the GMDH method. 
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Table 1. Summary of PWR recirculating steam generator tube degradation processes 
 

a Based on operating experience and number of defects (as of 1993). 
b Multi-frequency rotating pancake coil probe. 

Ranka Degradation 
Mechanism 

Stressor Degradation Sites Potential Failure Mode ISI Method 

1 ODSCC Tensile stresses, 
impurity 
concentrations, 
sensitive materials 

● Tube-to-tubesheet crevices 
● Sludge Pile 
● Tube support plate 
● Free span 

Axial or circumferential crack 
Circumferential crack 
Axial crack 
Axial crack 

MRPC 
MRPC/Cecco 5 
Bobbin coil/ Cecco 5 
Bobbin coil (in absolute 
mode) 

2 PWSCC Temperature, residual 
tensile stresses, 
sensitive materials (low 
mill anneal 
temperature) 

● Inside surface of U-bend 
● Roll transition w/o kiss rolling 
● Roll transition with kiss rolling 
● Dented tube regions 

Mixed Crack 
Mixed Crack 
Axial Crack 
Circumferential crack 

MRPCb 
MRPC 
MRPC 
Bobbin coil or MRPC 

3 Fretting, 
Wear 

Flow induced vibration, 
aggressive chemicals 

● Contact points between tubes and the 
AVBs, or tubes and the preheater baffles 
● Contact Between tubes and loose parts 
● Tube-to-tube contact 

Local wear 
 
Depends on loose part geometry 
Axial Wear 

Bobbin coil 
 
Bobbin coil 
Bobbin coil 

4 High-cycle 
fatigue 

High mean stress level 
and flow induced 
vibration, initiating 
defect (crack, dent, pit, 
etc.) 

At the upper support plate if the tube is 
clamped 

Transgranular circumferential 
cracking 

Leak detection or by 
detection of precursor 

5 Denting Oxygen, copper oxide, 
chlorides, temperature, 
PH, crevice condition, 
deposits 

At the tube support plates, in the sludge 
pile, in the tubesheet crevices 

Flow blockage in tube, may lead 
to circumferential cracking (see 
PWSCC), decreases in fatigue 
resistance 

Profilometry, Bobbin 
coil 

6 Pitting Brackish water, 
chlorides, sulfates, 
oxygen, copper oxides 

Cold leg in sludge pile or where scale 
containing copper deposits is found, 
under deposit pitting in hot leg 

Local attack and tube thinning, 
may lead to a hole 

Bobbin coil, ultrasonics 

7 Wastage Phosphate chemistry, 
chloride concentration, 
resin leakage 

Tubesheet crevices, sludge pile, tube 
support plates, AVBs 

General thinning  Bobbin coil 



 

2.3.1. Definition of Fouling 
 

Fouling is generally defined as the accumulation of unwanted materials on the 

surfaces of processing equipment.  It has been recognized as a nearly universal problem 

in design and operation and affects the operation of equipment in two ways: 

• The fouling layer has a low thermal conductivity.  This increases the resistance to 
heat transfer and reduces the effectiveness of heat exchangers and steam 
generators. 

• As deposition occurs, the cross-sectional area is reduced, which causes an 
increase in pressure drop across the apparatus. 

Heat exchangers and SGs are designed for counteracting the effect of fouling by 

providing excess heat transfer capacity in order to offset the losses in efficiency caused 

by fouling. That is, the thermal resistance due to fouling, R f, is included in the equation 

for the overall heat transfer coefficient as follows: 
 

 (2.1) 

 
Uo= overall heat transfer coefficient based on outside area of tube wall 
A = tube wall area 
A w = mean wall area 
R f = thermal resistance due to fouling 
R w = thermal resistance of wall 
α = convective heat transfer coefficient. 
 

As deposit thickness or Rf  increases with time, Uo decreases.  The thermal fouling 

resistance, R f, is defined as:  
 

    (2.2) 
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The overall heat transfer coefficient determines how much heat can be transferred 

between the hot and the cold fluid in a given heat exchanger.  When it falls below a 

tolerable value, the heat exchanger will have to be serviced. 
 

2.3.2. Fouling Mechanism 
 

According to the mechanism responsible for deposit generation, fouling has been 

classified into crystallization fouling, particulate fouling, chemical reaction fouling, 

corrosion fouling, and biological fouling (bio-fouling). 

• Crystallization fouling is the deposition of a solid layer on a heat transfer 
surface, mainly resulting from the presence of dissolved inorganic salts in the 
flowing solution which become supersaturated under process conditions.  Typical 
scaling problems are calcium carbonate, calcium sulphate, and silica deposits. 

• Particulate fouling is the accumulation of solid particles suspended in a fluid 
onto a heat transfer surface.  Suspended particles can be ambient pollutants 
(sand, silt, clay), upstream corrosion products, or products of chemical reactions 
occurring within the fluid. 

• Chemical reaction fouling involves deposits that are formed as the results of 
chemical reactions at the heat transfer surface.  The heat exchanger surface 
material does not react itself, although it may act as a catalyst.  This kind of 
fouling is a common problem in chemical process industries, oil refineries, and 
dairy plants. 

• Corrosion fouling occurs when the heat exchanger material reacts with the fluid 
to form corrosion products on the heat transfer surface.  

• Biological fouling is the development and deposition of organic films consisting 
of micro-organisms and their products (microbial fouling) and the attachment 
and growth of macro-organisms, such as barnacles or mussels (macrobial 
fouling). 

Generally, several fouling mechanisms occur at the same time, nearly always being 

mutually reinforcing.  The above fouling mechanisms generally occur in five consecutive 

steps:  
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1. Initiation or delay period: When a new or cleaned heat exchanger is put into 
operation, the initially high heat transfer coefficients may remain unchanged for 
some time.  This delay period can vary from a few seconds to several days. 
According to research results of Müller-Steinhagen and co-workers, no delay 
period occurs for particulate fouling. 

2. Mass transport: To form a deposit at the heat transfer surface, at least one key 
component has to be transported to it from the bulk fluid.  In most cases, this 
occurs by diffusion. 

3. Formation of the deposit:  After the foulant has been transported to the heat 
transfer surface, it must stick to the surface or react to give the deposit forming 
substance. 

4. Removal or auto-retardation: Depending on the strength of the deposit, erosion 
occurs immediately after the first deposit has been laid down.  Furthermore, 
several mechanisms exist which cause auto-retardation of the deposition process.  

5. Aging: Every deposit is subjected to this stage. This can increase the deposit 
strength by, for example, polymerization, recrystallization, or dehydration. 
Biological deposits weaken with time due to contamination of organisms.  

 

 

 

 

 

 

 

 

 

Figure 2.8. Different cases of fouling rate. 

Depending on the process parameters and the dominant fouling mechanism, the 

fouling rate will either be constant or decrease with time. 
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• Linear rate: Rf  increases with time or the growth rate of deposit is constant.  This 
is the result of hard and adherent deposit where removal and aging can be 
ignored.  

• Falling rate: Rf  increases with time, but with a progressively falling rate or the 
removal rate increases with time.  

• Asymptotic rate: After a period of time, Rf  reaches a constant value or the growth 
rate of deposit approaches zero.  

• Saw-tooth fouling: Part of the deposit is detached after a critical residence time 
or once a critical deposit thickness has been reached.  The fouling layer then 
builds up and breaks off again.  

2.3.3. Mitigation or Control of Fouling 

Owing to the enormous costs associated with fouling, a considerable number of 

fouling mitigation strategies have been developed.  Fouling is a function of many 

variables.  For example, fouling in crude oil exchangers is affected by the following 

variables: crude oil composition, inorganic contaminants, process conditions 

(temperature, pressure, flow rate), exchanger and piping configuration, and surface 

temperature.  Therefore effective control of the variables in certain conditions may 

minimize fouling.  Generally, effective fouling control methods should involve: 

• Preventing foulant formation 
• Preventing foulant from adhering to themselves and to heat transfer surfaces 
• Removal of deposits from the surfaces. 

Experiences have shown that steps can be taken to prevent or mitigate the impact of 

fouling problems during the following phases: plant design, plant construction, plant 

operation, and plant maintenance. 

The following techniques are implemented to mitigate or control fouling: reduction 

of foulant concentration, use of chemical additives, mechanical on-line mitigation 

strategies, high flow rate and low surface temperature, chemical or mechanical cleaning 
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of fouled process equipment, surface coatings and treatments, ultraviolet, acoustic, 

magnetic, electric and radiation treatment, etc. 
 

2.3.4. Heat Exchanger or SG Degradation Models 
 
            The degradation models are those that define the relationships between the 

characterization variable (for example, steam pressure change, tube wear rate, etc.) and 

the contributors or stressors (thermal fouling resistance, contact forces, contact time, 

coefficient of friction, etc) of the defects.  These models can be used to predict the 

reliability or residual lifetime of tubing in heat exchangers and SGs. 

            Even though there are various degradation models for SG residual lifetime 

prediction, which could be used by the nuclear industry, the Nuclear Regulatory 

Commission (NRC) has not yet approved any one of these as the standard method.  This 

may be due to the fact that the SG degradations are so complex that up to now no single 

model can characterize all the degradation mechanisms very well. 

           Based on parametric study of the UTSG thermal-hydraulic model, Naghedolfeizi 

and Upadhyaya [5] determined that a quadratic function provides the best statistical fit to 

the trends of steam pressure variation as a function of the overall heat transfer coefficient.  
 
                                          ∆P = a0 + b0Un + c0Un

2      (2.3) 
 

∆P is the SG steam pressure deviation from the set point and Un is the reduction in the 

heat transfer coefficient.  By combining the above equation with the fouling model (for 

example an exponential function), the following model [12] may be obtained and applied 

to predict tube residual life. 
 
                                          ∆P = α0 + α 1t + α 2t2, where t is time.   (2.4) 
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           One of the statistical techniques used by some engineers is the Weibull probability 

distribution, which has been successfully used to describe the statistics of material failure 

caused by fatigue and stress corrosion cracking [59].  Reference [58] emphasized the 

Weibull distribution with two-parameter distribution given by 
 

F(t) = 1 - exp[-(t/tτ)b]    (2.5) 
 

F(t) is the cumulative fraction of tubes “failed” by a given degradation mechanism, t is 

the time of operation,  tτ is the characteristic time of the Weibull probability distribution, 

and b is the slope of the distribution when plotted on a Weibull probability graph. 
 

Kern and Seaton [63] were among the first researchers to conduct a systematic 

investigation of particulate fouling.  They reviewed many experimental particulate 

fouling data from recovery heat exchangers and noticed that they all repeat the same type 

of asymptotic deposition trend.  After Kern and Seaton, many investigators tried to 

develop a general model for particulate deposition on heat exchanger tubing surfaces, but 

there was little general agreement on predicting particulate fouling [64]. 

 

          The reason why there has not been a general predictive model for particulate 

deposition until recently is that the interaction between particulates and fluid flow is very 

complex, especially in the turbulent flow field. In the heat exchanger industry, the fact 

that there is a temperature gradient between the flow field and the heat exchanger surface 

makes the problem of predicting a theoretical model for particulate deposition very 

complex. 

          In a more recent experimental investigation on particulate fouling in heat 

exchangers, a generalized model has been developed.  The effect of operational variables 

such as flow, velocity, surface temperature, and fluid bulk temperature on particle 

deposition has been measured.  Details of the models are as follows. 



 30

 

Kern and Seaton’s model, which was based on the deposit removal rate concept, did not 

include the thermal or particle size effects. 
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Watkinson and Epstein introduced a sticking probability to the particles and redefined the 

Kern-Seaton model and came up with the following model [64].  
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       (2.8) 

 
           
Muller-Steinhagen [64] included the influence of wall temperature and the fouling 

behavior of their equation is given as 
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For adhesion controlled particles on heat transfer surface the fouling resistance given by 
[64] 
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         The thermophoretic effect is the effect of surface temperature on the deposition of 
submicron particles which acts in the direction of the temperature gradients. Thus a high 
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surface temperature will repel particles while a cold surface will attract them. The effect 
of surface temperature is more pronounced for gas particle systems than for liquids. 

 
Muller-Steinhagen [64] reported the following model for particle deposition rate: 

 

Wttd CVCVm )2/()2/( +−−= ββ       (2.11) 

 
 Vt is the thermophoretic velocity and is defined as 
 

T
qv

V l

pl
t *

2
26.0

λλ +
=         (2.12) 

 

Within the limited range of experimental data the general agreement between the data 

and the predicted model is fairly satisfactory.  The nomenclatures are as follows [14]: 
 
C = Bulk particle concentration kg/kg 
CW = Particle concentration near the solid-liquid interface kg/kg 
E = Activation Energy, J/mol 
f = Moody friction factor 
md = Deposition flux, kg/m2.S 
q = Heat Flux, W/m2 
Rf = Fouling resistance, m2.k/W 
Rf* = Asymptotic fouling resistance m2.K/W 
R = Universal gas constant 
Sc = Schmidt number = V1/D 
t = time, sec 
Ts = Temperature at liquid-solid interface ˚C 
U = Flow velocity, m/s 
Vt = Thermophoretic velocity, m/s 
ß = Mass transfer coefficient, m/s 

d = Thermal conductivity of deposit 
1 = Thermal conductivity of liquid W/m.K 
p = Thermal conductivity of particles W/m.K 

ν1 = Kinematic viscosity of liquid, m2/s 
τW = Wall shear stress, N/m2 
K1,...,K8 = Constants. 
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In the simulation of fouling in this study, we use the fouling factor to take into account 

the fouling effect. Generally the fouling factor must be obtained experimentally by 

determining the values of U for both clean and dirty conditions in the heat exchanger. 

The fouling factor is thus defined as: 
 
                                 Rf=1/Udirty-1/Uclean     (2.13) 
 
According to the “Standard of Tubular Exchanger Manufacturers Association,” 4th ed., 

1959, for treated boiler feed water above 125°F, the fouling factor is 0.001 h⋅ft2⋅°F/Btu or 

0.0002 m2⋅°C/W. 
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3. DEVELOPMENT OF A MULTI-NODAL DYNAMIC MODEL OF 

A U-TUBE STEAM GENERATOR (UTSG) 

 

3.1.  Assumptions in the Development of a Steam Generator (SG) Model 

A multi-nodal simulation model was developed for a typical recirculating type U-

tube steam generator (UTSG).  The general arrangement of a UTSG is shown in Figure 

3.1.  The primary coolant enters the steam generator through an inlet nozzle at the bottom 

of the inlet plenum.  The coolant flows inside the U-tube, first upward and then 

downward, and thus transfers heat to the secondary fluid in the shell side of the SG.  The 

primary fluid leaves the outlet plenum through an outlet nozzle connected to the cold leg 

piping.  In the SG shown in Figure 3.1, the feedwater enters the downcomer shell at a 

level just above the U-tube region.  It flows down through an annulus inside the shell and 

mixes with water coming from the drum section.  The water enters the tube bundle region 

where heat is transferred to the fluid.  As it flows over the outside of the U-tubes, a 

mixture of steam and water is formed.  The mixer enters the riser region where the nozzle 

effect increases the natural driving force.  As the flow passes through the separator 

region, water is removed from the steam and is returned to the drum section.  The steam 

leaving the separator passes through steam dryers and exits the steam generator with a 

quality of almost 100%. 
 
 A typical 1,300 MWe four-loop Westinghouse nuclear plant has about 3,400 U-

tubes per SG.  The Inconel stainless steel tubing has an outer diameter of 0.875 inch with 

a tube metal thickness of 0.05 inch.  The height of U-tubes is ≈ 36 feet.  The nominal 

steam pressure is 850 psia with a saturation temperature of 522 °F.  The feed water has an 

inlet temperature of 434 °F and a flow rate of ≈ 3.73x106 lbm/hr. 
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 The objective is to divide the tube length into a number of axial nodes so as to 

simulate tube fouling at different axial locations.  The simulation may be made by 

varying heat transfer areas, flow rates, and heat transfer coefficients.  The latter include 

film heat transfer coefficient of primary water in tubes, film heat transfer coefficient of 

secondary sub-cooled water, film heat transfer coefficient of secondary boiling water, and 

metal tube conductivity. 
 
The model may be used to simulate dynamic behavior of thermal and hydraulic processes 

in a UTSG system.  The simulation model has been developed based on the conservation 

equations (mass, energy, and momentum) and constitutive relationships.  The following 

assumptions are made in model development. 
 
• Both water and steam are considered to be saturated. 
• Density and specific heat capacity of the feed water, sub-cooled region, and the 

primary side are assumed to be constant. 
• Heat transfer coefficients are constant. 
• Steam leaving the steam generator is 100% saturated. 
• Heat transfer between the downcomer and the tube bundle regions is negligible. 
 
The thermodynamic properties of the saturated water and steam are assumed to be linear 

functions of the steam pressure for a range of ± 100 psi from the normal operating point.  

The steam flow leaving the UTSG is considered to be a critical flow.  The flow is defined 

in terms of steam pressure and steam valve coefficient as 
 
    Ws = ClP     (3.1) 
 
Ws = steam flow rate, Cl = steam valve coefficient, P = steam pressure. 
 
Figure 3.1 shows the schematic of the nodal model representation.  The steam generator 

water level is controlled by a three-element controller that uses the measurements of the 

SG water level, steam flow rate, and feed water flow rate.  The forcing functions of the 
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isolated UTSG model are: primary inlet temperature, steam valve coefficient, feed water 

temperature, and SG level set point.  The equations describing the nonlinear model of the 

UTSG are presented in Section 3.2. 
 

3.2. Describing Equations for the Multi-Nodal Simulation Model 

 

1. Primary Side 

1.1 Inlet Plenum:   (Nodes 1 and 2) 

           

where Ls2=(L-Ls1)/3. 

1.2 U-tube Primary Lump Equations: (Nodes 3 and 4)     
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Nodes 5 and 6: 

 

 

dt
dL

L
TT

TT
CM
SU

TT
LA

W
dt

dT s

s

pp
pm

pp

pmpm
pp

sppi

pip 1

2

65
66

66

66
65

2

6

3
)()(

−
+−+−=

ρ

)()( 55
55

55
54

2

5
pm

pp

pmpm
pp

sppi

pip TT
CM
SU

TT
LA

W
dt

dT
−+−=

ρ



 37

                                                            Wso 

                                                                                                      

(SFDRL)                                                                                       Ldw 

 

                                                                                                               Wfi, Tfi 

 

W5, Hex 

 

                              (MTL4)                                       (MTL5) 

 

 

 

                                 (MTL3)                      W4, Tsat    (MTL6) 

 

 

 

                                 (MTL2)                      W3, Tsat    (MTL7) 

 

 

 Ls1                                                            W2, Tsat 
 
                                 (MTL1)                                        (MTL8) 

 

                                                                W1, Td 

 

                     (PRIN)                                                                                           (PROUT) 

              Wp,θi                                                                                           Wp, Tpo 

 

Tpi

 

Tpo 

 Ts Tp1 

 
 Tp8 

 

Tp2  1x , Tsat  Tp7 

    
    Td 
 
 
 
 
 
 
 
 
 
 

 3x , Tsat  Tp4 Tp5 

              Ps                                                
Wsg 

 

 

 

2x , Tsat Tp3   Tp6 



 38

Figure 3.1. Schematic of the U-Tube Steam Generator model with four axial tube nodes.
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      Node 7: 

Node 8: 

1.3 Outlet Plenum:    

 

2. Tube-wall Equations 

      Node 1: 

      Node 2: 

      Node 3: 

      Node 4: 

Node 5: 

Node 6: 
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      Node 7: 

     

 Node 8: 

 

3.  Secondary Side Equations  

3.1 Sub-cooled region equations 

Mass Balance:  

Energy Balance: 

 

3.2 Boiling region equations 

Node 1:  

Mass Balance:  

Energy Balance: 

Node 2:  
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Mass Balance:   

Energy Balance: 

Node 3:  

Mass Balance:  

Energy Balance: 

 

4. Drum Region Equations 

4.1 Riser/Separator Volume 
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4.2 Drum Water Volume 

 

Mass Balance:  

Energy Balance: 

 

 

4.3 Drum Steam Volume 

 

5.  Downcomer Region Equations  

 

6.  Constitutive Relations 

         hbi=hf+0.5(Xei-1+Xei)hfg     (i= 1,2,3;   Xe0=0) 

          hexi=hf+Xeihfg                            (i= 1,2,3) 

          hf=X4+K3P 

          hfg=X5+K4P 
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Tsat=X1+K5P 
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Vf=X2+K1P 

Vfg=X3+K2P 
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The definitions of the parameters and variables are given below: 

Afs = Secondary flow area in the U-tube region 

Adw = Effective area of the drum water section 

C1 = Effective pressure drop coefficient in the recirculating loop 

C l =Steam valve coefficient 

Cm = Specific heat capacity of the metal tubes 

Cp1-8 = Specific heat capacity of the primary fluid 

Cpsub = Specific heat capacity of the secondary-side water in the sub-cooled region 

hb1-3 = Average enthalpy of the nodes in boiling region 

hf, hfg = Saturated and latent enthalpies of  water 

hex1-3 = Exit enthalpy of  the nodes in boiling region 

K1-6 = constants 

L = Effective height of U-tubes 
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Ld = Downcomer length 

Ldw = Steam generator water level (drum section) 

Ls1,2 = Subcooled and boiling nodal length 

Mm1-8 = Metal mass in metal nodes 

Mp1-8 = Water mass in primary nodes 

Mpi = Water mass in the inlet plenum 

P = Steam generator pressure 

Pr1,2 = Inside and outside perimeters of the U-tubes 

Sms1-8 = Heat transfer areas from the U-tubes to the secondary side in each node 

Spm1-8 = Heat transfer areas from the primary side to the U-tubes in each node 

Td = Downcomer temperature 

Tdw = Drum water temperature 

Tm1-8 = Metal tube temperature in each node 

Tp1-8 = Primary water temperature in each node 

Tp = Water temperature in the inlet plenum 

Tpo = Water temperature in the outlet plenum 

Tsat = Saturated temperature of the water and steam in the UTSG 

Upm1-8 = Heat transfer coefficient from the primary side to metal side in each node 

Ums1-8 = Heat transfer coefficient from the metal side to secondary side in each node 

Vdr = Volume of the drum section 
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Vf,Vg = Specific volume of the saturated water and steam 

Vfg = Vg- Vf 

Vr = Volume of the riser region 

X1-6 = Constants 

Xe1-3 = Exit quality of the steam leaving the nodes in boiling region 

ρb = Average density of the water in boiling region 

ρg = Density of the saturated steam 

ρr = Density of the water in riser region. 

 

3.3. Results of Simulation for Different Cases of Tube Degradation 
 
 Some preliminary results of the simulation of the UTSG model response for the 

following tube degradation mechanisms are presented: 

• Tube plugging by changing the heat transfer area. 
• Tube fouling on the primary side (inner tube) by introducing an additional heat 

transfer resistance at different axial locations. 
• Tube fouling on the secondary side (outer tube) by introducing an additional heat 

transfer resistance at different axial locations. 
• Tube metal heat conductivity. 
 
Figures 3.2 through 3.11 show the results of simulation for normal condition and for the 

cases of tube degradation.  The latter include decreased heat transfer area (tube plugging), 

decreased heat transfer coefficients (fouling) and decreased tube metal conductivity 

(material property).  In all these cases the steam pressure decreased from its nominal 

value.  Figures 3.12 – 3.15 show the process dynamics during normal transients.  The 
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results are indicative of the high fidelity of the model.  The simulation results also show 

that the new model can simulate the fouling problem at different axial locations. 
 
The following observations are made from Figures 3.4 - 3.11: 
 

(1) When we introduce an additional heat transfer resistance so as to decrease by 50% the 
overall heat transfer coefficient in the metal-to-secondary side sub-cooled heat 
transfer nodes (MTL1 and MTL8) or the primary-to-metal side sub-cooled heat 
transfer nodes (PRL1 and PRL8), the steam pressure decreases from 874.91 psia to 
868 psia and 868.6 psia respectively.  

(2) When we introduce an additional heat transfer resistance so as to decrease by 50% the 
overall heat transfer coefficient in the metal-to-secondary side boiling heat transfer 
nodes or the primary-to-metal side boiling heat transfer nodes, the steam pressure 
decrease from 874.91 psia to about 863.8 psia and 860.1 psia respectively, and there 
is not much difference in the pressure difference caused by fouling at different axial 
locations within the boiling region.  

These results show that we can differentiate and thus diagnose the fouling in sub-cooled 

region and the boiling region.  However, it seems difficult to diagnose the fouling at 

different axial locations within a specific heat transfer region.  

 
Figure 3.2. Steam pressure change for the case of 5% decrease in the number of tubes. 
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Figure 3.3. Steam pressure change for the case of 10% decrease in the tube metal 
conductivity. 

  
Figure 3.4. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the metal-to-secondary side sub-cooled heat transfer nodes (MTL1 and 

MTL8). 
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Figure 3.5. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the primary-to-metal side sub-cooled heat transfer nodes (PRL1 and PRL8). 

 
Figure 3.6. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the metal-to-secondary side boiling heat transfer nodes (MTL2 and MTL7). 
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Figure 3.7. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the primary-to-metal side boiling heat transfer nodes (PRL2 and PRL7). 

 
Figure 3.8. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the metal-to-secondary side boiling heat transfer nodes (MTL3 and MTL6). 
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Figure 3.9. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the primary-to-metal side boiling heat transfer nodes (PRL3 and PRL6). 

 
Figure 3.10. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the metal-to-secondary side boiling heat transfer nodes (MTL4 and MTL5). 
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Figure 3.11. Steam pressure change when decreasing by 50% the overall heat transfer 
coefficient in the primary-to-metal side boiling heat transfer nodes (PRL4 and PRL5). 

 
Figure 3.12. Steam pressure variation for a 10% decrease in the steam valve coefficient 

(decreased steam flow rate). 
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Figure 3.13. SG water level variation for a 10% decrease in the steam valve coefficient. 
 

 
Figure 3.14.  Steam pressure variation for a 10% increase in the steam valve coefficient. 
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Figure 3.15.  Steam generator water level variation for a 10% increase in the steam valve 
coefficient. 
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4. EXPERIMENTAL STUDY OF PARTICULATE FOULING IN 
HEAT EXCHANGERS 

4.1. Introduction 

In this section, we first present a review of experimental study of particulate 

fouling by earlier investigators.  Our goal of this research on fouling is to study the 

fouling behavior, verify the particulate fouling model through a laboratory experiment 

and collect the experimental fouling data for monitoring and diagnosis of fouling.  In 

order to accomplish this task, we adapted a previously developed laboratory setup to 

perform experimental studies of particulate fouling in a small-scale heat exchanger.  In 

this chapter, we present a literature review of experimental studies of particulate fouling, 

description of the experimental setup, and the experimental results. 

4.2. Review of Experimental Study of Particulate Fouling in Heat 
Exchangers 

Over the years, several researchers performed experiments to study the particulate 

fouling in heat exchangers.  Some representative work from the literature is reviewed. 

Melo et al. (1988) studied particle transport in fouling on copper tubes.  They 

used the material KAOLIN to simulate suspended particles in water.  Their fouling tests 

were performed in an annular heat exchanger consisting of a 2-meter long external 

Perspex tube and a removable inner copper tube, which was electrically heated.  Water-

KAOLIN suspensions were circulated through the annular section at different Reynolds 

numbers.  KAOLIN particles were studied with a laser flow granulometer and a scanning 

electron microscope (SEM) and the fouling layer was roughly characterized as a thin disc 

with 16 mµ (mean diameter) by 1 mµ (mean thickness).  SEM visualization of the deposits 

formed on the copper tube surfaces showed that the particles adhere by their larger faces 
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(the bases of the disc).  The thermal conductivity, density, final thickness, mass, and 

thermal resistance were measured or estimated.  The experimental results show that the 

fouling data fit well into the asymptotical behavior and mass transfer controls the 

deposition rate when Re < 3900, and the adhesion dominates the process at higher Re 

values.   

Middis et al. (1990) performed experimental study on particulate fouling in heat 

exchangers with enhanced surfaces.  In their study, KAOLIN particles in X-2 were 

chosen as the fouling suspension.  They studied the particulate fouling in a plate heat 

exchanger and a double pipe heat exchanger over a wide range of flow conditions.  The 

fouling experimental results again show that the fouling progression follows a 

characteristic asymptotic behavior.  They also studied the effect of Reynolds number and 

other factors on fouling behavior, and the conclusions are similar to those reached by 

Melo et al.  

Charmra et al. (1993) made a study on the effect of particle size and size 

distribution on particulate fouling in tubes.  In their study, the Wieland NW, Wolverine 

Korodense, and a plain tube were chosen for testing.  Two types of foulants, clay and silt, 

were used in the tests.  The fouling tests were conducted for different concentrations, 

flow rate, foulant type, and particle diameter.  Their experimental results show that the 

enhanced tubes exhibit higher fouling resistance than the plain tubes; the enhanced and 

the plain tubes exhibit the same fouling behavior, and the fouling resistance decreases as 

the concentration decreases for all particle sizes.  This is because the deposition rate 

decreases as the concentration decreases since the deposition rate is proportional to 

fouling concentration.  In addition, as the particle size (diameter) increases, the 

asymptotic fouling resistance decreases.  This is because the particle deposition rate is 

proportional to 57.0−Sc , where the Schmidt number Sc is defined as the ratio of the 
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kinematic viscosity over the Brownian diffusivity.  Hence smaller particles will have 

smaller Schmidt numbers and should undergo higher deposition rates (fouling 

resistances) than larger particles.  The experiments also show that the asymptotic fouling 

resistance, *
fR , as a function of Reynolds number for the Korodense tube, decreases as 

the Reynolds number increases.  This is because the removal rate is directly proportional 

to the wall shear stress.  Therefore, as the Reynolds number increases, the wall shear 

stress increases, which in turn increases the removal rate, and as a result the fouling 

resistance decreases.  Again, the results also show that the fouling resistance decreases as 

the particle diameter increases.  It is also shown that the fouling resistance increases as 

the particle size decreases.  For example in their results, the asymptotic fouling resistance 

for the 16 mµ particles is significantly smaller than that for the 4 mµ particles except for 

the plain tube.  This is due to the transition from the diffusion dominant regime to the 

inertia dominant regime.  It is also found that the enhanced tubes (NW and Korodense 

tubes) have higher asymptotic fouling resistances than the plain tube.  

Other researchers who used other types of material to simulate the fouling 

particles.  Among them, Muller-Steinhagen et al. (1988) used 32OAl  particles to study 

particulate fouling in heat exchangers.  Basset et al (2000) used the sol-gel method, 

proposed by Sugimoto et al. (1980), to synthesize the simulated magnetite particles to 

study the fouling of Alloy-800 heat exchanger surfaces by magnetite particles, etc.  

Turakhia et al. (1984) studied measurement and diagnosis of the fouling of heat 

exchanger surface using the pressure drop method and the overall heat transfer resistance 

method. 
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It should be noted that most of the above researchers only used a single tube or 

even a tube section in their experimental study.  Hence it is necessary to use a real heat 

exchanger to study the particulate fouling behavior.  

4.3. Research Experimental Setup for Particulate Fouling Tests 

As mentioned above, we wanted to use a real heat exchanger and perform 

experiments to study the particulate fouling behavior.  For this purpose we designed and 

adapted an experimental setup.  Figure 4.1 shows the schematic of this setup, and Figure 

4.2 shows a photograph.  In our experiment, we used KAOLIN clay suspended in water 

and a small-scale tube-and-shell heat exchanger.  The particulate material is the RC-90 

KAOLIN from Thiele KAOLIN Company.  The particle size is < 2 mµ with a percentage 

of 98.0% and a pH (dry clay tested at 20% solids) of 6.8.  The heat exchanger, HT-1-A-

CI-2-24, was procured from Mahan's Thermal Products, Inc.  It has 31 copper tubes, with 

shell diameter 
8
12 inch, tube length 24 inch, and tube outer diameter 4/1 inch.  

As seen in Figures 4.1 and 4.2, the experimental setup consists of a stainless steel 

water tank, a 2 KW electrical heater, a stainless steel centrifugal pump, a shell-and-tube 

heat exchanger, two flow-meters measuring the tube-side and shell-side flow rates, four 

thermocouples measuring the inlet and outlet temperatures of the tube-side and shell-side 

coolant, and a data acquisition system.  The data acquisition system includes two 

conditioning modules, a connection box, a data acquisition board, and a personal 

computer.  A LabVIEW data acquisition software is used to collect, display, and store  
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Figure 4.1. Configuration of the heat exchanger experimental set-up for particulate 

fouling tests. 
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Figure 4.2. An Overview of the Experimental Setup 
 
 
the experimental data.  Water, mixed with KAOLIN particles, is designed to flow through 

the tube side of the heat exchanger so that it is convenient to remove or wash off the 

fouling layer after the experiment is completed.  Figure 5.2 shows the heat exchanger on 

the mobile table, water tank (underneath the table), connections to hot and cold water 

lines, and the data acquisition computer system. 

4.4. Calculation of Overall Thermal Resistance and Experimental 
Results 

The effect of the fouling progression can be monitored by continuously evaluating 

the overall heat transfer thermal resistance (1/UA).  From energy balance, we have 
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ccchhhLMTD TCmTCmTUAQ ∆=∆=∆=         (4.1) 

      Where, Q  is the heat transfer rate; 

A  is the surface area on which the overall heat transfer coefficient U is based; 

LMTDT∆  is the logarithmic mean temperature difference for the heat exchanger and is 

defined as: 

)/ln( 21

21

tt
ttTLMTD ∆∆

∆−∆
=∆       (4.2) 

For parallel or concurrent flow heat exchangers: 

incinh ttt ,,1 −=∆ ; outcouth ttt ,,2 −=∆ .    (4.3) 

For counter flow heat exchangers:  

      outcinh ttt ,,1 −=∆ ; incouth ttt ,,2 −=∆ .    (4.4) 

As stated above, U is the overall heat transfer coefficient, and A is the heat transfer area, 
which may slightly change with fouling progress.  However, the product UA can be 
calculated and be thought of as inseparable in terms of the effect of fouling on heat 
transfer.  The inverse of UA is the overall thermal resistance, which increases as the 
fouling deposition increases.   

From Equation (4.1), we can derive the following formula for calculating the 
overall thermal resistance: 

ccc
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T

UA ∆
∆

=
∆

∆
=

1                       (4.5) 

This overall thermal resistance, 1/(UA), is continuously computed so as to 

monitor the particulate fouling behavior in the heat exchanger.  To determine the overall 
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thermal resistance, we measure the mass flow rate of the cold side or/and the hot side, 

inlet and outlet temperatures of both the cold side and the hot side, as shown in Figures 

4.1 and 4.2.  In our calculation of overall thermal resistance, we used the cold-side flow 

rate and the inlet and outlet temperatures.  It should also be noted that in our experimental 

design, we have used the parallel flow pattern in the heat exchanger. 

In our experiment, initially 70gm KAOLIN particles were added to the water tank 

then at about 50 hours after the start of the experiment, another 50 gm were added to the 

tank, which has a dimension of "12"12"18 ×× .  This resulted in a fairly high 

concentration of about 2823 ppm. 

       The experiment was run for about 170 hours.  A MATLAB code was used to 

process the experimental data and to calculate the overall thermal resistance.  The code is 

given in the Appendix.  Figure 4.3 shows the raw signals that were measured and 

collected during the experiment.  Figure 4.4 presents the experimental results of the 

changes in the overall thermal resistance with time.  During the entire experiment, the 

coolant flows of both the tube-side and the shell-side were basically kept constant.     

It should also be noted that since there was background noise present in the 

measurements, we used a MATLAB function to filter the computed overall fouling 

resistance.  Thus, it looks “smoother” as shown in Figure 4.4.  From Figure 4.4, we see 

that the overall fouling resistance first increases with time, then at after about 120 hours 

of running it tends to attain a steady state value.  This proves that the overall thermal 

resistance exhibits an asymptotic behavior even in a real small-scale heat exchanger.  



 62

 
Figure 4.3. Experimental results - measured raw signals from the experiment. 

 
Figure 4.4. Experimental results - overall thermal resistance variation vs. experimental 

running time. 
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4.5. Overall Thermal Resistance after Removal of the Fouling 
Deposition Layer 

After the experiment was completed, we opened the heat exchanger and used 

brushes to remove and wash off the fouling layers that attached to the inner surfaces of all 

the 31 heat exchanger tubes.  Then we ran the experiment again for a while and used the 

same method as above to monitor or track the change in overall thermal resistance of the 

heat exchanger.  The results are shown in Figures 4.5 and 4.6.  It should be noted that 

Figure 4.6 is just a local zoom of Figure 4.5.  The objective is to show more clearly the 

change in the overall thermal resistance of the heat exchanger.  From these two figures, 

we can clearly see that the overall thermal resistance of the heat exchanger after cleaning 

restores to the overall thermal resistance value of the previous clean state.  This confirms 

that the change in overall thermal resistance of the heat exchanger that we observed 

during the experiment was really due to the fouling progression.  This also indicates that 

we can successfully monitor the fouling progression in a heat exchanger by tracking the 

changes in the overall thermal resistance.   

4.6. Remarks  

From the above experimental study on particulate fouling and its time progression 

in a small-scale heat exchanger, we make the following observations. 

•  The particulate fouling in a small-scale heat exchanger still exhibits an asymptotic   
behavior.  This agrees with the conclusion from theoretical studies.  It should be 
noted that in Figure 5.3, the overall thermal resistance does not seem to follow a 
strict exponential trend.  This is most likely due to our change (increase) in the 
fouling particle concentration at about 50 hours after the start of the experiment.   

•  All the above results show that the experimental methodology and design of the 
setup for particulate fouling study are correct and successful.  It has been 
demonstrated that the particulate fouling in a heat exchanger can be monitored 
and diagnosed by tracking the change in the overall thermal resistance.  
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•  The acquired experimental data are useful and can be used for the monitoring and 
diagnosis of fouling in the heat exchanger using the GMDH modeling technique.  
This is discussed in detail in Section 5. 

 

 

 

 

 

Figure 4.5. Change in the overall thermal resistance of the heat exchanger before and 
after removal of the fouling deposition layers. 
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Figure 4.6. Change in overall thermal resistance of the heat exchanger before and after 
removal of the fouling deposition layers.  This is a local zoom of Figure 4.5. 
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5. MONITORING AND DIAGNOSIS OF FOULING USING THE 
EMPIRICAL DATA-BASED MODELING APPROACH 

 

5.1. Introduction 

The Group Method of Data Handling (GMDH) approach has found wide applications in 

various areas, such as data mining, forecasting, prediction and system modeling, pattern 

recognition, and fault detection and isolation (FDI).  GMDH is an inductive self-organizing 

algebraic model since we do not need to know the exact physical model in advance.  Instead, 

GMDH automatically learns the relations that dominate the system variables during the training 

process.  Therefore a good GMDH model can be used to avoid the need for the development of a 

first-principle model, especially when this model is costly or even impossible to develop for a 

very complex system.  After a reliable GMDH model is developed, it can be then used for FDI or 

many other purposes as mentioned above.  

In later sections of this chapter, we first present a brief introduction to the GMDH 

approach, then we use the GMDH method and the MATLAB functions previously developed by 

Ferreira and Upadhyaya (1998) to monitor and diagnose the fouling problems occurring in both a 

heat exchanger and a steam generator.   

5.2. The GMDH Method 

GMDH is a data-driven modeling technique, which uses mathematical functions to 

characterize the complex nonlinear relationships that are inherent among the given input-output 

mapping.  It uses the following so-called Kolmogorov-Gabor polynomial form to approximate 

the input-output mapping: 
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Where, {x1,x2,…,xn} is the input variable vector, 

      y is the output variable, 
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      { ,...},,0 iji aaa is the vector of coefficients or weights. 

Additional input variables may also be formed from the basic measurements, and may include 

nonlinear and rational functions of these measurements. 

A polynomial network of GMDH structure with m inputs and k layers is shown in Figure 

5.1.  The main procedure for GMDH algorithm implementation used for a given set of n 

observations of m independent variables is described as follows:  

Step 1: 

Subdivide the data into training data set and testing data set and preprocess the data sets by 

normalizing them. 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 
 

Figure 5.1. The GMDH network structure. 
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Step 2:  

For each pair of input variables xi and xj and associated output y of the training data set, 

calculate the regression polynomial 

).( 2522
jijiji xFxExDxCxBxAy +++++=  

that best fits the dependent observations yi in the training set.  A total number of 2/)1( +mm  

regression polynomials will be computed from the observations.  

Step 3:  

For each regression, evaluate the polynomial for all n observations and store these n new 

observations in a new matrix Z.  That is, recalculate current layer’s output using all data sets with 

the parameters generated in step 2, and store these outputs in a new matrix Z as the new input 

terms for the next layer of the GMDH architecture. 

Step 4:  

Screening out the least effective variables: First, for each column of the matrix Z, the root mean 

square error is computed and is given by: 
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Then order the columns of Z according to increasing rj, and pick those columns of Z that satisfy rj 

< R to replace the original columns of X.  Here, a cut-off value ‘R’ needs to be chosen by the 

user.  This means that all the columns of Z satisfying rj < R are picked to replace the input terms 

in the previous layer, while all the variables with rj > R are screened out and are not passed to the 

next generation of the algorithm.  

Step 5:  

Testing for optimality: The above procedure is repeated until over-fitting starts to occur, 

which can be checked by cross validation, that is, by plotting the smallest of the rj’s calculated in 
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each generation and comparing it with the smallest rj’s of the previous generation.  The process 

should be stopped when the rj’s begin to increase.  

At the completion of GMDH algorithm, all quadratic regression polynomials are stored, 

and the estimated coefficients for high order polynomial are determined through back tracing the 

GMDH architecture until the original variables (x1, x2, …, xn) is reached. Then we can use this 

GMDH model to make new predictions of y.  Further details of the GMDH algorithm and its 

implementation are given by Ferreira and Upadhyaya (1998), Lu (2001), Ivakhnenko (1995), and 

Kondo (2003).  In the following sub-sections, we use the MATLAB functions GMDH_PBK, 

ANNt_PBK, etc., developed by Ferreira and Upadhyaya (1998), to monitor fouling degradation 

in both HX and UTSG systems.  

5.3. Data Generation 

In order to monitor and diagnose degradations including fouling in a heat exchanger or 

UTSG, it is first necessary to generate data for the development of good data-driven models.  In 

order to generate data, an appropriately developed first-principle model is essential.   

In our study, for the heat exchanger, we use the energy (heat) balance equations, as 

defined by Equations (5.1) - (5.3) for the case of parallel flow, to generate the normal data.  The 

MATLAB code is given in Appendix E.  The experimental data, characterizing the progress of 

fouling in a heat exchanger, were collected from the experimental setup and is used for 

monitoring and diagnosis of fouling in the heat exchanger using GMDH method.  When 

generating normal data for HX, the coolant flow on both the tube-side and the shell-side were 

kept constant as was the case during the experiment, and only the inlet temperatures of both sides 

were chosen as the forcing (input) variables. 

For the UTSG, a good physics model was developed in Phase II [200].  We used this 

SIMULINK model to generate both normal data and the data with the presence of fouling, which 

is assumed to progress with time as given in Figures 4.1 and 4.2.  These data were used for 

monitoring and diagnosis of fouling in a steam generator using the GMDH method.  When 

generating the normal data, both the tube-side inlet temperature and the number of heat transfer 
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tubes were chosen as forcing variables; and an additional fouling thermal resistance was added 

when generating data for fouling.  

It should be noted that when generating the data, all the input forcing variables should 

cover the entire desired space.  Otherwise, a good data-driven model cannot be properly 

developed.  

5.4. Monitoring and Diagnosis of Fouling in the Heat Exchanger 

Now that both the normal data and data with fouling are available, we first use the 

GMDH method to develop a data-driven model and then use the model to monitor and diagnose 

the fouling progress.  The MATLAB code for monitoring and diagnosis of fouling in the heat 

exchanger is given in the Appendix.  

The procedure is first to establish a data-driven model using the normal data, then use this 

model and the faulty data, i.e. the experimental data characterizing the fouling progress, to make 

predictions and estimate residual of the outlet temperatures of both the tube-side and the shell-

side.  Figure 5.2 gives the hot-side or the tube-side outlet temperature data used for training and 

the GMDH predicted values; Figure 5.3 presents the hot-side or the tube-side outlet temperature 

data used for testing and the GMDH predicted values.  We see from these two figures that they 

both agree with each other very well.   

After development of the GMDH model, we use the experimental data and the model to 

make new predictions.  Figure 5.4 gives the GMDH predictions of the hot-side outlet 

temperature of the heat exchanger versus the real experimental data of the same variable.  Figure 

5.5 presents the estimate residual.  From Figures 5.4 and 5.5, we can see that at the initial stage 

of the experiment, the predicted value and the measurements are almost equal to each other 

because there is little fouling at the early stage.  Then as the fouling progress and gradually 

increases, the residual also increases.  Finally, when the fouling reaches the asymptotical value 

and keeps basically constant, the residual also follows the same trend, coming to a steady-state 

value.  Comparing Figure 5.5 with Figure 4.9, it is interesting to note that the GMDH estimation 

of residuals follow the same behavior as the overall thermal resistance as a function of 

experimental running time.  
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Figure 5.6 gives the cold-side or the shell-side outlet temperature used for training and 

the GMDH predicted values; Figure 5.7 presents the cold-side outlet temperature used for testing 

and the GMDH predicted values.  Also we can see from these two figures that they both agree 

with each other very well.   

Then we use the experimental data and the developed GMDH model to make new 

predictions.  Figure 5.8 gives the GMDH predictions of the cold-side outlet temperature of the 

heat exchanger versus the real experimental data of the same variable.  Figure 5.9 shows the 

residuals.  Again from Figures 5.8 and 5.9, we can see that at the initial stages of the experiment, 

the predicted values and the measurements agree very well with each other because there is very 

little fouling at the early stage.  Then as the fouling progresses and gradually increases, the 

residual also increases.  Finally the fouling reaches an asymptotical value and keeps almost 

constant, the residual also follows the same tendency and finally attains a steady state.   

Comparing Figure 5.5 with Figure 5.9, again we find that the GMDH estimation residual 

follows the same behavior as the overall thermal resistance as a function of experimental running 

time.  These results suggest that we can easily use the residual trending given in Figures 5.4-5.5 

and Figures 5.8-5.9 to monitor and diagnose the fouling problem that is occurring in a heat 

exchanger.  
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Figure 5.2. Training output and the GMDH predicted values of the tube-side/hot-side outlet 

temperature. 

 
Figure 5.3. Testing output and the GMDH predicted values of the tube-side/hot-side outlet 

temperature. 
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Figure 5.4. GMDH predictions of the hot-side outlet temperatures of the heat exchanger versus 

the real experimental data. 

 
Figure 5.5. Residual between the GMDH predictions of the hot-side outlet temperatures of the 

heat exchanger and the real experimental data. 



 
74

 
Figure 5.6. Training output and the GMDH predicted values of the shell-side/cold-side outlet 

temperature. 

 
Figure 5.7. Training output and the GMDH predicted values of the shell-side/cold-side outlet 

temperature. 
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Figure 5.8. GMDH Predictions of the cold-side Outlet temperatures of the heat exchanger versus 

the real experimental data. 

 
Figure 5.9. The residual between the MDH predictions of the cold-side outlet temperatures of the 

heat exchanger and the real experimental data. 
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5.5. Monitoring of Fouling in the Steam Generator 

With both the normal data and data with fouling generated using the developed UTSG 

SIMULINK model, we first use the GMDH method to develop a data-driven model and then use 

the model to monitor and diagnose the fouling progress.  The MATLAB code for monitoring and 

diagnosis of fouling in the heat exchanger is given in the Appendix. 

The procedure is the same as that used above for the heat exchanger.  That is, first we 

establish a data-driven model using the normal data. Then we use this model and the faulty data, 

that is, with the fouling progression, to make predictions and estimate residuals of the steam 

pressure.  In our study, the hot-leg temperature and the number of tubes are used as the inputs for 

predicting steam pressure.   

Figure 5.10 gives the data for UTSG steam pressure used for training and the GMDH 

predicted values; Figure 5.11 presents the steam pressure data used for testing and the GMDH 

predicted values.  We see from these two figures that they both agree with each other very well.   

 
Figure 5.10. Training steam pressure and the GMDH predicted values. 
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Figure 5.11. Testing steam pressure and the GMDH predicted values. 

 

After the development of the GMDH model, we used the experimental data and the 

model to make new predictions.  Figure 5.12 gives the GMDH predictions of the UTSG steam 

pressure versus the simulation results from the UTSG SIMULINK model.  Figure 5.13 shows the 

residuals.  It should be noted that the steam pressure is evaluated with different UTSG hot-side 

inlet temperatures.  Therefore we see that there are different curve blocks in Figure 5.12.  The 

predictions of the steam pressure with a single fixed hot-side inlet temperature are shown in 

Figures 5.14 and 5.15.  From Figures 5.12 - 4.15, we can see that for both cases, at the initial 

stage of the simulated fouling progress, the estimated residual is comparatively small since there 

is not much fouling.  Then as the fouling progresses and gradually increases, the residual also 

becomes larger.  While finally the fouling reaches the asymptotic value and keeps constant, the 

residual also follows the same trend and becomes asymptotically constant.   

Again, these results suggest that we can effectively use the residual trend as given in 

Figures 5.12 - 5.15 to monitor and diagnose the fouling problem that is occurring in a steam 

generator. 
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Figure 5.12. GMDH predictions of the UTSG steam pressure versus the simulations of the UTSG 

SIMULINK model (with different hot-side inlet temperature). 

 
Figure 5.13. Residual between the GMDH predictions of the UTSG steam pressure and the 

simulations of the UTSG SIMULINK model (with different hot-side inlet temperature). 
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Figure 5.14. GMDH predictions of the UTSG steam pressure versus the simulations of the UTSG 

SIMULINK model (with a single hot-side inlet temperature). 

 
Figure 5.15. Residual between the GMDH predictions of the UTSG steam pressure and the 

simulations of the UTSG SIMULINK model (with a single hot-side inlet temperature). 
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5.6. Remarks  

In this section, we used the first-principle models to generate data for development of the 

corresponding GMDH models for the heat exchanger and the UTSG.. These models were used to 

make predictions and the corresponding estimates of the residuals.  It should be emphasized that 

for the heat exchanger we used the data collected from the experimental setup.  All of the above 

results demonstrate that GMDH method can be successfully applied for monitoring and 

diagnosis of the fouling progression or other degradations that may occur in both heat 

exchangers and steam generators, as long as adequate data are available and the GMDH models 

are properly developed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
81

6. HYBRID MODEL DESIGN FOR STEAM GENERATOR/HEAT 
EXCHANGER MONITORING AND DIAGNOSIS 

 

6.1. System Modeling for Diagnosis 
 

A general architecture of combining first-principle and data-based models is shown in 

Figure 6.1.  Several different modeling techniques were applied and compared.  These included 

artificial neural networks, group method of data handling, and others. 

 
 

First Principle
SG Model

System Inputs

Data-based
SG Model

System Output

Comparison
System

Diagnostic
System

Predictions

 
 

Figure 6.1.  General fault detection and isolation architecture. 
 

The two most common groups of models used in Fault Detection and Isolation (FDI) 

systems are first-principles models and data-based models.  First-principle models do not provide 

the sensitivity necessary to detect slight changes in sensor calibration or plant degradation; 

however, data-based models have been used to accurately perform this sensitive FDI task 

[Gribok 2001].  Although these methods have not been applied to Steam Generator systems, the 

basic strategies have been applied to both nuclear systems and the balance of plant.  The main 

thrust of this research is to develop a reliable system that may be either data-based or a hybrid 

system that embodies both types of models. 

Data-based systems are applicable to operating plants and systems where plant data have 

been recorded over the entire operating range.  The data based systems are only accurate when 

applied to the same operating conditions under which data were collected.  When plant 

conditions or operations change, the model must extrapolate outside the training space and the 

results should not be trusted.  Unlike linear models, which extrapolate in a known linear fashion, 
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non-linear models extrapolate in an unknown manner.  These empirical (data-based) models 

must be trained on past plant data.  Since automated data acquisition systems may not have been 

implemented on the SG systems, especially for new generation designs that have not been 

constructed, data may not be available and first principle models must be used and then 

appended with data-based models as data become available.  The combination of data-based and 

first principle models are termed hybrid models. 

This hybrid framework, although more complicated, has a very important advantage.  

Purely data-based systems are not reliable when the system moves into new operating conditions 

which may result from configuration changes, new operating practices, or external factors such 

as unusual cold cooling water temperatures in condensers.  By using the proposed hybrid system, 

the plant monitoring system will tend towards the first-principle model when new operating 

conditions are encountered and will use the data based models when in familiar operating 

conditions. 

 
6.2. Hybrid Design 
 

The first step in integrating first principles models with data-based models is an in-depth 

survey of the current literature.  This task was begun with over 88 journal or conference papers 

identified.  Several useful overview papers include Thompson and Kramer (1994), Wilson and 

Zorsetto (1997), te Braake and van Can (1998).  The hybrid approach has commonly been 

termed a gray-box modeling approach, as contrasted to "black box" modeling of neural networks 

or other data based approaches.  The term gray-box comes from the idea that a portion of the 

internal model, the first principle model, is explainable.  In other technical papers these 

approaches are termed semi-mechanistic models.   

There are two major approaches to hybrid, gray-box, or semi-mechanistic modeling: the 

serial approach and the parallel approach.  The serial approach uses a data based model to 

construct missing inputs or parameter estimates to the first principles model, while the parallel 

approach uses a neural network to model non-linearities, disturbances, or other processes not 

accounted for in the first principles model. 

 
6.2.1. Serial Approach 

In the serial hybrid modeling approach (see Figure 6.2), neural networks are used to 

model parameters in the first principle models, and the first principle model is used to model the 
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system.  These parameters may be unknown, immeasurable, changing with time, or otherwise 

uncertain.  Psichogios and Ungar (1992) first proposed this idea in 1992 and applied it to a 

simulated fed-batch bioreactor.  Later, Alessandri and Parisini (1997) applied the concept to a 

320 MW power plant.  Many other applications of the Serial Approach are available in the 

literature and will be investigated in more detail.  Other data-driven modeling techniques, such as 

the Group Method of Data Handling (GMDH) (Ferreira and Upadhyaya, 1999) that provides a 

nonlinear characterization of process variables, will also be investigated. 

 

First Principle
Model

Inputs

Data-based
Model

Prediction

 
Figure 6.2.  Serial Hybrid Modeling Approach. 

 
6.2.2. Parallel Approach 

In the parallel hybrid modeling approach (see Figure 4.3), a neural network is trained to 

predict the residuals not explained by the first principles model.  When in operation, the 

predicted residuals are added to the first principles model output, resulting in a total prediction 

that is much closer to the actual system.  The parallel approach was first proposed by Kramer, 

Thompson, and Bhagat (1992).  They applied radial basis function neural networks to correct the 

output of a first principle model of a Continuous Stirred Tank Reactor (CSTR).  In 1994 they 

published another paper applying the technique to a batch penicillin fermentation process 

(Thompson 1994).  Both papers showed promising results. 
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Figure 6.3.  Parallel Hybrid Modeling Approach. 

 
 

6.3. Development of the Heat Exchanger Model 
 

This research investigates the application of hybrid modeling to heat exchanger 

monitoring and diagnostics.  To understand this application we first present the methods of 

modeling a heat exchanger from first principles and then explain methods to integrate empirical 

models through series and parallel hybrid modeling. 

 
 
 
 
6.3.1. Heat Exchanger Modeling 

A heat exchanger is a device used to transfer heat between two fluids that are at different 

temperatures and are separated by a solid wall.  Heat exchangers are generally classified 

according to the type of construction and the flow arrangement.  The simplest configuration, 

termed double pipe, consists of two concentric tubes containing the hot and cold fluids. The flow 

direction of the hot and cold fluids determines whether we have a double pipe parallel flow or a 

double pipe counter flow heat exchanger.  Another type of construction is the tube and shell 

arrangement that houses several internal tubes.  This arrangement consists of one or more passes 

of the shell side fluid.  The tube and shell HX provides a greater heat transfer area compared to 

the single tube version.  Other heat exchanger arrangements are described by Incropera [1996].  

For simplicity, the double pipe parallel flow concept, shown in Figure 4.4, is used in this work. 
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Figure 6.4. Double-pipe parallel flow heat exchanger. 
 
Two approaches to represent the heat exchanger by first principles model are considered: the Log 

Mean Temperature Method and the Effectiveness-NTU Method.  Both methods are based on 

balance energy equations applied to the heat exchanger with the amount of heat transferred by 

the hot fluid equal to the amount of heat received by the cold fluid: 

 
           cc

p
hh

p TcmTcmQ ∆−=∆=  (6.1)  
 

where Q = heat transfer  
           m  = mass flow rate 
            cp = specific heat 
            ∆T  = temperature difference 
            Superscripts h and c designate hot and cold. 
 
6.3.2. Log Mean Temperature Difference (LMTD) Method 
The overall heat transfer, Q, of a heat exchanger can be calculated by using the following 

expression:   

 
 mTAUQ ∆⋅⋅=  (6.2) 
 
where: U = overall heat-transfer coefficient 
            A = total surface area for heat transfer consistent with definition of U 
            ∆Tm = suitable mean temperature difference across the heat exchanger. 
              
The overall heat-transfer coefficient, U, is defined as the total thermal resistance between the two 

fluids.  It accounts for the convection thermal resistances of both hot and cold fluids and the 

conduction thermal resistance of the wall that separates the fluids.   

 
The mean temperature difference across the heat exchanger ∆Tm is derived by applying the  

energy balance through the heat exchanger (see Equation (6.1)) in combination with Equation  
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(6.2), in its derivative/integral form.  The complete development of ∆Tm equation is given in  

Holman [1981].  The log-mean temperature difference (LMTD) is given by 

 

 
⎟
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∆
∆

∆−∆
=∆=

2

1

21

ln T
T

TTTLMTD m   (6.3) 

 
where: ∆Tm = Log Mean Temperature Difference (LMTD) 
            ∆T1 = Th,1 – Tc,1  
            ∆T2 = Th,2 – Tc,2 
            Indices 1 and 2 designate the two opposite ends of the heat exchanger. 
 

To take advantage of the LMTD approach, one must know in advance the output 

temperatures for the cold and hot fluids.  Usually the output temperatures are unknown, and then 

an iterative process must be employed.  The LMTD method is used in this work as a simple 

model that is used as part of the hybrid model.  In this application, an additional simplification is 

made in which ∆Tm is calculated from the hot and cold inlet temperatures; thus, an iterative 

solution is not necessary.  The simplified model is: 

 
)( ch TTUAQ −=  (6.4) 

 
6.3.3. The Effectiveness-NTU Method 

The effectiveness-NTU method is an alternative approach that is used when fluid output 

temperatures are unknown. The effectiveness-NTU method is based on the effectiveness of the 

heat exchanger in transferring a given amount of heat, with effectiveness defined as the rate 

between the actual heat transfer and the maximum possible heat transfer 

 

maxQ
Qe ≡   (6.5) 

 
The maximum heat transfer is given by 
 

( ) ( ) ( )
inletinletinletinlet chchp TTCTTcmQ −=−×= minminmax   (6.6) 

 
where C is the  fluid capacity defined as pcm ;  Cmin is the hot or the cold fluid that has the 

minimum fluid capacity.  From Equations (6.3), (6.5) and (6.6) it follows that the effectiveness is 
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The Number of Thermal Units (NTU) is defined as 
 

 
minC

UANTU ≡  (6.8) 

 
The effectiveness can be written as a function of NTU, Cmin and Cmax.  Holman (1981) develops 

the effectiveness relation for the double pipe parallel flow heat exchanger as 

 

 
maxmin

maxmin
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e
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=  (6.9) 

 
This first principle model is used in the simulations as the actual heat exchanger. It is much more 

accurate than the simplified model of Equation (6.4). 

 
6.3.4. Data-Driven Modeling and Artificial Neural Networks 

Neural networks are modeling techniques that learn system behavior through data 

acquired from that system.  They are able to learn the relationship for operating regions that are 

presented to them during the training.  If the operating region moves outside the training region, 

the neural network model cannot be expected to give accurate predictions. 

In this work neural networks are used in the hybrid models.  In the hybrid serial model, 

the neural network predicts the heat flow that is used in the physical model, while in the hybrid 

parallel model, the neural network is trained to predict the error between the simplified model 

(Equation (6.4)) and the actual system modeled by the NTU method. 

 
6.4. Model Testing 
 

The literature contains reports that compare the series and parallel hybrid approaches.  

van Can et al. (1996) reports that the serial approach is superior to the parallel approach and 

others have made similar conclusions.  In this research, we compare the performance of the both 

method to track system changes and detect deviations from normality. 

 
To perform these tests, a hybrid approach was used to model a heat exchanger as part of a 

monitoring and diagnosis system.  As a first step to this goal, we simulated the actual heat 
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exchanger with a high fidelity model (NTU).  The simulation methods reported were useful in 

developing the methodology for hybrid model design and implementation. 

To perform the simulations, the NTU model was used to simulate normal, and faulted conditions 

and a hybrid model were used to monitor the heat exchanger.  Departures from normality are in 

the form of residuals, which are the differences between the predicted outputs (hybrid model) 

from the actual outputs (simulated heat exchanger).  The residuals were processed by a fault 

diagnostics system to determine the faulted conditions.  This general FDI architecture is shown 

in Figure 6.1. 

 
6.5. Summary of Results 
 

The Effectiveness-NTU Model (NTU) was implemented to simulate the heat exchanger 

behavior.  The NTU model used as inputs hot and cold inlet temperatures and hot and cold mass 

flow rates; the outputs are the overall heat transfer rate, and the hot and cold outlet temperatures.  

The fluids were the hot and cold water, and the transfer area of the heat exchanger was a known 

parameter (3.5 ft2).  A mean value for the heat transfer coefficient for water and this heat 

exchanger was assumed to be, U = 275.  The input data to the NTU model was chosen to cover 

the range of values that would occur in the actual laboratory experiments.  These values were 

about: Thot = 125 °F; Tcold = 65 °F; hlbmhot /1000= ; hlbmcold /3500= .  Additionally, small 

fluctuations were imposed to model normal process disturbances.  

 
6.5.1. Hybrid Serial Model 

In the hybrid serial approach, the simplified HX model was implemented to predict the 

hot and cold outlet temperatures using as input the hot and cold inlet temperatures and the hot 

and cold mass flow rates.  This simplified model followed the general behavior of the heat 

exchanger but, intentionally, did not perform as well as the high fidelity NTU model. 

The simplified HX model was implemented using a two-node approach. Each node was 

developed combining the relationships: ( )( )
21 hhph TTcmQ −×=  and LMTDAUQ ⋅⋅= . The 

LMTD Equation (6.3) was simplified and approximated as )(
11 ch TT − .  The two nodes were 

arranged in a series configuration.  This way, the hot and cold outlet temperatures derived from 

the first node would be the inputs for the second node, in addition to the hot and cold mass flow 
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rates.  The hot and cold outlet temperatures derived from the second node constituted the final 

output for the simplified HX model. 

A neural network was trained through the data collected from the NTU model to predict 

the heat transfer value (Q) to be used in the physical model.  Then, the Q that previously was 

calculated inside the physical model ( )( ch TTUAQ −= ) would now be supplied by the neural 

network.  The serial hybrid model inputs were: the hot and cold inlet temperatures and the hot 

and cold mass flow rates; and the predicted variables are the hot and cold outlet temperatures, as 

shown in Figure 6.5.  

 
 

 
Figure 6.5.  Serial hybrid model for the heat exchanger. 

 
 
A test case was performed to compare the hybrid model to the actual system (NTU model). This 

case contained a dynamic input, which resulted in dynamic outputs.  Fluctuations were imposed 

on the inlet hot temperature, within the training range.  The fluctuations that could be seen in the 

output (see Figure 6.6) followed the same pattern as those imposed on the input.  

The results (see Figure 6.6) show that the temperatures predicted by the series hybrid 

model were very close to the those from the NTU model.  The error was less than 0.14%.  
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Figure 6.6.  Results for serial hybrid model of the heat exchanger. 

 
 
6.5.2. Hybrid Parallel Model 

In the hybrid parallel approach a neural network was trained to predict the residuals in the 

hot and cold outlet temperatures that are not explained by the physical model.  The T-Error (see 

Figure 6.7) is the difference between the prediction for hot and cold outlet temperatures given by 

the HX physical model and the values from the NTU model.  The parallel hybrid model inputs 

are: the hot and cold inlet temperatures and the hot and cold mass flow rates; and the predicted  

 
 

Figure 6.7.  Parallel hybrid model of the heat exchanger. 
 
variables are the hot and cold outlet temperatures (see Figure 6.7). 
 

Fluctuations were imposed on the inlet hot temperature, within the training range, in the 

same manner as in the hybrid series model.  The fluctuations on the output follow the same 

pattern as imposed on the input.  The results (see Figure 6.8) showed that the temperatures 
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predicted by the parallel hybrid model followed those from the NTU model.  The small 

differences in the model performances were due to a finite neural network training goal that 

results in finite output differences.  The error in this case was less than 0.67%, which was about 

five times larger than that for the serial hybrid model. 

 
 

Figure 6.8.  Parallel hybrid model of the heat exchanger. 
 
 
6.6. Response of the Hybrid Serial Model to a Fault Condition 
 

Fouling represents a change in the heat transfer resistance that changes the performance 

of heat exchangers.  The usual effect is the decrease in the overall heat transfer coefficient (U).  

The following plot (see Figure 6.9) shows the condition in which the fouling factor was 

simulated by decreasing the overall heat transfer coefficient by 10%. When this operational 

condition was met, the neural network would produce the expected normal heat transfer 

coefficient for the inlet temperatures and the mass flow rates.  The hybrid model generated the 

normal operation outputs and a comparison with the actual output showed significant 

differences.  These differences, commonly known as residuals, will alert the user to an abnormal 
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condition and a fault detection and isolation (FDI) algorithm can map the residual signature to a 

fault hypothesis. The development of the FDI system is not discussed in this report. 

 
 

 
 

Figure 6.9.  Serial hybrid model results for the fault condition. 
 

It is interesting to note that Thot has a much larger error (residual) than Tcold.  This is 

because the fault causes a change in the heat transfer rate (Q).  This heat transfer is related to the 

product of the fluid mass flow rate and the temperatures.  Thus, for an equal change in Q, the 

temperature with a smaller mass flow rate has a higher temperature residual.  In this case, the 

mass flow rate of the hot fluid is about a third of that of the colder fluid and the residual of the 

hot fluid temperature is about three times that of the cold fluid temperature. 

Other fault conditions can produce different residual structures.  These residual structures 

may include mass flow rates and pressure drops. 

 
Remarks: 

Two hybrid modeling architectures that are capable of modeling a heat exchanger are 

presented.  Both the series and parallel hybrid approaches have small modeling errors (<1%) and 

the series model was shown to be able to detect a common fault condition. 
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6.7. Heat Exchanger Experiment 
 

In order to accomplish this comparison of hybrid modeling techniques, a heat exchanger 

set up was assembled in the laboratory.  The heat exchanger used in this experiment was a 

copper tube-and-shell structure, 24" long, with 31 internal tubes (1/4" diameter) that sit inside a 

2.5" diameter shell.  The HX is connected to the building hot and cold water supply in an open 

loop arrangement.  The hot water goes through the tube side and the cold water through the shell 

side, in parallel flow directions.  The HX is instrumented with temperature and flow rate sensors.  

Four type-J thermocouples allow monitoring the hot and cold water inlet and the hot and cold 

water outlet temperatures.  Turbine type flow meters were installed in the hot and cold-water 

inlet piping.  The temperature and flow rate signals are conditioned, and then sent to a digital 

data acquisition system that is based on National Instruments' hardware and LabVIEW Virtual 

Instrument program.  See Figure 6.10 for a schematic of the HX system.  The data were acquired 

and stored for future use.  Figures 6.11 – 6.13 show the laboratory heat exchanger setup. 

 

Figure 6.10.  Laboratory heat exchanger system. 
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Figure 6.11. Photograph of the laboratory heat exchanger system. 

 

 

Figure 6.12. Close-up view of the laboratory heat exchanger. 
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Figure 6.13. LabView based user interface. 

6.7.1. Hybrid Parallel Modeling 

A hybrid parallel model was developed using NTU method to implement the heat 

exchanger physical model and the multi-layer perceptron (MLP) neural network architecture to 

implement the data based model.  To achieve good results, when calculating the overall heat 

transfer coefficient (U), the physical model takes into consideration the different Nusselt and 

Prandtl numbers, related to each different steady state thermodynamic condition under which the 

data were acquired. 

The MLP neural network architecture gave better results when implemented with one 

neural network to predict the error in the hot water temperature and another to predict the error in 

the cold water temperature, instead of using just one neural network model to predict both. 

 
In the hybrid parallel approach, a neural network was trained to predict the residuals in 

the hot and cold temperatures on the output of heat exchanger that are not explained by the 

physical model. The inputs of the model were the hot and cold temperatures of the inlet water 

and the hot and cold mass flow rates.  Figure 6.14 shows the hybrid parallel model schematic. 
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Figure 6.14.  Heat exchanger parallel hybrid model. 

6.7.2. Input Data 

The heat exchanger was supplied with building water in an open loop arrangement.  The 

different steady state conditions were established by varying the hot and cold water flow rates.  

Changing the water flow rates caused all the temperature measurements to change.  The data 

were acquired and stored for each steady state condition.  Figures 6.15-6.17 show fourteen 

steady state levels, each one could be characterized roughly by a medium value for the hot and 

cold mass flow rate and the corresponding values for the inlet cold and hot temperatures. 
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Figure 6.15. Input data: hot water inlet temperature. 
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Figure 6.16. Input data: cold water inlet temperature. 
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Figure 6.17. Input data: hot and cold water mass flow rate. 

6.7.3. Results 

Figure 6.18 shows the prediction of the physical and the parallel hybrid models for the 

hot water temperature prediction and its actual measurement.  

The results (see Figure 6.18) show that the physical model (blue line) is not able to 

exactly model the temperature at each steady state condition.  This is due to the use of physical 

models that do not consider all inputs and disturbances such as heat loss to the room.  On the 

other hand, the parallel hybrid model (red line) follows the actual data (green line) much better. 
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The mean percent error, is 0.10% for the hybrid model hot temperature predictions versus 0.53% 

for the physical model: a performance increase of five times. The neural networks in the hybrid 

model attempt to explain or compensate for the residuals not taken in account by the physical 

model.  

Figure 6.19 shows the predictions for the cold water temperature output, and similar 

performance can be observed.  The hybrid model outperforms the physical model by a factor of 

about 5.  The mean error, in percentage of the actual values, is 0.26% for the hybrid model 

predictions versus 1.37% for the physical model.  The remaining error is dud to stochastic noise, 

unknown inputs, and other disturbances that were not modeled. 

 

6.8. Remarks 
 
The results show that the physical model and a parallel hybrid model architecture are 

capable of modeling a heat exchanger.  The parallel hybrid approach has a small modeling error.  

The physical modeling did not perform well at all steady state conditions.  The heat exchanger 

laboratory data have been very useful in demonstrating the effectiveness of the hybrid modeling 

techniques. 
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Figure 6.18. Hot temperature: hybrid and physical model predictions and measurements. 
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Figure 6.19. Cold temperature: hybrid and physical model predictions and measurements. 
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7. FAULT DIAGNOSIS DURING TRANSIENT CONDITIONS USING 
SUBSPACE DATA-DRIVEN MODELS 

7.1. Introduction 
 

Dynamic model based fault diagnosis is expected to have better robustness to 

process disturbance than steady state model based fault diagnosis.  For nuclear power 

plants with load following capability, it becomes mandatory to utilize dynamic models 

for fault diagnosis.  In addition, besides condition-based maintenance, reconfigurable 

control and transient fault diagnosis are also important to improve operation performance 

and safety.  In these cases, automatic fault recovery can only be achieved with the help of 

a dynamic model based fault diagnosis system.  As explained later, dynamic model based 

fault diagnosis requires fewer sensors for fault isolation than steady state fault diagnosis 

because additional temporal redundancy is utilized.  

A dynamic fault diagnosis algorithm is developed for nuclear power systems in 

this research.  In this approach, a low order state-space model is developed for fault 

diagnosis from currently widely used simulation tools in nuclear system design, using 

subspace identification techniques.  The subspace identification technique is 

parsimonious in model parameterization because of the minimal realization of linear state 

space models and good numerical stability because none of nonlinear optimization 

algorithms is involved.  In addition, linear state space model is the most well studied 

model for control design and fault diagnosis.  After a linear state model is obtained from 

data generated from simulation models, model uncertainties are identified from plant 

measured data and explicitly formulated in fault diagnosis algorithm.   

Robust parity space approach is applied to generate dynamic residuals for fault 

diagnosis in this research.  Robust residuals are designed such that they are statistically 

significant if and only if there are faults involved in the system and are robust to model 

uncertainty and measurement noise.  Fault isolation is achieved by designing structured 

residual set in which the residuals are sensitive to all faults but one.  In this manner, the 

insignificant component of the generated residual vectors can be immediately used for 

fault isolation.  Because a perfect solution can hardly be obtained to design a residual 
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sequence that is sensitive to a subset of faults while insensitive to the other faults, model 

uncertainties, and measurement noises, only a sub-optimal solution can be obtained.  The 

optimization has been solved via a generalized eigenvalue problem in this research. 

In this section, the theory of subspace identification is presented to identify a low 

order linear state space model from simulation models.  A robust dynamic residual 

generator design algorithm is then developed without directly identifying model 

uncertainty.  Finally, the developed algorithm is demonstrated through the application to 

IRIS HCSG system for transient fault diagnosis. 

 

7.2. Theory of Subspace Identification 
 

Subspace identification is the most important contribution in the field of system 

identification in the 1990s. The initial concepts and ideas of subspace identification were 

originated by De Moor in 1988 and the theory and implementation became mature in 

1995 (Van Overschee and De Moor, 1995).  

Subspace identification combines the theory in linear system, statistics, 

optimization, and numeric linear algebra for dynamic system identification.  Subspace 

identification extracts model information from the column space of certain matrices 

obtained from input-output data and Kalman state information from the row space of 

these matrices without knowing the system matrices.  The major advantage of subspace 

identification is that no explicit model parameterization is needed and only numeric linear 

algebra such as singular value decomposition and QR decomposition is needed for 

implementation.  Therefore, subspace identification provides a robust and efficient 

solution to the development of dynamic models from input-output data. 

A linear state space model structure is assumed in subspace identification.  Although 

many industrial processes have nonlinearity, this nonlinearity can be handled either by 

recursive updating of a linear model or by using model uncertainty decoupling techniques 

for robust control and fault diagnosis design.  Most importantly, linear state space model 

is the only class of systems tractable with rigorous theory.  The mathematical 

representation of a linear state space model is as follows: 
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where ku  is the input vector, ky  is the output vector, kx  is the state vector, and kw  and 

kv  are zero mean white Gaussian noise vectors with the following constant covariance 

structure: 
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On the condition that the input and output data are available, subspace identification aims 

at determining: 

(1) The order of the unknown system. 
(2) The system matrices A , B ,C , D  within a similarity transformation. 
(3) The noise characteristic matrices wΣ , vΣ , and vwΣ . 
 

7.2.1. Block Data Equations 
In subspace identification, block Hankel data matrices are used to extract the 

model information and the Kalman state information from data using geometric 

projection.  A block Hankel matrix of a signal has its column vector stacked in rows and 

the stacked column vectors in time sequences arranged in columns.  For instance, the 

block Hankel matrix of the input signal is constructed as follows: 
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where k  denotes the discretized time instant of the first row and first column element, s  

denotes the number of row blocks and N  denotes the number of columns used to 

construct the block Hankel matrix.  The block Hankel matrix s
kY , s

kW , s
kV  can be 

constructed similarly for the signal y , w , and v , respectively. 
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The extended observability matrix sΓ  relating the state vector to the stacked output 

vector is defined as follows: 
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The Toeplitz block matrices sH  and sG  are further defined as follows: 
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The concept of Kalman state sequences in system dynamics is emphasized in subspace 

identification.  The key of subspace identification is to identify Kalman state sequences 

directly from the input-output data without knowing the system matrices.  A Kalman state 

sequence involved in block data equation is defined as follows: 

 
[ ]11 −++= Nkkkk xxxX       (7.7) 

 
Based on the above matrices, the block data equation can be obtained as follows: 
 

s
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In order to identify the Kalman state sequences from the input-output data using 

geometric projection, it is also necessary to build block Hankel matrix of the input and 

output signals for the past block data and the future block data separately. 

Given that the past block matrix and the future block matrix have the same 

number of row blocks 1+s , the past block matrix and the future block matrix of the 

input signal are defined as follows: 



 104

 
s
kp UU =          (7.9a) 
s

skf UU 1++=          (7.9b) 
 

The past block matrix and the future block matrix of the output signal can be defined in 
the same manner. 

 

7.2.2. Recovery of System Matrices from State Sequence  
Subspace identification technique is deeply rooted in the fact that the Kalman 

state sequence can be identified from input-output data.  If the state sequence has been 

determined from the input-output data without knowing the system matrices, the 

identification problem can be transformed to a least squares estimation problem with 

respect to the system matrices and the process and measurement noise covariance 

matrices.   

Given that two adjacent state sequences 1
ˆ

+kX  and kX̂  have been determined, 
they are related to the system matrices A , B , C , and D  in the following manner: 
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The system matrices can then be recovered by solving a least-squares problem such that 

the Frobenius norm of the difference of two sides of Equation (7.10) is minimized. 

Three major subspace identification algorithms N4SID (Numerical algorithms for 

Subspace State Space System Identification), MOESP (Multiple Output-Error State 

Space), and CVA (Canonical Variate Analysis) exist.  These algorithms differ only in 

how the Kalman state sequences are extracted from input-output data and how the system 

matrices are recovered.  Because N4SID has been implemented in the MATLAB System 

Identification Toolbox, the following discussion is based on N4SID algorithm. 

 

7.2.3. Extractability of Kalman State Sequence from Input-Output Data 
It will be proved that Kalman state sequence can indeed be extracted from input-

output data in this section.  In the next two sections, two techniques will be shown on 

how to obtain Kalman state sequence from input-output data. 
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7.2.3.1. System Decomposition 
For a real system, the state variables and the system output variables are excited both by 

deterministic inputs and by stochastic noises.  In another word, the state vector and the 

measurement vector can be decomposed into two components as follows: 

 

s
k

d
kk

s
k

d
kk

yyy
xxx

+=
+=+1         (7.11) 

 
where the superscripts d and s correspond to the deterministic component and the 

stochastic component, respectively. 

Because the involved system is linear, the system defined in Eqn. 6.1 is equivalent 

to the supposition of one deterministic system and one stochastic system.  The 

deterministic subsystem is given by: 
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The stochastic subsystem is given by: 
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In order to show the equivalency between the original system and the decomposed two 

subsystems, we can prove that for a given deterministic input )(su  and stochastic input 

)(sw , the responses of the dynamic system, Equation (7.1) and the dynamic system 

Equation (7.11) are the same, and is given by 

 

)()()()()()()( 11 svswAsCsDusBuAsCsy +−Ι++−Ι= −−  (7.14) 
 

7.2.3.2. Extraction of Kalman State Vector  
Kalman filter theory invented by R. Kalman in 1960 enables us to estimate the 

state vector sequences kx  for the dynamic system given by Equation (7.1) from input-
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output data (Kalman, 1960).  In subspace identification, we need to design a bank of 

Kalman filters to estimate a Kalman state sequence simply by working on the block 

Hankel matrix of past inputs and past outputs.  In another word, the state estimate of 

Kalman state vector 1ˆ +kx  needs to be derived from the information up to the time instant 

k only.  Because this is the theoretical foundation of subspace identification, we are 

going to prove that this is indeed true in this research. 

 
It is obvious from Equation (7.1) that the estimated mean of the state vector kx  

propagates in the following manner: 
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0x  = the initial state estimate of the process. 

 
Apparently, the estimated mean of the state vector kx  follows exactly the deterministic 

part of the dynamics defined in Equation (7.1).  However, kx  is different from d
kx  since 

the initial state estimate is still a random variable. 

 
The covariance matrix xP  of the estimation error of state vector propagates as follows: 
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The estimated mean value of the output vector ky  is as follows: 
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The covariance matrix yP  of the estimation error of output vector propagates as follows: 
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The covariance matrix between the state estimate and the output is given by 
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In subspace identification, the state estimate of Kalman state vector 1ˆ +kx  is determined 

using only the information up to the time instant k .  This is quite different from the 

classical Kalman filtering setting where the full input-output information including the 

current information is used.  In classical Kalman filtering, the information up to the time 

instant 1+k  is used to estimate the state 1ˆ +kx . 

 
For this reason, it is assumed that the estimate of the state vector 1ˆ +kx  is a linear 

function of the available system output ky , which is given by: 
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K  is a matrix and g  is a vector to be determined. 

 
The optimal state estimate can be obtained by minimizing the objective function given by 
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The above minimization problem is equivalent to minimizing the following objective 

function: 
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Substituting kkkk yyyy +−=  into Equation (7.22) and noticing Equation (7.18), the 

minimal value is reached when the following conditions are satisfied: 
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The solution is then given by: 
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After cumbersome algebra, the non-steady state Kalman state estimate 1ˆ +kx  can be 

obtained by the following recursive formula. 
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The covariance of the state estimation error is given by: 
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If the recursive form of Kalman state estimate given in Equation (7.25) is written 

explicitly, the non-steady state Kalman state estimate is as follows: 
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1L , 2L , and 3L  are three linear operators acting on the initial state, the past input vectors, 

and the past output vectors, respectively.  

 
Although the derivation of Kalman state estimate is a natural extension of the classical 

Kalman filter, the theoretic foundation of subspace identification has been established, 
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which ensures that the Kalman state estimate kx̂  can be obtained by expressing itself as a 

linear function of the past 1−k  inputs and outputs as well as the initial state estimate. 

7.2.3.3. Extraction of Kalman State Sequence  
Based on Equation (7.27), the k-th block row of the process state, which is kX  based on 

the notation of Equation (7.7), is written in the matrix form as follows: 
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0X̂  = the estimate of the initial state sequence.   
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Equation (7.28) indicates that the Kalman state sequence can be generated by a bank of 

non-steady state Kalman filters working in parallel on each of the columns of the block 

Hankel data matrix of past inputs and past outputs.  If the estimate of the initial state 

vector 0x̂  and the covariance matrix of the initial state estimate error 0,xP  are known, the 

estimate of the state vector kx̂  can be obtained by an iteration of a Kalman filter over k 

time steps.  The Kalman state sequence kX̂  can be obtained by running N  paralleled 

non-steady state Kalman filters simultaneously in the same manner if the estimate of the 

initial state sequence 0X̂  is known. 

The last but not the least point of subspace identification is that the estimated 

Kalman state sequence is not unique, which depends on the choice of the initial state 

sequence and the covariance matrix of initial state estimation error.  In another word, the 

recovered system matrices based on subspace identification may not be able to reproduce 

the true system states.  However, through appropriate choice of the initial state sequence, 

the input-output responses of the identified system will be the same as the real system.   
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7.2.4. Orthogonal Projection Methods 
The objective of subspace identification is to recover Kalman states from input-

output data without the knowledge of system matrices.  Subspace identification technique 

achieves Kalman state estimate by exploring the relationship among the spaces of the 

input, output, and state sequences through geometric projection.  In orthogonal projection 

methods, we constrain the row space of the identified Kalman state sequence to be in the 

combined row space of PW  and fU . 

 
Starting from Equation (7.28), it can be proved that an estimate of the future output block 

matrix fY , denoted by fZ , is a linear combination of the past information block matrix 

pW  and the future input block matrix fU , which is given by: 
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pL  = a linear operator acting on pW . 

uL  = a linear operator acting on fU . 

 
The prediction error of future output can be represented by the Frobenius norm given by: 
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To make the prediction error minimized with the constraint that the rows of fZ  lives in 

the joint row space of PW  and fU , it can be proved that the optimal solution to the 

minimization problem with the specified constraint is to perform an orthogonal projection 

of the row space of the matrix fY  onto the joint row space of matrix pW  and fU  

(Favoreel, De Moor, and Van Overschee, 1998).   

 
The orthogonal projection of the row space of matrix A  onto the row space of matrix B  

is computed in the following manner: 
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Theorem 7.1: If the deterministic input ku  is uncorrelated with the process noise kw  

and the measurement noise kv ; the input ku  is persistently excited of order 2k; the 

number of measurements goes to infinity ∞→N ; and the process noise kw  and the 

measurement noise kv  are not identically zero, then we have (Van Overschee and De 

Moor, 1996): 
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Theorem 7.1 shows one way to predict the future output based on the past inputs and 

outputs as well as the current inputs without the information of the system matrices.  

More importantly, Theorem 6.1 gives the relationship between the Kalman state estimate 

and the input-output data in a direct manner assuming that the row space of kX̂  lives in 

the joint row space of matrix pW  and fU . 

 

7.2.5. Oblique Projection Methods 
Although Theorem 7.1 gives the relationship between the Kalman state estimate 

and the optimal prediction of the future output through an orthogonal projection, it is not 

convenient in implementation to recover the Kalman state directly because the future 

input term fU  is involved.  To overcome this difficulty arising from the term fU , an 

oblique projection method can be used to relate the Kalman state estimate to the oblique 

projection matrix with the constraint that the row space of Kalman state sequence lies in 

the row space of matrix pW  such that the future block Hankel matrix fU  will have no 

effects on the obtained projection matrix. 

Starting from the orthogonal projection theory, it is quite intuitive to obtain the 

oblique projection, which is as follows: 
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kX~  is the initial Kalman filter state estimate involved in the oblique projection. 
 

The oblique projection of the row space of matrix A  along the row space of matrix B  

onto the row space of matrix C  is computed in the following manner: 

CBCBACA B
+⊥⊥= )/][/[/  

⊥BA /  represents the orthogonal projection of the row space of A  onto the orthogonal 

complement of the row space of B .  Obviously, 0/ =CB B .   

 
Theorem 7.2: If the deterministic input ku  is uncorrelated with the process noise kw  

and the measurement noise kv ; the input ku  is persistently excited of order 2k; the 

number of measurements goes to infinity ∞→N ; and the process noise kw  and the 

measurement noise kv  are not identically zero.   

 
Let kO  be defined as the oblique projection as follows: 
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If singular value decomposition is performed on the oblique projection matrix, then we 
have 
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The following claims can be stated (Van Overschee and De Moor, 1996): 
 
(1) The matrix kO  is equal to the product of the extended observability matrix SΓ  and 

the estimated Kalman filter state sequence kX̂ , that is: 
 

kSk XO ˆΓ=          (7.34) 
 
(2) The order of the system is equal to the number of singular values of kO  that are not 
zero. 
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(3) The extended observability matrix SΓ  can be obtained as follows: 
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2/1

11=Γ          (7.35) 
 
T  is a similarity transformation matrix. 
 
(4) The part of the state sequences kX̂  can be computed as follows: 
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(5) The state sequences kX̂  is related to the matrix kO  as follows: 
 

kSk OX +Γ=ˆ          (7.36) 
 
Theorem 7.2 provides an optimal solution to the linear combination of past inputs and 

outputs, that is, ppk WLO =  so that the prediction error of the future output is minimized 

with respect to the Frobenius norm.  The row space of this optimal solution kO  is the 

projection of the row space of fY  along the row space of fU  onto the row space of 

pW .   

 
For a system with l  outputs and n  true states, the oblique projection matrix kO  has 

lk ⋅  rows and N  columns, whose rows span a subspace of lk ⋅  dimensional row space 

in the N  dimensional ambient space.  However, only n  states are sufficient to predict 

the future output from the past information.  Therefore, it is necessary for subspace 

identification to determine the true number of states from the oblique projection matrix.  

In mathematics, this problem can be formulated as follows: 

 
2||||min FkRR

RO
qli

−
×∈

        (7.37) 

 
with the constraint that the rank of R  is n. 
 
The best solution to the minimization problem given in Equation 7.37) is as follows: 
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T
kkk VSUXOR 111

ˆ =Γ=≈       (7.38) 
 

The columns of kΓ  spans n-dimensional space because the original system is observable 

and the rows of kX̂  are n-dimensional since the system has n states.  Because the oblique 

projection matrix kO  is a product of kX̂  and kΓ , the rank of kO  is indeed equal to n. 
 
Moreover, the column space of kO  is the same as the column space of kΓ  since each 

column of kO  is nothing but a linear combination of the columns of kΓ  as is shown in 

Equation (7.38).  For the same reason, the row space of kO  is the same as the row space 

of kX̂  since each row of kO  is nothing but a linear combination of the rows of kX̂  as is 

also shown in Equation (7.38).  Therefore, after a singular decomposition of kO , there 

are theoretically only n nonzero singular values.  However, for a real world problem 

where N  is not infinite and there may be nonlinearity, the singular value decomposition 

of kO  does not always produce zero singular values.  In this situation, the predominant 

singular values are used to determine the order of system dynamics. 

 
Because the column space of kO  is the same as the column space of kΓ  and the row 

space of kO  is the same as the row space of kX̂ , Equation (6.38) can then be split into 
two parts as follows: 
 

T
k

k

VSTX
TSU

1
2/1

1
1

2/1
11

ˆ −=
=Γ         (7.39) 

 
Therefore, Equations (7.35) and (7.36), can be used to estimate the extended 

observability matrix kΓ  and the Kalman state sequence kX̂  directly from the input and 

output data without the knowledge of system matrices. 

 
At this point, Kalman state sequence has been identified from the input-output data 

without the knowledge of system matrices, the dynamic system identification is then 

transformed to a least squares estimation problem, which is described in Section 7.2.2.   

 
Example 1:  Given two matrices A  and B  and a matrix ABC =  as follows: 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

0.00.3
0.20.2
0.10.1

0.70.2
0.10.1

A   ⎥⎦
⎤

⎢⎣
⎡= 0.10.10.2

0.30.20.1B  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

0.90.60.3
0.40.60.6
0.40.10.1
0.10.110.16

0.20.30.3

C  

 
The matrix A  has 2-dimensional column space and the matrix B  has 2-dimenisonal row 

space.  It can be verified that the rank of C  is also 2.  If singular value decomposition is 

performed on C , we have: 

 

⎥⎦
⎤

⎢⎣
⎡

−−
−−−

⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−
−−

== 9247.01448.03521.0
1448.06234.07582.0

7688.100
07163.22

7554.03405.0
2280.03986.0
3896.00277.0

4611.08275.0
114.01993.0

111
TVSUC

 
Obviously, the matrix C  has two non-zero singular values.  Because 1U  is orthonormal, 

it is always possible to find a transformation matrix AUST T
1

5.0
1
−=  such that 

TSUA 5.0
11=  and TVSTB 1

5.0
1

1−= .  The matrix T  is a full rank square matrix and thus 

invertible because the matrix A  has full column rank as same as the rank of 1S .  For the 

example problem, the transformation matrix T  is given by: 

 

⎥⎦
⎤

⎢⎣
⎡
−

−−= 9287.07019.0
4186.17764.0T  

 
This simple example clearly shows the reasoning behind Equation (7.39).  It should be 

emphasized that subspace identification is based on the major result of Equation (7.34) 

with three significant implications:  

(1) The projection matrix can be obtained directly from input-output data;  
(2) The column space of kΓ  has the same dimension as the number of states. 
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(3) The row space of kX̂  has the same dimension as the number of states. 
 

In fact, subspace identification theory is established by revealing the equivalence 

between the column space of a projection matrix and the column space of the extended 

observability matrix and the equivalence between the row space of the projection matrix 

and the row space of the Kalman state sequence.  It is because of the importance of 

subspace that this identification technique was given the name of subspace identification.   

 

7.3. Robust Dynamic Fault Diagnosis Algorithm 
 

After system dynamics is identified either from plant simulations or from on-line 

experimental data using subspace identification technique, the developed model will 

always have certain degrees of uncertainty either because the simulation does not truly 

represent the physical system or because a model reduction is implicitly performed in 

subspace identification.   

 
In general, the uncertainty of a dynamic model can be represented as follows (Chen and 

Patton, 1999): 

 

)()()(*
)()()()()1(

*

*

kDukCxky
kdkwkBukAxkx

+=
+++=+     (7.40) 

 
where )(kd  is a vector representing deterministic model uncertainty, )(kw  is a vector 

representing stochastic process noise, )(* ku  is the true input vector, and )(* ky  is the 

true output vector. 

In Equation (7.40), the model uncertainty term plays the same role on the system 

dynamics as the process disturbance defined in Equation (7.1) except that model 

uncertainty is deterministic.  In fact, the model uncertainty term is an extension of 

process disturbance from modeling point of view, which may arise from unmeasured 

inputs, non-linear terms in system dynamics, terms related to time-varying dynamics, 

linearization and model reduction, parameter variation, and simulation model uncertainty, 

etc. 
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Given that the measured inputs and outputs are corrupted with some measurement 

noise uv  and yv , respectively, and some additive sensor faults, the observed input vector 

)(ku  and the observed output vector )(ky are then as follows: 

 
)()()()( * kfEkvkuku uuu ++=       (7.41a) 

)()()()( * kfEkvkyky yyy ++=       (7.41b) 
 

)(kfu  and )(kf y  are the fault magnitude vectors and uE  and yE  are the fault 
distribution matrices for the inputs and the outputs, respectively.  

 
The objective of robust fault detection is to generate a residual that is statistically 

significant if and only if the fault magnitude vectors are not zero, i.e., the residual )(tr  

satisfies the following property: 

 
0)( ≠tr    iff   0)( ≠tfu  or 0)( ≠tf y      (7.42) 

 
If different residual patterns are predefined to signify different faults, the task of fault 

isolation is then to design some residual generators such that each fault must generate the 

predefined residual pattern regardless of its fault magnitude.  Such a formulation of fault 

isolation problem can avoid the use of fault information for fault isolation, which may 

depend on fault magnitude and is difficult to obtain in nuclear power systems. 
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7.3.1. Robust Dynamic Fault Detection Algorithm 
Considering a time window of length s , the dynamic redundancy relation in 

stacked vector form can be derived for the given system defined in Eqn. 6.40 as follows: 

 
)()()()()( ** kwGkdGkuHskxky ssssssss +++−Γ=    (7.43) 

 
where )(* kys , )(* kus , )(kws , and )(kds  are stacked column vectors of s  elements of 

)(* ky , )(* ku , )(kw , and )(kd , respectively.  The matrices sH  and sG  are Toeplitz 

block matrices that relate the system inputs and the model uncertainty to the system 

outputs, respectively.   

 
The stacked output error vector within the given time window can be written as follows: 
 

)(~~)()()( kzHkuHkyke ssssss =−=      (7.44) 
 

( )ss HH −Ι=~
  

( )TT
s

T
ss kukykz )()()(~ =  

 
From Equations (7.43) and (7.44), the stacked output error vector can be rewritten in its 

physical form as follows (Li and Shah, 2002): 

 

)(~
)(
)(~)()()()( kfEHkv

kvHkwGkdGskxke szzs
us

ys
sssssss +⎟

⎠
⎞

⎜
⎝
⎛+++−Γ=  (7.45) 

 

⎟
⎠
⎞

⎜
⎝
⎛

⊗Ι
⊗Ι

=
+

+

us

ys
z E

EE
1

1

0
0

 

1+Ι s  is a s  dimensional identity matrix, ⊗  represents the Kronecker product, and )(kf sz  

is the stacked fault magnitude vector combining both the output faults and the input 

faults. 

Equations (7.44) and (7.45) represent the computational form of the output error 

and its internal form from system physics, respectively.  In order to construct a residual 

signal insensitive to the initial states and the model uncertainty, a linear transformation is 

performed on the original stacked output error vector.  That is, a residual vector )(krs  can 
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be designed for robust fault detection through a linear transformation matrix 0V  with the 

following constraints: 

 
))()(()( 0 kuHkyVkr ssss −=       (7.46a) 

0)(0 =−Γ skxV s         (7.46b) 
0)(

0
=kdGV ss         (7.46c) 

 
Accordingly, the internal form of the residual vector takes the following simplified form: 
 

)(~)()(
)(~)( 000 kfEHVkwGVkv

kvHVkr szzsss
us

ys
ss ++⎟

⎠
⎞

⎜
⎝
⎛=    (7.47) 

 
If there is no measurement and process noise, the internal form of the residual vector 

defined in Equation (7.47) is only a function of the fault magnitude.  Therefore, such a 

residual generator has the desired property for robust fault detection. 

The residual vector generated from Equation (7.47) follows a multi-dimensional 

Gaussian distribution that is zero-mean with a covariance matrix that can be determined 

from the data obtained for fault free conditions.  If a sensor fault occurs to the system, 

Equation (7.47) indicates that the fault condition residual vector will also follow a multi-

dimensional Gaussian distribution with the same covariance matrix but with a non-zero 

mean value.  Therefore, fault detection can be achieved by detecting the change of the 

mean value of the generated residual vectors.  In order to avoid false alarms and missing 

detection rates due to noise, an Exponentially Weighted Moving Average (EWMA) filter 

(Lowry etc., 1992) can be applied to the residual vector (Qin and Li, 2001), which is 

given by: 

 
)()1()1()( krkrkr sss γγ −+−⋅=      (7.48) 

 

where )(krs  is the EWMA filtered residual vector and γ  is the forgetting factor for 
filtering.   
 
The filtered residual vector for fault free condition also follows zero mean Gaussian 

distribution with the covariance matrix )(0 kRs  given by (Del Castillo, 2002): 
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−

=
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j

T
ss

j
ss jkrkrEkRkR

1
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1
1)( γ

γ
γ

   (7.49a) 

 
)(0 kRs  is the covariance matrix of the unfiltered residual vector.   

 
To simplify the computation, asymptotic covariance matrix can be used, which is given 

by (Rigdon, 1995): 

 

)(
2

)(lim 00 kRkR sss γ
γ
−

=
∞→

       (7.49b) 

 
The filtered square weighted residual can be used for fault detection with better 

performance than a simple weighted residual, which is given by: 

 
)())(()( 1

0 krRkrk ss
T

ss
−=β       (7.50) 

 
During fault free condition, the filtered square weighted residual )(ksβ  follows a central 

2χ  distribution.  If )(ksβ  does not follow a central 2χ  distribution at a specified 

significance level α , the decision can then be made that a fault has occurred to the 

system at this significance level.  That is, a fault is detected if the fault detection index 

)(ksω  is greater than 1.0, which is defined as follows: 

 

2

)()(
αχ

βϖ kk s
s =         (7.51) 

 

7.3.2. One-Step Robust Dynamic Residual Generator Design 
As described in Section 7.3.1, the key of robust fault detection is to design a linear 

transformation matrix such that the generated residuals are independent of the initial 

states and insensitive to the model uncertainties, which is written in Equation (7.46).  The 

traditional method of dealing with model uncertainty in robust residual generator design 

has two steps.  The first step is to determine the model uncertainty vector using Kalman 
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filter technique and the second step is to determine the uncertainty distribution matrix 

using SVD algorithm.   

A new approach has been developed for robust dynamic residual generator design 

in this research.  Inspired by subspace identification algorithm, this approach utilizes 

block data matrix equation to determine the relationship between the subspace spanned 

by the projection matrix of measured data and the subspace spanned by the projection 

matrix of model uncertainty.  The advantage of this approach is that robust residual 

generator design does not need to identify the model uncertainty vector and the 

distribution matrix explicitly. 

Let us recall the block data matrix kY , kU , kP , kW , kuV , , kyV , and kZ  defined 

for the output, input, model uncertainty, process disturbance, input noise, output noise, 

and past information, which are written as follows: 

 
[ ])1()1()( −++= NkykykyY sssk     (7.52a) 

[ ])1()1()( −++= NkukukuU sssk     (7.52b) 

[ ])1()1()( −++= NkdkdkdP sssk     (7.52c) 

[ ])1()1()( −++= NkwkwkwW sssk    (7.52d) 

[ ])1()1()(, −++= NkvkvkvV usususku    (7.52e) 

[ ])1()1()(, −++= NkvkvkvV ysysysky    (7.52f) 

⎟
⎠
⎞

⎜
⎝
⎛=

k

k
k U

YZ          (7.52g) 

 
The block data matrix equation can be derived as follows: 
 

1,111,111 +++++++ +++−+Γ= kykskskusksksk VWGPGVHUHXY   (7.53) 
 
If we post-multiply the Equation (6.53) by T

kZ , then we have the equation 
 

T
kky

T
kks

T
kks

T
kkus

T
kks

T
kks

T
kk ZVZWGZPGZVHZUHZXZY 1,111,111 +++++++ +++−+Γ=  

          (7.54) 
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Considering that the model uncertainty is a deterministic variable, and the input 

measurement noise, the output noise, and the process noise are all uncorrelated white 

Gaussian, if the size of data is sufficiently big, then we have: 

 
PZsUZsXZsYZ GH Ω+Ω+ΩΓ=Ω       (7.55) 

 
Ω  denotes the corresponding product term in Equation (7.54).   
 
If  Equation (7.55) is then premultiplied by the complement matrix of sΓ , denoted by 

⊥Γs , then we have: 
 

PZssUZsYZs GH ΩΓ=Ω−ΩΓ ⊥⊥ )(       (7.56) 
 
The left hand side of Equation (7.56) can be determined from the measured data and the 

right side of the equation is related to the space spanned by the model uncertainty vectors.  

Therefore, singular value decomposition can be performed on the related matrix on the 

left side of the equation to determine the null space spanned by the model uncertainty 

vectors. 

 
Let us redefine the matrix on the left side of Equation (7.56) as Θ , that is: 
 

)( UZsYZs H Ω−ΩΓ=Θ ⊥        (7.57) 
 
If a singular value decomposition is performed on Θ , we have: 
 

[ ] ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=Θ ⊥

Θ

ΘΘ⊥
ΘΘ V

VSUU 00
0

      (7.58) 

 
Obviously, the obtained matrix ΘU  satisfies the following equation: 
 

0)()( 1 =Γ +
⊥⊥

Θ
T
kkss

T ZPGU        (7.59) 
 
If there is at least one columns of T

kZ  which do not live in the null space of 

)()( 1+
⊥⊥

Θ Γ kss
T PGU , then we have: 

 
0)()( 1 =Γ +

⊥⊥
Θ kss

T PGU        (7.60) 
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If it is further assumed that the model uncertainty is piecewise constant, a linear 

transformation matrix 0V  satisfying the desired property of robust residual generator 

defined in Equation (7.46), can be chosen as follows: 

 
)()(0

⊥⊥
Θ Γ= s

TUV         (7.61) 
 
Based on the above algorithm, robust residual generator can be designed without 

knowing the model uncertainty vector.  Compared with the classical approach developed 

by Chen and Patton, 1999, this algorithm is much easier for implementation. 

 
Example 2:  Considering a linear dynamic system with four inputs and four outputs, the 
system matrices are identified as follows: 
 

⎥⎦
⎤

⎢⎣
⎡
−= 5.05.0

5.05.0A      ⎥⎦
⎤

⎢⎣
⎡

−
−−= 1.02.13.07.1

2.11.11.04.0B  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

2.07.0
2.02.0

2.22.0
6.03.0

C      

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0000
0000
0000
0000

D   

 
The fault free data is generated with measurement noise of 1% signal-noise ratio for all 

the four input signals and the four output signals, and process noise of 3% signal-noise 

ratio, and model uncertainty of constant direction.  The distribution matrix and the 

magnitude vector of model uncertainty are given as follows: 

 

⎥⎦
⎤

⎢⎣
⎡= 25.05.0

5.025.0
dE      ⎥⎦

⎤
⎢⎣
⎡= 0.10

0.10d  

 
Because the number of state variables is 2 in this example, the block data matrix of kY , 

kU , and kZ  can be constructed with s  equal to 2 and N  equal to 2000 according to 

Equation (7.52), where the system is excited with input signal ∑
=

=
10

1
)cos(

i
tiu π  and the 

initial state vector [ ]Tx 00)0( = .   
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After the extended observability matrix sΓ  is constructed from the system matrices, the 

dimension of the matrix is 12 by 2.  If singular value decomposition is performed on Θ  

defined in Eqn 6.57, which has a dimension of 10 by 24, we have the following singular 

values from large to small in order, 3.2281e+006, 4.5777e+003, 121.3397, 59.2458, 

1.5377, 0.9983, 0.1805, 0.0910, 0.0230, and 0.0164.  Because a sharp drop occurs at the 

second singular value, the last nine left singular vectors can be retained to design robust 

residual generator for fault detection.  In fact, if we remove the measurement noise and 

process noise, the last 9 singular values of Θ  would be exactly zeros. 

Figure 7.1 shows a comparison between the residual norms without the model 

uncertainty decoupled and with the model uncertainty decoupled.  The new test data of 

2000 samples are generated by exciting the system with input ∑
=

=
10

1
)sin(

i
tiu π  beginning 

with the initial state vector [ ]Tx 0.10.1)0( =  and introducing the model uncertainty 

since the 1000th sample.   

The upper plot of Figure 7.1 shows the results when the model uncertainty is not 

decoupled.  As can be seen, the residuals are small before the 1000th sample although the 

system is excited by a different input signal at a different initial state vector.  However, 

false alarms will be produced after the 1000th sample.  The lower plot shows the results 

when the model uncertainty is decoupled using the developed algorithm in this section.  It 

can be seen that the generated robust residuals will not produce false alarms after the 

1000th sample when model uncertainty has been introduced. 

The simple example has demonstrated that the developed robust residual 

generation algorithm is able to decouple model uncertainty without the need to identify 

model uncertainty vector explicitly. 

 

7.3.3. Robust Fault Isolation Algorithm 
Structured residuals generated by multiple residual generators provide a simple 

and systematic approach to fault isolation.  If residual generators are designed such that 

each one is only sensitive to a subset of the considered faults, a fault isolation scheme can 

then be achieved since each fault corresponds to a different residual pattern.   
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Figure 7.1.  Robust fault detection for the example case during normal operation 

condition. 
 
Although it is possible to design numerous residual structures for fault isolation with 

different isolation capability, a generalized residual set is a simple design scheme for 

single fault isolation (Qin and Li, 2001).  In this scheme, each residual set is sensitive to 

all faults but one.  In particular, the residual structure dedicated to the isolation of the thi  

fault is given as follows: 

 
0)( =tri  for the thi fault.      (7.62a) 
0)( ≠tri  for the other faults.      (7.62b) 

 
The fault direction matrix uE  and yE  are decomposed into the first part 1,uiE  and 1,yiE  

corresponding to the faults to be desensitized, and the second part 2,uiE  and 2,yiE  

corresponding to the faults to be sensitized, that is 

 
( )2,1, uiuiui EEE =          (7.63a) 
( )2,1, yiyiyi EEE =         (7.63b) 

 
The primary residual vector for robust fault detection defined in Eqn. 6.47 can then be 

rewritten as follows: 
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where 1zE  and 2zE  are constructed from 1,uiE , 1,yiE  and 2,uiE , 2,yiE , respectively, in the 

same manner as zE  is constructed from uE  and yE . 

 
The residual generator iV  dedicated to the isolation of the thi  fault is designed as follows: 
 

0~
10 =⋅ zsi EHVV         (7.65) 

 
In order to make the residual generator given in Equation (7.65) still sensitive to the other 

considered faults, the transformation matrix iV  can be obtained by solving an 

optimization problem such that its row vectors v  can minimize the objective function J  

defined as follows: 

 

T

T

vMvM
vMvMJ

))((
))((

22

11=         (7.66) 
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~
zs EHVM =   

202

~
zs EHVM =  

 
A complicated algorithm based on Cholesky decomposition and standard eigen-problem 

is developed to solve the above optimization problem in (Li and Shah, 2002).  In this 

research, the optimization is formulated as a generalized eigen-problem defined as 

follows: 

 
TTTT vMMvMM 2211 λ=        (7.67) 

 
Similarly, in order to remove the noise effects on decision-making, an EWMA filter can 

also be applied to each of the generated residual vectors and an FDI index is used to 

check its significance of change.  The FDI index is defined as follows: 

 

2

)()(
αχ

βϖ kk s=         (7.68) 
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7.4. Application to IRIS HCSG System 
 

The developed algorithm was applied to the sensor fault diagnosis using the 
dynamic model identified from the data generated by the IRIS HCSG simulation model 
(Upadhyaya and Zhao, 2003).  The considered sensor faults include both the input and 
the output faults related to the system model.   
 

7.4.1. System Description 
International Reactor Innovative and Secure (IRIS) is one of the Generation IV 

nuclear reactor designs for near term deployment (Carelli et al., 2003).  The IRIS reactor 

is an integral light-water reactor (LWR).  The reactor coolant systems including steam 

generators, pumps, and pressurizer are all integrated inside the reactor vessel.  This 

integral design eliminates the possibility of large loss of coolant accidents.  The reactor 

has eight Helical Coil Steam Generators (HCSG) connected to four steam lines and four 

feed water lines.  The long lifetime core is achieved by means of 5 percent enriched 

uranium for the first reactor core and 9 percent enriched uranium for successive reactor 

cores.  The reactor refueling is needed only at the end of the first five years, and 

afterwards once every eight years.  Because of the deep burnup, fewer amount of nuclear 

waste per unit of reactor power is produced than current operating reactors.   

The HCSG systems are major contributors to the safety and economy of the IRIS 

reactor design.  The size of steam generators can be reduced through the helical coil 

design.  The heat transfer of the coiled configuration is much more efficient than straight 

tubes because of the larger heat transfer area per unit volume and the secondary flow 

induced by the coil geometry.  The probability of steam generator tube rupture can be 

reduced because secondary fluid flows inside SG tubes and thus the tube walls 

experience compression force from the outside, reducing the likelihood of stress 

corrosion cracking.  In addition, these steam generators produce superheated steam, 

which avoids the need to install a steam-water separator in the steam generator. 

In the HCSG system, a schematic of which is shown in Figure 7.2, the primary 

fluid flows downward from the top to the bottom on the shell side.  The primary side heat 

transfer is sub-cooled forced convection along the entire steam generator height and the 

secondary fluid flows upward inside the coiled tubes from the bottom to the top of the 
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steam generator.  The feed water flows into the sub-cooled region of the steam generator.  

In the sub-cooled region, the heat transfer is mainly due to single-phase turbulent and 

molecular momentum transfer and the pressure loss is mainly due to wall friction.  The 

saturated region begins when the bulk temperature becomes saturated.  The heat transfer 

in the saturated boiling region is dominated by nucleate boiling, which is much more 

efficient than single-phase liquid or steam heat transfer.  In the saturated boiling region, 

the generated bubbles do not disappear in the liquid core and the pressure loss is not only 

due to the wall friction but also due to the interfacial drag between the bubbles and the 

liquid.  In the HCSG system, the length of liquid film heat transfer is short since the flow 

velocity is relatively high (about 1.5 m/s).  Saturated boiling ends when the critical heat 

flux is reached and the liquid film disappears.  Because of the relatively large mass flow 

rate (62.85 kg/s), the critical heat flux occurs at relatively high steam quality.  When the 

steam quality becomes 1.0, the liquid evaporation ceases and the steam becomes 

superheated.   

In the HCSG system, the steam pressure is controlled and the steam pressure 

sensor fault will propagate within the control loop.  The feed water flow rate is regulated 

when reactor power changes, so it is important to have a correct indication of the feed 

water flow rate for this power transient.  The detailed results are therefore presented for 

these two sensor faults.  To demonstrate the systematic solution to sensor FDI of the 

developed approach, the FDI results of all the other sensor faults are also summarized. 
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Figure 7.2.  Schematic of IRIS HCSG system. 
 

7.4.2. Data Generation and Subspace Identification 
A linear state space model is identified for the HCSG system at full power 

operation condition using subspace identification technique.  The data characterizing the 

system dynamics is generated by exciting the simulation model with white Gaussian 

noise inputs of 1% power.  The perturbed inputs include the hot leg temperature, the 

primary flow rate, the feed water flow rate, the feed water temperature, and the steam 

flow rate.  The appropriate choice of the excitation inputs plays a significant role in the 

quality of the identified model.  If too much power is included in the input signals, some 

nonlinear modes will be excited.  On the contrary, if the included power is too small, the 

identified model cannot capture enough system dynamics.   

Figure 7.3 shows the singular values of the oblique projection matrix for different 

number of state variables ranging from 1 to 50.  The number of states is chosen as five 

since a significant breakpoint can be observed at this point.  If too many state variables 

are chosen, the resulting model will lose the capability of generalization because some of 

the degrees of freedom will be used to model the system noise.  If too few state variables 

are used, the resulting model may not be able to explain some significant dynamics of the 

system.  In general, the number of state variables should be chosen such that no 
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significant information can be included if it is further increased.  As can be seen from the 

figure, a reduced order model can indeed be developed through a systematic approach of 

subspace identification.  The original nineteen order physical model has been reduced to 

a five order empirical model that can still capture the dominant dynamics of the system. 
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Figure 7.3.  The singular values of the projection matrix. 
 

In order to test the generalization capability of the identified model, a test data set 

is generated with the reactor power at 90% full power and the input excitation power of 

0.5%.  Figure 7.4 shows the comparison of results between the cold leg temperature 

obtained from the simulation model and the corresponding predicted values based on the 

identified model.  The prediction errors are indeed very small.   

The prediction error index γ  can be used to quantify the prediction performance 

of the identified model, which is given by (Favoreel, De Moor, and Van Overschee, 

1998): 

 

∑ ∑
= =

−=
N

k

N

k
kkk yyy

1 1

22 /)ˆ(γ       (7.69) 

 



 131

where N  is the number of test data points, ky  is the actual value of the kth data point, 

and kŷ is the predicted value of the kth data point. 

The prediction error indices are 11.2%, 8.3%, 8.8%, 10.6%, 10.2% and 8.3% for 

the cold leg temperature, the steam pressure, the steam outlet temperature, the sub-cooled 

length and the saturated boiling length, respectively.  These small indices show that the 

identified model is able to give a good prediction for all the outputs even if the reactor is 

operating at a different power level with different magnitude of perturbations. 
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Figure 7.4.  Model prediction of subspace identification for HCSG cold leg temperature. 

 
 

7.4.3. Robust Fault Detection Design 
To show the performance of the developed robust fault detection algorithm, the 

identified linear state space model is used to generate data with model uncertainty.  The 

model uncertainty is introduced by adding an additive term to the state vector after the 

300th sample.  The model uncertainty term has a fixed direction but the magnitude of the 

model uncertainty varies linearly with time.   
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Figure 7.5 shows the performance of the developed robust fault detection 

algorithm to sensor faults.  Model uncertainty is introduced after the 300th sample and a 

cold leg temperature sensor fault with a bias of 1 oC is injected after the 500th sample.  

The upper plot shows that if model uncertainty is not decoupled the fault detection index 

will not be able to distinguish a sensor fault and model uncertainty.  However, the lower 

plot shows that the developed robust fault detection algorithm results in a fault detection 

index greater than 1.0 only after a fault has occurred to the system.  Therefore, it can be 

concluded that the developed robust fault diagnosis algorithm is able to decouple model 

uncertainty without loss of the capability of fault detection. 
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Figure 7.5.  Robust fault detection for cold leg temperature sensor fault. 

 
Figure 7.6 shows the performance of the fault detection index for a feed water flow meter 

bias fault with a magnitude of 2% at 1500 second during the transient when the reactor 

power is reduced from 100% to 95% at a rate of 0.0012 Full Power/min.  The fault 

detection residual generator responds to the fault with no time delay and generates a 

significant fault signal as significant as 10.0 compared with the fault detection index of 

less than 1.0 for fault free condition.  It can also be seen that the generated fault detection 
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index has the desirable property that it returns to an insignificant level when the fault is 

recovered during the transient at 2500 seconds. 

After the reactor reaches 95% power level, the fault detection index remains less 

than 1.0, which can demonstrate that the identified model has learned the system 

dynamics appropriately because the model still retains its good prediction capability at 

95% power level, an unknown operation condition, although the model is built from the 

data collected at 100% power level.  From the viewpoint of FDI robustness, it can be 

concluded that a dynamic model is superior to a static model in which case model 

prediction is simply an interpolation among the data used to train it without revealing the 

causal relationship among the measured variables and thus without the capability of 

generalization outside the training space.   

0 500 1000 1500 2000 2500 3000 3500 4000
58

60

62

64

fe
ed

 w
at

er
 fl

ow
 r

at
e 

(k
g/

s)

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

fa
ul

t d
et

ec
tio

n 
in

de
x

sample
 

Figure 7.6.  Fault detection of feed water flow meter sensor fault during a reactor power 
transient. 

 
Figure 7.7 shows the performance of fault detection for a steam pressure sensor bias fault 

of 2% magnitude at the 800th sample when the reactor is initially operating at 90% full 

power.  Because the steam pressure is controlled in the HCSG system, the steam pressure 

will experience a fault-induced transient.  The fault detection index responds immediately 

when the sensor fault occurs at the 800th sample.  It is interesting to notice that the fault 
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detection index is almost constant after the fault occurs.  On the one hand, this indicates 

that the identified model is able to represent the system dynamics initiated by the fault.  

On the other hand, the fault detection index does not return to an insignificant level even 

though the measured steam pressure has been brought back to the original level.  This is 

because some other process variables such as the saturated boiling length and the sub-

cooled length cannot be brought back to their original values due to the sensor fault.   
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Figure 7.7.  Fault detection of steam pressure sensor fault. 

 

7.4.4. Robust Fault Isolation Design 
Ten residual generators are designed for fault isolation.  Each of the ten residual 

generators corresponds to ten linear transformations on the original estimation error 

vector such that it is sensitive to all faults but the one to which the residual generator is 

dedicated for fault isolation.  The ten residual generators are dedicated to the isolation of 

the following sensor faults: 

 
Variable 1: the cold leg temperature. 
Variable 2: the steam pressure. 
Variable 3: the steam temperature. 
Variable 4: the saturated boiling length. 
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Variable 5: the sub-cooled length. 
Variable 6: the hot leg temperature. 
Variable 7: the steam flow rate. 
Variable 8: the feed water temperature. 
Variable 9: the feed water flow rate. 
Variable 10: the primary flow rate. 
 

Figure 7.8 shows the FDI indices of the ten residual generators responding to the 

feed water flow meter bias fault with a magnitude of 2% at 1500 second during the 

transient when the reactor power is reduced from 100% to 95% at a rate of 0.0012 Full 

Power/min.  As can be seen, the residual generator dedicated to the isolation of the ninth 

variable produces an insignificant FDI index of less than 1.0 while all the other residual 

generators do not. Therefore, the feed water flow meter sensor fault can be correctly 

isolated when the fault is detected between 1500 second and 2500 second during the 

reactor power transient.   

The FDI indices for the fifth variable and the seventh variable are approximately 

1.2 and 2.0, respectively, while the FDI indices for the other variables are much 

significantly greater than 1.0.  It can be seen from this that the fault isolation of feed 

water flow meter fault has less confidence level when it is to be isolated from a sub-

cooled length measurement fault or a steam flow meter fault than the other faults.  An 

insight we can obtain here is that FDI performance testing at design phase with a reliable 

simulation model should still be emphasized. 
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Figure 7.8.  Fault isolation of feed water flow meter sensor fault during a reactor power 

transient. 
 

 
Figure 7.8 has also demonstrated the success of the developed FDI method in that a 

predetermined logic of fault isolation is achieved through studying the identified model.  

This is a significant difference from many recently published literatures where FDI is 

inappropriately paraphrased as a pattern recognition problem.  Pattern recognition needs 

to determine the fault features through the collection of faulty data, which is unrealistic in 

process engineering application.   

The fault isolation residual generators have shown the robustness of the 

developed method to measurement noises.  Although all the measured variables are 

added with 0.2% white Gaussian noise, the residual generators can successfully eliminate 

their effects on the residuals after EWMA filters are applied to the residuals. 

Figure 7.9 shows the FDI indices of the designed ten residual generators for the 

fault isolation of a steam pressure sensor fault.  In the figure, the FDI indices of all the 

variables except the second variables are greater than 1.0, therefore, the steam pressure 

sensor fault can be isolated correctly throughout the fault induced transient.  As compared 

with static model based FDI approaches, the proposed approach is able to isolate a 
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controlled variable related sensor fault at the initial stage when it occurs.  In the 

meantime, fault misdiagnosis can be avoided during the fault-induced transient.  

Moreover, fault isolation is based on the identified model rather than fault information 

through appropriate design of residual generators such that the generated residuals follow 

the predetermined logic.   

 

0 500 1000 1500 2000
0

5

va
ria

bl
e 

1

0 500 1000 1500 2000
0

0.2

0.4

va
ria

bl
e 

2

0 500 1000 1500 2000
0

20

40

va
ria

bl
e 

3

0 500 1000 1500 2000
0

5

10

va
ria

bl
e 

4

0 500 1000 1500 2000
0

10

20

va
ria

bl
e 

5

0 500 1000 1500 2000
0

50

va
ria

bl
e 

6

0 500 1000 1500 2000
0

10

20

va
ria

bl
e 

7

0 500 1000 1500 2000
0

20

40

va
ria

bl
e 

8

0 500 1000 1500 2000
0

10

20

va
ria

bl
e 

9

sample
0 500 1000 1500 2000

0

20

40

va
ria

bl
e 

10

sample

FD
I i

nd
ex

 

 
 

Figure 7.9.  Fault isolation of steam pressure sensor fault. 
 

 
Table 7.1 summarizes the FDI results for the five other sensor faults of the HCSG system 
that occur at 95% full power.  The five faults are listed as follows: 

 
Fault 1: cold leg temperature sensor fault with a bias of 1.0 oC, 
Fault 2: steam temperature sensor fault with a bias of 1.0 oC, 
Fault 3: hot leg temperature sensor fault with a bias of 1.0 oC, 
Fault 4: steam flow meter fault with a bias of 1% nominal flow rate, 
Fault 5: feed water temperature sensor fault with a bias of 1.0 oC. 
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Table 7.1.  The FDI indices of bias type sensor faults 

 
                     Faults 
FDI index 

Fault 
free 

Fault 1 
 

Fault 2 
 

Fault 3 
 

Fault 4 
 

Fault 5 
 

Fault detection 0.22 40.3 18.3 9.42 5.04 25.7 

Cold leg temperature 0.15 0.22 1.7 2.25 3.45 6.3 
Steam pressure 0.16 1.47 2.4 2.10 2.39 1.2 
Steam temperature 0.16 2.43 0.23 0.45 4.31 22.0 
Saturated boiling length 0.18 6.99 2.59 2.65 1.43 15.7 
Sub-cooled length 0.18 12.7 9.2 6.30 2.06 1.3 
Hot leg temperature 0.19 14.7 3.33 0.31 4.94 24.9 
Steam flow rate 0.20 29.9 14.94 8.18 0.22 14.9 
Feed water temperature 0.20 38.3 18.75 8.72 3.74 0.24 
Feed water flow rate 0.19 28.8 14.64 7.31 4.55 7.43 
Primary flow rate 0.16 16.1 4.51 1.65 5.76 23.7 

 
 

During fault free conditions, the fault detection index is 0.22, which is less than 1.0 and 

will not trigger a false alarm.  The FDI indices produced from all the designed residual 

generators for fault isolation are also less than 1.0 for fault free condition.  This indirectly 

proves that the EWMA filtered residual vector does indeed follow a multi-dimensional 

Gaussian distribution with zero mean and a constant covariance matrix.   

The fault detection indices are all significantly greater than 1.0 after the five faults 

occur.  When the FDI indices of the ten residual generators designed for fault isolation 

are examined, they follow the predetermined logic of fault isolation for all the faults but 

hot leg temperature sensor fault.  For the hot leg temperature sensor fault, both the 

residual generator dedicated to the isolation of the steam temperature sensor fault and the 

residual generator dedicated to the isolation of the hot leg temperature sensor fault 

generate an insignificant residual, which indicates an unknown fault according to the 

residual design scheme for isolation.   

The reason is that there is a maximum sensitivity of the designed residual 

generator to an input fault, which is determined by the system model itself.  However, 

because the designed residual generator can maintain the capability of being insensitive 

to the fault that it is designed to isolate regardless of the fault magnitude, the 

predetermined logic for fault isolation can always be followed if the fault magnitude is 
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big enough.  It is found that the hot leg temperature sensor fault can be unambiguously 

isolated if its fault magnitude is increased to 3 oC.  This example also demonstrates the 

importance of FDI design in reactor design phase and the necessity of testing its 

performance based on a realistic simulation. 

 

7.5. Summary 
 

A robust dynamic fault diagnosis algorithm has been presented in this Chapter for 

dynamic fault diagnosis of nuclear power systems.  The theory of subspace identification 

was first described to extract low order state-space model from data generated by 

simulation codes.  Robust parity space approach was then combined with subspace 

identification to design residual generators.  A new one-step algorithm was derived 

without the need of explicitly identifying model uncertainty for uncertainty decoupling.  

The implementation of robust residual generator design was formulated as a generalized 

eigenvalue problem.  Finally, the developed robust dynamic fault diagnosis algorithm 

was applied to the IRIS HCSG systems for transient fault detection and isolation.  It has 

been shown that the developed algorithm is able to deal with model uncertainty for 

dynamic fault diagnosis without causing false alarms and can be used for reconfigurable 

control. 
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8.  CONCLUDING REMARKS 
 
 
8.1. Summary and Concluding Remarks   

 
The following major tasks were completed during the project.  All the originally 

stated milestones were accomplished during the project period.  An extensive and 

valuable bibliography, on the various aspects of the causes and the monitoring of heat 

exchanger and steam generator degradation mechanisms, and on other related research 

topics, was assimilated as part of the deliverables of this research project.  

 

1. Review of literature on the various tasks considered for research in this project.  A 

complete Bibliography is given at the end of the report. 

2. Development of a MATLAB-Simulink™ code to simulate the dynamic 

performance of a U-tube steam generator (UTSG) in a typical 1,140 MWe PWR.  

This multi-nodal model was used to simulate the effects of tube fouling, tube 

plugging, leakage and other process-related phenomenon.  The UTSG model is 

coupled to the whole plant system in order to provide realistic simulation results.  

The nodal structure was expanded to account for spatial variations in the physical 

parameters.  For example, the effect of fouling in the sub-cooled region has a 

higher influence on the steam pressure compared to a similar effect in the boiling 

region. 

3. The high-fidelity nodal model of the UTSG was used to simulate the effects of 

fouling.  Application of the group method of data handling (GMDH) method for 

process variable prediction.  The model was used to generate a database 

representing normal and degraded process conditions. 

4. Development of a laboratory heat exchanger system that was used to generate 

normal operation data and data under faulty device operation.  This portable test 

rig was equipped with flow and pressure transmitters, flow meters, and 

thermocouples to measure fluid temperatures. 

5. Development of a laboratory test module to simulate particulate fouling of HX 

tubes and its effect on overall thermal resistance.  Application of the GMDH 
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technique to predict HX fluid temperatures, and to compare with the calculated 

thermal resistance. 

6. Development of a hybrid first principle and data-based model that was used to 

update and fine-tune the model using process data.  Predictive artificial neural 

network and nonlinear data-driven models were used for process monitoring and 

diagnosis.  The hybrid models were classified into serial hybrid and parallel 

hybrid models.  The serial modeling exhibited a better performance in predicting 

process variables compared to the parallel modeling.  A simple heat exchanger 

model was used for this study. 

7. Development of a laboratory piezo-device sensor suite for structural monitoring 

and a data acquisition system for measuring both input excitation signal and the 

response signal.  This uses metal flat plates and tubing specimen.  The 

comparison of the input excitation signal (transmitted signal) and the signal 

received at another location in the plate show excellent frequency response 

characteristics.  The frequency characteristics changed when there was a flaw in 

the plate (or tubing) such as a crack, inclusion, deposit, etc.  This task included 

the review of elastic wave propagation in plates under normal and fault 

conditions.  Experiments were performed in air, and in water with and without 

bubbly flow.  A review of wireless and Internet signal transmission was also 

performed as part of this experiment. 

8. Development of advanced signal processing and defect classification algorithms.  

The transient data were analyzed using time-frequency techniques such as the 

wavelet transforms and the Hilbert-Huang transform (HHT).  The HHT was found 

to be highly effective in processing non-stationary and nonlinear signals from the 

piezo-transducers. 

9. Development of a moving-window technique in the time domain for detecting and 

quantifying flaw types in tubular structures.  A window zooming technique was 

also developed for flaw location in tubes. 

10. Theoretical study of elastic wave propagation (longitudinal and shear waves) in 

metallic flat plates and tubing with and without flaws. 
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11. Simulation of Lamb wave propagation using the finite-element code ABAQUS.  

This enables the verification of the experimental results. 

12. Several publications were prepared during the project.  A list of publications is 

given in Section 1.  These were used for information dissemination.  

 
 
8.2. Future Work 
 
 The following recommendations are made for future research and development as 

a follow-on to the work reported in these two volumes of the report. 

 
1. Further theoretical study of the propagation of elastic waves due to defects in flat 

beam and tubular specimens. 
 

2. Development of improved acoustic wave propagation experiments with focus on 
sensor placement for industrial applications.  Refinement and integration of 
Hilbert Huang transform and image processing techniques in order to detect, 
locate, isolate, and quantify structural flaws. 

 
3. Application of hybrid modeling approach to operating plant data. 

 
 
. 
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