Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

PDF Version Also Available for Download.

Description

Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads ... continued below

Physical Description

vp.; OS: Win NT4

Creation Information

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M. & Striebel, Kathryn A. August 1, 2003.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

Physical Description

vp.; OS: Win NT4

Notes

OSTI as DE00838607

Source

  • Journal Name: Journal of the Electrochemical Society; Journal Volume: 151; Other Information: Submitted to the Journal of the Electrochemical Society: Volume 151; Journal Publication Date: 2004

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL--53584
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 838607
  • Archival Resource Key: ark:/67531/metadc788623

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • July 26, 2016, 3:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M. & Striebel, Kathryn A. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries, article, August 1, 2003; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc788623/: accessed June 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.