Project ID: 60118

Project Title: Fundamental Thermodynamics of Actinide-Bearing Mineral Waste Forms

Lead Principal Investigator:

Dr. Mark A. Williamson
Technical Staff Member
Los Alamos National Laboratory
MS G730
P.O. Box 1663
Los Alamos, New Mexico 87545
Telephone: 505-667-4045
e-mail: maw@lanl.gov

Co Principal Investigators:

Dr. Bartley B. Ebbinghaus
Technical Staff Member
Lawrence Livermore National Laboratory
MS L394
P.O. Box 808
Livermore California 94550
Telephone: 510-422-8792
e-mail: ebbinghaus1@llnl.gov

Dr. Alexandria Navrotsky
Professor
Department of Chemical Engineering and Materials Science
University of California at Davis
Davis California 95616
Telephone: 916-752-3292
e-mail: anavrotsky@ucdavis.edu
Fundamental Thermodynamics of Actinide-Bearing
Mineral Waste Forms

Mid-Year Progress Report

Mark A Williamson
Los Alamos National Laboratory

Alexandra Navrotsky
University of California, Davis

Bartley Ebbinghaus
Lawrence Livermore National Laboratory

June 1, 1999

Goals of Project:

The recent arms reduction treaties between the U.S. and Russia have resulted in
inventories of plutonium in excess of current defense needs. Storage of this material poses
significant, and unnecessary, risks of diversion, especially for Russia whose infrastructure
for protecting these materials has been weakened since the collapse of the Soviet Union.
Moreover, maintaining and protecting these materials in their current form is costly. The
United States has about sixty metric tons of excess plutonium, half of which is high-purity
weapon material. This high purity material will be converted into mixed oxide (MOX)
fuel for use in nuclear reactors. The less pure excess plutonium does not meet the
specifications for MOX fuel and will not be purified to meet the fuel specifications.
Instead, it will be immobilized directly in a ceramic. The ceramic will be encased in a high
level waste (HLW) glass monolith (i.e., the can-in-canister option) thus making a form
that simulates the intrinsic security of spent nuclear fuel. The immobilized product will be
placed in a HLW repository. To meet the repository requirements, the product must be
shown to be durable for the intended storage time, the host matrix must be stable in the
radiation environment, the solubility and leaching characteristics of the plutonium in the
host material must be established, and optimum processing parameters must be determined
for the entire compositional envelope of feed materials.

In order to provide technically sound solutions to these issues, thermodynamic
data are essential in developing an understanding of the chemistry and phase equilibria of
the actinide-bearing mineral waste forms proposed as immobilization matrices. However,
the relevant thermodynamic data (e.g., enthalpy, entropy, and heat capacity) for the
ceramic forms are severely lacking and this information gap directly affects the Energy
Department’s ability to license the disposal matrices and methods. High-temperature
solution calorimetry is one of the most powerful techniques, sometimes the only
technique, for providing the fundamental thermodynamic data needed to establish
optimum material fabrication parameters, and more importantly, understand and predict
the behavior of the mineral materials in the environment. The purpose of this project is to experimentally determine the enthalpy of formation of actinide orthosilicates, the enthalpies of formation of actinide substituted zircon, zirconolite and pyrochlore, and develop an understanding of the bonding characteristics and stabilities of these materials.

Technical Description of Work:

Experimental conditions of the calorimeter, such as solubility limit and dissolution rate of actinide-bearing materials in an oxide melt solvent, optimum calorimeter temperature, sample encapsulation for contamination control, etc., were established using surrogate (i.e., Ce, Gd) waste form materials at UC-Davis (UCD). These conditions were further refined using U-and Th-bearing materials at UCD. Information and experience obtained from these preliminary experiments was transferred to Los Alamos National Laboratory (LANL), which will allow experiments to be carried out on transuranic-bearing materials. The high-temperature solution calorimeter was installed into refurbished laboratory space at LANL. Professor Navrotsky and her staff supervised modification and installation of the instrument at LANL.

UCD personnel established the thermodynamic properties of several surrogate waste forms. This thermodynamic data combined with chemical periodicity arguments relating the lanthanide and actinide series was used to estimate the behavior of transuranic elements in the mineral waste forms. These estimates are used to guide the synthesis procedures used to produce actinide-bearing minerals as well as provide insight into the calorimetry experiments.

Several mineral waste forms, for example CaMTi_2O_7 (zirconolite) where M= Zr or Hf, CaCeTi_2O_7 (pyrochlore), and RE_2Ti_2O_7 (rare earth pyrochlore) were prepared by LLNL and LANL to develop the synthesis procedures required for actinide-bearing compounds.

Accomplishments to Date:

Table 1 provides a detailed list of the phases studied during the first 18 months of this research project. Each of the phases listed in the Table was synthesized at UCD, LLNL, or the Australian Nuclear Science and Technology Organization (ANSTO). A combination of low-temperature adiabatic calorimetry and high-temperature oxide-melt solution calorimetry were used to yield heat capacity and enthalpy of solution data. The low temperature adiabatic calorimetry experiments completed at Brigham Young University (BYU) were funded by LLNL and coordinated by UCD. The solution calorimetry experiments were completed at the UCD Thermochemistry Facility. A brief description of the sample synthesis techniques and the calorimetry experiments is given in the following paragraphs. A reference list is also supplied at the end of this section.

Zirconolite, perovskite, Gd-pyrochlore, and titanate samples were prepared by sintering pelletized mixtures of the binary oxides in air at 1573 K for 2 to 10 days. The U- and Th-brannerites were prepared at ANSTO by sintering mixtures of the binary oxides at 1623 K. The U-brannerite samples were sintered for 300 hours in a 5% CO/ 95% CO_2
atmosphere. Cerium brannerite was prepared from the alcoxides by standard sol-gel methods. Samples containing Ce-pyrochlore were synthesized at UCD by sintering mixtures of oxide powders containing CaCO$_3$ and TiO$_2$, or CaTiO$_3$ and TiO$_2$, and CeO$_2$ at 1498 K in pure oxygen for 4 to 10 days. Results of the Ce-pyrochlore synthesis studies are being used by LANL to produce Pu-pyrochlore samples. Each sample, whether prepared at UCD, LANL, LLNL or ANSTO, is characterized by X-ray diffraction techniques that included Rietveld refinement of X-ray diffraction histograms, electron microprobe analysis, and scanning electron microscopy.

Calorimetry experiments were completed using two different instruments. The heat capacity of each sample was measured from about 4 to 400 K using an adiabatic calorimeter of the Westrum [2] design. The results of the measurements were fitted to the usual polynomial and extrapolated to 1500 K. The enthalpy of solution for each sample was measured using a twin-cell Calvet-type high-temperature oxide-melt solution calorimeter [1]. Small portions, 2-5 mg, of each sample were dissolved in the lead borate (2PbO-B$_2$O$_3$) melt. The energetics of the dissolution reaction was monitored and the enthalpy of formation of each sample was calculated using a thermochemical cycle. The combination of heat capacity data up to 1500 K and formation energies allows the determination of the Gibbs energy and entropy for each sample.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Studies performed [reference]</th>
<th>Synthesis Site / Calorimetry Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaZrTi$_2$O$_7$ / Zr-zirconolite</td>
<td>Cp and ΔH°$_f$ [1-3]</td>
<td>LLNL / UCD, BYU</td>
</tr>
<tr>
<td>CaHfTi$_2$O$_7$ / Hf-zirconolite</td>
<td>Cp and ΔH°$_f$ [4-6]</td>
<td>UCD / UCD, BYU</td>
</tr>
<tr>
<td>Zr/Hf zirconolite solutions</td>
<td>Cp and ΔH°$_f$ [5]</td>
<td>UCD / UCD, BYU</td>
</tr>
<tr>
<td>CaTiO$_3$ / perovskite</td>
<td>Cp and ΔH°$_f$ [1,8]</td>
<td>UCD / UCD</td>
</tr>
<tr>
<td>Gd$_2$Ti$_2$O$_7$ / Gd-pyrochlore</td>
<td>Cp and ΔH°$_f$ [9]</td>
<td>LLNL / UCD, BYU</td>
</tr>
<tr>
<td>CeTi$_2$O$_6$ / Ce-brannerite</td>
<td>Cp and ΔH°$_f$ [9]</td>
<td>ANSTO / UCD, BYU</td>
</tr>
<tr>
<td>CaCeTi$_2$O$_7$ / Ce-pyrochlore</td>
<td>S° and ΔH°$_f$ * [9]</td>
<td>UCD / UCD</td>
</tr>
<tr>
<td>UTi$_2$O$_6$ / U-brannerite</td>
<td>S° and ΔH°$_f$ * [9]</td>
<td>ANSTO / UCD</td>
</tr>
<tr>
<td>ThTi$_2$O$_6$ / Th-brannerite</td>
<td>S° and ΔH°$_f$ * [9]</td>
<td>ANSTO / UCD</td>
</tr>
<tr>
<td>PuTi$_2$O$_6$ / Pu-brannerite</td>
<td>ΔH°$_f$ * [9]</td>
<td>/UCD</td>
</tr>
<tr>
<td>CaUTi$_2$O$_7$ / U-pyrochlore</td>
<td>ΔH°$_f$ * [9]</td>
<td>/UCD</td>
</tr>
<tr>
<td>CaPuTi$_2$O$_7$ / Pu-pyrochlore</td>
<td>ΔH°$_f$ * [9]</td>
<td>/UCD</td>
</tr>
</tbody>
</table>

Table 1. Listing of the phases studied during the first 18 months of this project. Note that studies with an * are estimated data.

Table 1 also contains the actinide-bearing phases ThTi$_2$O$_6$ (Th-brannerite) and UTi$_2$O$_6$ (U-brannerite), which are currently being studied at UC-Davis. The table also indicates the actinide-bearing phases for which thermodynamic data has been estimated.
These estimates are based on thermochemical relationships that are being established from the studies of surrogate materials.

An experimental study of plutonium, americium, and perhaps neptunium bearing phases will be completed in the new solution calorimetry facility in the Chemistry-Metallurgy Research (CMR) building at LANL. Refurbishing the calorimeter laboratory space was completed in March of 1999. Installation of the calorimeter was completed in April 1999. This task is one of the first completed following the new CMR facility policies and procedures. Initial testing of the system is complete. Start-up of the furnace and control system will occur in the third quarter of this fiscal year.

References:

