MEASUREMENT OF NANOSTRUCTURES WITH MICROMACHINED MICROSCOPES

PDF Version Also Available for Download.

Description

We have made reproducible scanning probes with high efficiency, and predictable and reproducible character-istics. We obtained good efficiency with dimensions well below the diffraction limit, so that rela-tively small laser powers in the milliwatt range can be used. For single frequency operation, only low power is necessary to obtain very high fields for the excitation of well-defined Raman scattering, and to work in a reflection mode with good scanning speeds; obtained predictable results with very high fields suitable for obtaining Raman scattering and two-photon scattering; made a scanning probe mounted on a micromachined cantilever to obtain high definition reflection mode ... continued below

Physical Description

17 PAGES

Creation Information

KINO, G.S. & MOERNER, W.E. April 30, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

We have made reproducible scanning probes with high efficiency, and predictable and reproducible character-istics. We obtained good efficiency with dimensions well below the diffraction limit, so that rela-tively small laser powers in the milliwatt range can be used. For single frequency operation, only low power is necessary to obtain very high fields for the excitation of well-defined Raman scattering, and to work in a reflection mode with good scanning speeds; obtained predictable results with very high fields suitable for obtaining Raman scattering and two-photon scattering; made a scanning probe mounted on a micromachined cantilever to obtain high definition reflection mode images that can be scanned rapidly;and observed Raman scattering using bowtie antennas with CW excitation.

Physical Description

17 PAGES

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/45815
  • Grant Number: FG03-00ER45815
  • DOI: 10.2172/839403 | External Link
  • Office of Scientific & Technical Information Report Number: 839403
  • Archival Resource Key: ark:/67531/metadc788603

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • April 30, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 3, 2016, 4:05 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

KINO, G.S. & MOERNER, W.E. MEASUREMENT OF NANOSTRUCTURES WITH MICROMACHINED MICROSCOPES, report, April 30, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc788603/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.