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Abstract

● ISIS++ (Iterative Scalable Implicit Solver in C++) Version 1.1 is a portable, object-
oriented framework for solving sparse linear systems of equations. It includes a collection
of Krylov solution methods and preconditioners, as well as both uni-processor (serial) and
multi-processor (scalable) matrix and vector classes. Though it was developed to solve
systems of equations originating from large-scale, 3-D, finite element analyses, it has
application in many other fields.

This document supersedes the ISIS++ V1.0 Reference Guide [4], defines the VI. 1 interface
specification, and includes the necessary instructions for building and running ISIS++ v 1.1
on Unix platforms. The interface is presented in annotated header format, along with
background on design and implementation considerations. A finite difference modeling
example problem is included to demonstrate the overall setup and use.
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. 1 Introduction

ISIS++ (Iterative Scalable Implicit Solver in C++) is a portable, object-oriented
framework for solving sparse linear systems of equations. It includes a collection of
Krylov subspace solution methods and preconditioners, as well as both uni-processor
(serial) and multi-processor (scalable) matrix and vector classes (Figure 1). Though it
was developed to solve systems of equations originating from large-scale, 3-D, finite
element analyses, it has applications in many other fields.

ISIS++ is designed to provide simple interchangeability of components – both from
within the ISIS++ system and from other packages. The ISIS++ framework facilitates
integrating components from various libraries, and in particular the matrix-vector
functional units and their corresponding data structures. The first practical test of this
concept was the integration of the Aztec [14] DMSR matrix-vector classes.

A primary goal of the ISIS++ project is to decompose the problem space into a set
of independent, object-oriented functional units, and in particular to decouple sparse
matrix data structures and their implementations from their use in Krylov solvers and
preconditioners. This can be viewed as developing archetypal interfaces between matrix,
vector, solver and preconditioned objects. In this manner, matrix-vector objects can be
implemented from various libraries while maintaining functional compatibility with the
solvers and preconditioners.

The advantages of the framework design include improving the ability to leverage
existing work. This facilitates usage of implementations and data structures tuned to a
particular application and computing platform. The source code for the solver and
preconditioned components is decoupled from the matrix-vector implementations’. Thus, c
ISIS++ can be built using the matrix-vector implementation best suited to the task and
compute system at hand, with no changes to the solver or preconditioned source code.

For this concept to work in practice, the task of including library components must
be relatively straightforward and efficient. This design objective was addressed by a
policy of minimal but sujjicient core components. That is, the abstract base classes define
the core set of interactions between solvers, preconditioners, matrix and vector objects,
regardless of their implementation. The purpose of keeping the core interface
requirements minimal is to simplify (i.e., not unduly restrict or complicate) adding new
implementations into the framework. To support parallel implementations, care has been
taken to avoid inclusion of any function not deemed scalable.

.

‘ For preconditioners which access the matrix values directly, completely generalized access can potentially.
incur a large overhead cost (e.g., if a matrix is stored as CRS format and the preconditioned attempts to
access the values column-wise this is an extremely inefficient process). We use a hierarchical mechanism
to limit access to data structuresso as to preclude these types of inefficiencies.



Figure 1. ISIS++ framework overviewz.

It is essential that the performance of the mathematical components incorporated
from other libraries be comparable to that of their “native” state. That is, the overall
performance of a combination of components within ISIS++ should be comparable to
that observed when those components are run in their original stand-alone state. Our
observation is that a penalty is incurred for providing fully generalized matrix access
functions for use in the preconditioners. Specifically, in cases where the preconditioned
needs an internal representation of the sparse matrix, there may be a memory and/or a
“copy” time overhead associated with the translation. However, specializations of the
matrix classes can be provided to give the preconditioned knowledge of the data
structures, allowing direct (fast) access to the underlying data with minimal overhead.

The remainder of this document is organized as follows. The ISIS++ framework
design and core base classes are discussed in section 2. The solver, preconditioned, and
matrixhector class implementations are presented in sections 3, 4, and 5, respectively.
An example problem is described in section 6. The installation procedures are provided
in section 7, and the references are in section 8.

Further information and the most current updates can be found on the ISIS++ web
site at httR://z.ca.sandia. zov/isis/.

2 The color coding in the overview figure is as follows: blue represents the central abstractions in ISIS++,
dark blue represents the implementations, dark magenta (AMGe & PILUT) represents the implementations
still in progress at the time of this writing, and dark cyan (CGNE and CGNR solvers) are specializations
which interact with only a subset of the preconditioners. The SAILS, AMGe, and PILUT preconditioners
areLLNIJCASC ( htto://www.llnl. ~ov/CASC/) implementations.
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2 Framework Overview
In this section we describe the 1S1S++ framework, which is founded on the base

classes Solver, Preconditioned, Matrix, Vector, and LinearEquations. These classes
constitute the fundamental abstractions within ISIS++, and define the core interactions
provided by the framework. As will be shown, specializations of these abstractions are
provided in order to address the needs of certain methods (e.g., the SPAI preconditioned
uses dynamic row resizing features not provided in the Matrix base class).

After an overview of the ISIS++ framework, we describe the public interfaces for
the core and derived base classes. Additionally, we describe the public interfaces for the
Map and ConzmInfo auxiliary classes.

2.1 Central abstractions

The ISIS++ framework includes an integrated collection of C++ classes which are
designed for the scalable solution of large-scale, unstructured, sparse systems of linear of
equations on distributed memory parallel computers.

At the core of the ISIS++ framework are the abstract base classes: Solver,
Preconditioned, Matrix, Vector, and LinearEquations. These base classes are
particularized to yield specialized base classes as follows:

Solver + IterativeSolver
Preconditioned + RowPreconditioner
Matrix + RowMatrix.

The hierarchical representation of this class structure is shown in Figure 2. The core base
classes interact with each other through the functions defined in their public interfaces,
and represent generalizations of the primary functional and data units within the
framework., These classes and their immediate descendants define the basic framework,
while the implementations of the classes provide the data structures and solution
methods.

The framework insulates the implementation details of one base class from another.
Implementations can be added or modified without requiring changes to associated (or
indirectly related) classes. For example, adding a new matrix class is simply a matter of
mapping the data and functionality of the matrix object into the Matrix (or derived
matrix) base class. The solvers and preconditioners are immediately (and without
modification to source code) able to use the new matrix class, since it behaves according
to the definition of the base class. It is a simple matter to switch matrix and vector class
implementations to run on uni-processor or multi-processor computers. Thus, parallel
matrix implementations can be selected according to those best tuned for the platform.

3Uni-processor implementations are also supported.
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Figure 2. ISIS++ central abstractions.

Solver base classes

The Solver abstract base class4 is essentially a placeholder for the fi.mction solve.
Solver class is the root for the IterativeSolver abstract base class. The Krylov

methods implemented in 1S1S++ are all derived from the IterativeSolver base class. ‘The
solver base classes share one important feature – they use generic representations of
matrices and vectors (i.e., they have as arguments the classes Matrix and Vector).
Consequently, solver implementations (such as the Krylov solvers derived from the
IterativeSolver class) may interact with any matrix and vector objects so long as they do
not introduce specialized requirements from the Matrix or Vector base classes.

In effect, the solver base classes are only relevant from the developer’s point of
view, since the user interacts with particularizations of the solver classes. Indeed, the
solve function itself is accessed via the LinearEquations class (see below). The annotated
public interfaces for the Solver and IterativeSolver base classes follow. The functions
represented therein are inherited by (and hence are available from) all of the Krylov
subspace iterative methods presented in section 3.

Solver class rwblic interface

class Solver

/ / default constructor function
Solver ( ) { 1 ;

/ / default destructor function
virtual -Solver () {};

/ / solve function
virtual int solve (consk Matrix& A, Vector& x, const Vector& b,

Preconditioner& PC) = O;

~A C++ class containing one or more pure virtual functions is by definition an abstract base class. Pure
virtual functions mustbe implemented by derived classes, hence the notion of an abstract base class. It is
not possible to instantiatean abstract base class object. Rather, derived objects must be instantiated. Ellis
and strouStll.lp[6].

10
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// to pass in parameters

virtual void parameters (int numParams, char **paramStrings) = O;

// to set amount of screen output

virtual void outputLevel(int level, int localRank, int masterRank) ;

Solver base class public interface reference notes:

. Thereturnvalues forall solve functions arecurrentlyinterpreted asfollows:
1 successful completion, normal convergence tolerance met.
O unsuccessful completion, failedto converge inmaxIterationso .

-1 unsuccessful exit on stall condition.
-2 failed onmemory allocation.

● Thepar=eters function istobeimplemented byeachsolver implementation, The
format of the arguments is the same as that used to access command line arguments in
general, and allows any number of any type of argument to be passed in. A simple
example of this is given in the Example Problem section at the end of this document.

. The outputLevel function determines the amount of screen output that will be
produced. The “level” parameter has the following effect:

o no screen output
1 master node prints out parameter values and residual norms
2 all nodes print out information. Intended for debugging purposes.

The localRank and masterRank arguments are logical processor numbers for the
parallel case; they can both take the value Ofor the serial case.

iterativeSolver class public interface

class IterativeSolver : public Solver

// default constructor function

IterativeSolver () :

tolerance_ (1.Oe-13), // default convergence tolerance
maxIterations_ (20OO), // default max iterations

maxStallCount_(0) {}; // disable stall check

// default destructor function

virtual -IterativeSolver (){};

// solve function

virtual int solve (const Matrix& A, Vector& x, const Vector& b,

Preconditioner& pc ) = O;

// get/set convergence tolerance

double tolerance;

void tolerance (double tol);

11



// get/set maximum number of iterations
int rnaxIterationso ;

void maxIterations(int maxIt) ;

// get/set scaled residual 2-norm

double normalizedResidualo;

void normalizedResidual (double residual) ;

// gethet stall count
int maxStallCounto;

void maxStallCount(int maxSC) ;

IterativeSolver base class public interface reference notes:

. Thereturn valuesforthe solve function are sirnilarto theSolverbase class.

. Current implementations of the normalizedResidual function use the2-norrnof
the RHS vector btoscale theresidual vector.

. The maxstallcount functions are used to control the stall checking algorithm
within the Krylov solvers. The stall checking algorithm looks for progress toward
convergence within nmxSC iterations, and will terminate the iterations if a stall
condition is observed. Setting max~tallcount (()) disables the stall checking
algorithm. By default, the stall checking is disabled.

I 2.3 Preconditioned base classes

The Preconditioned abstract base class provides the fundamental interactions
required by Krylov subspace iterative solvers, fashioned after the development presented
in Barrett, et al. [2]. The basic interaction between solvers and preconditioners in ISIS++
is discussed below. It is worth noting the mathematical model assumed within 1S1S++
before describing the Preconditioned and RowPreconditioner base classes.

The basic mathematical problem can be defined as follows. Given the linear system
of equations:

(2.1)

where sparse matrix A and RHS vector b are knowns, we seek to determine the solution
vector x within a predetermined accuracy. Consider a matrix M which approximates A in

some sense. If M-l is relatively cheap to compute and if M-lA = I (or is otherwise
significantly better conditioned than A), then M can be considered an effective
preconditioned. Assume a splitting of the approximation matrix such that:

A41MZ=M=A : M1, Mz, M~9T’xn. (2.2)

.

I Applying this to (2.1) gives

I

5Solution strategiescan also use an initial guess of the solution vector x,

12



k@ikf;1~2X = M[lb : A G ~xn, X, b G %n , (2.3)

which can be viewed as

By=c : B=ik?;lAM;l, y= Mzx, c= M1-lb. (2.4)

Typically, either Ml = I or Mz =1, for right or lejl (one-sided) preconditioning,

respectively. However, the basic model (and interface) supports two-sided

preconditioning. The solvers form B, y, and c implicitly by applying the preconditioners
through computational steps such as:

solve for z from Ml z = d,

which is available from the preconditioned interface as member function so lveMl (z, d).

There are corresponding functions for M:, Mz, and lkf~, as shown below.

The RowPreconditioner base class provides specializations for implementations
which require row-wise access to matrix values. As shown below, the Preconditioned and
RowPreconditioner public interfaces are nearly identical, with only minor modifications
in the constructor function to account for the use of RowMatrix objects. The primary
difference in the interfaces is the requirement that a RowMatrix object be referenced.
This restriction permits preconditioned implementations to access the row data within the
reference matrix (passed in the constructor). By inheritance, all of the public functions
from the Preconditioned class are available. The pure virtual functions shown for the
RowPreconditioner class are essentially “passed down” from the Preconditioned class to
derived implementations.

Preconditioned class public interface

class Preconditioned

// default constructor function
Preconditioned (const Matrix& A) : matrix_ (A) {outputLevel_ = O;};

// default destructor function

virtual -Preconditioned () {};

// solver access functions

virtual void solveMl (Vector& y, const Vector& z) const = O;

virtual void solveMIT (Vector& y, const Vector& z) const = O;

virtual void solveM2 (Vector& y, const Vector& z) const = O;

virtual void solveM2T (Vector& y, const Vector& z) const = O;

// calculate preconditioned

virtual void calculate () = O;

// to pass in parameters

virtual void parameters (int numparams, char **paramStrings ) = O;

// clear memory
virtual void empty () = O;

13



// left and right modifiers and query functions
virtual void setDefaulto = O;

void setLefto ;

void setRighto ;

bool isLefto const;

bool isRighto const;

Preconditioned base class public interface reference notes:

●

●

●

●

●

Given apreconditioning matrix M= A,matrices Mlkfz=i kf, andvectorsyandz,

the solver access functions correspond to thefollowing operations:

solveMl(y, z) =+ y = M;lZ

solveMIT(y, z) =+y=M;Tz (where M;T isthe inverseof Ml transpose)

solveM2(y,z) * y = M;lZ

solveM2T(y,z) +y=M;Tz (where M;T isthe inverseof Mz transpose).

The calculate function does any up-front computations for the preconditioned, and
in general needs to be issued pfior to invoking preconditioned services from within the
solvers. For multi-step problems, the preconditioned results can be sub-cycled by
calling the calculate function less frequently than the
LinearEquations: : solve function.

The parameters function has the same functionality as the one in the Solver base
class.

The empty function is designed to release memory (after the preconditioned has been
used) without deleting the preconditioned object. It is completely specific to the
particular preconditioned implementation.

The left and right modification and query functions allow the user to control the
operation of th> preconditioned in those cases where it maybe applied from either the
left or right. Generally, there is a preferred means of applying the preconditioned, and
this is set by the setDe f aul t function. By convention, the setDef aul t function is
issued from within the constructor functionb.

RowPreconditioner class public interface

class RowPreconditioner : public Preconditioned

// default constructor function
RowPreconditioner (const RowMatrix& A) : Preconditioned (A), matrix_ (A) {};

// default destructor function
virtual -RowPrecondi tioner () {};

‘ Strictly speaking, the interface does not guarantee the user that the setDefault functionwill be issued
upon construction.

.

.
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// solver access functions

virtual void solveMl(Vector& y, const Vector& z)

virtual void solveMIT(Vector& y, const Vector& z

virtual void solveM2(Vector& y, const Vector& z)

virtual void solveM2T(Vector& y, const Vector& z

// calculate preconditioned

virtual void calculate = O;

// to pass in parameters

const = O;

const = O;

const = O;

const = O;

virtual void parameters(int numParams, char **paramStrings) = O;

// clear some memory

virtual void emptyo = O;

II left and right modifiers

virtual void setDefaulto = 0:

RowPreconditioner base class public interfacereference notes:

. The RowPreconditionerclass behaves precisely like thePreconditioner class, butadds
the restriction that construction requires a RowMatrix object. This specialization
permits the added (data access) functionality of RowMatrix objects to be employed by
RowPreconditioner derived objects.

. The complete set ofleftandrightmodification and query functions areinheritted.
ThesetDefault functionis ’’passed through’’asapure virtualfunctionto derived
classes.

2.4 Auxiliary container classes

The Map and CommInfo classes are basic building blocks for sparse linear systems
in ISIS++ on distributed-memory computing systems. These two classes contain
information pertaining to the decomposition of the problem data. In a distributed-
memory setting, these objects hold the partitioning and basic communications
information. In the uni-processor setting (see section5),thematrix/vector objects default
to the trivial case andare constructed withoutneedof partitioning information.

The Map base class istheprimary containerforpartitioning information. Map class
derived objects contain CornmInfo objects. Consequently, CornmInfo services can be
reached via the Map class. The Map class contains a virtual representation of the
nxnz-matrix and vector partitioning information. Specifically, any matrix/vector can be
thought of as corresponding to a linear partitioning of rows and columns across
processors. Thus, there is the notion of a global matrix/vector addressing within the Map
base class. Further, certain restrictions apply to this global addressing scheme, including:

● Rows and columns are globally numbered from 1 ton and 1 tom, respectively.

15



● The terms startl?ow, endRow, and numLocalRows retain the relationship

mwnLocalRows = endRow - startRow + 1

for all processors. The same relationship holds for the column equivalents.

Since this generalization is not suitable for all possible matrixhector implementations
(i.e., more complex data distributions may be desirable or necessary), the Map class is
meant to be expanded as needed for each new matrixhector class implementation. That
is, a derivative Map class may be added for each new parallel matrixhector
implementation, depending on how the partitioning information is stored native to the
new implementation. The public interface shown below contains the constructors for the
ISIS++ “native” matrkdvector class implementations. The Map class specialization
developed for the Aztec DMSR matrixhector implementation is presented in section
5.10.

The CommInfo class contains information pertaining to processor Ills and the
number of processors being used. This object exists trivially for the uni-processor case.
For the parallel case, it is a repository of the communication subsystem information and
is constructed by the end-user. CommInfo objects are referenced via Map objects which
effectively own the information.

Ma~ class miblic interface

class Map

// default distributed-memory constructor function

Map (int n, int startRow, int endRow, int startCol, int endCol, const CommInfo&

commInfo) ;

// non-square distributed-memory constructor function
Map (int n, int m, int startRow, int endRow, int startCol, int endCol, const

CommInfo& commInfo) ;

// default serial constructor function

Map(int n) ;

// copy constructor
Map (const Map& map) ;

// default destructor

virtual -Map() {};

// access functions
const CommInfo& getCommInfo () const;

int no const;

void initComplete ();

bool isInitComplete ()

int startRow () const;

void startRow(int startRow) ;

int endRowo const;

void endRow(int endRow) ;

int numLocalRowso const;

int startColo const;

void startCol(int startCol) ;

get CommInfo ref

get global row count

mark object as fully constructed

TRUE if object is fully constructed

get local start row

set local start row

get local end row

set local end row

get local number of rows

get local start column

set local start column

1

.

.
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int endColo const;

void endCol(int endCol);

int numLocalColso const;

int numGlobalRowso ;

void numGlobalRows (int numGR) ;

int numGlobalColso ;
. void numGlobalCols(int numGC);

int* globalStartRowo ;

int* globalEndRowo ;

int’ globalStartColo ;

int* globalEndColo;

get

set

get

get

set

get

set

get

local end column

local end column

local number of cols

global row count, n

global row count, n

global column count, m

global column count, m

processor rank indexed array of

starting or ending row indices

get processor rank indexed array of

starting or ending column indices

Map class public interface reference notes:

. The function no is deprecated in favor of function numGlobalRowso.

● The default distributedmemoryconstructor requires the usertoprovidethetotal
number ofequations n, the processor-local values for the partitioning parameters, and
preference to alocal CommInfo object. The distributed-memory constructor
arguments are defined as follows:
n global number of rows/cols (matrix must be square)
startRow global indexoflowest numberrowonlocal processor

* endRow global index ofhighest numberrow onlocal processor
startCol global index oflowest numbercolumnon local processor
endRow global index ofhighest numbercolumnon local processor.

.
● The non-square distributed memory constructor is as the distributed memory

constructor except that theusermust provide the total numberofvariables ,m, also.

. The default serial constructor requires the user to provide the total number of
equations. The values ofstartRow and startCol aresetequalto 1 andendRow and
endCottonupon construction. At presentthereis nonon-square serizd constructor.

. The copy constructor is usedto create aduplicate Map object, which may thenbe
independently modified.

. The array returned by globalStartRow contains the index of the stating row for
each processor. For k processors, rank 1 to k, global St artRow ( ) [i- I.] is the index
of the first row stored on the ith processor. Similarly for gl obalEndRoW,
globalStartCol, and globalEndCol.

. Both the Matrix and Vector base classes contain the function get~a~ which can be
used to retrieve a reference to a Map object.

. The getCommInf o function returns a reference to the CornmInfo object associated

. with the Map object. As an example, consider the following code snippet:

Map map(n) ; // construct a simple serial map

* SCRS_Matrix A (map); /[ construct a serial CRS matrix

int rowcount = A.getMap ().n (); // matrix size, since square matrix

// determine local processor rank

17



int myRank = A.getMapo .getCommInfoo .localRanko ;

Commlnfo class oublic interface

class CommInfo

// distributed-memory constructor function

CommInfo(int numProcessors, int rnasterRank, int localRank) ;

// serial constructor function

CommInfoo;

// default destructor function
virtual -CommInfoo {};

// access functions

int masterRanko const;

int localRanko const;

int numProcessorso const:

CommInfo class public interface reference notes:

●

●

●

For the distributed-memory case, theprocessor lDmasterRankis usedprimarilyfor
output control. Native ISIS++ implementations usenode masterRankasthe primary
synchronization pointforsome global operations.

The serial constructor sets rnasterRank andlocalRankto zero, andnumProcessor,s to
one. While this is atrivial result, it permits the access functions towork
interchangeably on serial and parallel platforms.

Communications information may be retrieved via the function
Map: :getCommInfo, which returns a reference to a CommInfo object.

For example,

int n = 10; // 10 rows & COIS

Map map(n) ; // construct serial map object

// query master processor rank

int mas terRank = map.getcommrnfo ().masterRank ();

Matrix base classes

The Matrix abstract base class represents the primary data structure within ISIS++,
since matrix operations and storage typically dominate CPU and memory requirements,
respectively. The Matrix class was designed to be as simple and generzd as possible,
while providing the operations needed to support Krylov iterative solvers.
Specializations of the matrix classes in large part revolve around the storage format of the
data, and consequently the data access interface possibilities. Krylov solvers in general
do not need to access the matrix data, but rather the mathematical operations of matrices
on vectors. In this sense, the matrix data abstraction works ideally for solver/matrix
interactions.

*

●
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However, the same does not hold for preconditioned/matrix interactions. That is,
some preconditioners need to access matrix values, and in some cases (e.g., SPAI)
construct matrix objects internally. In these cases, a generalized data access interface
(and underlying implementation) is desirable to keep the abstraction “intact”.
Unfortunately, this degree of generality appears’ to be impractical for high-performance

.
implementations due to the overhead involved when the data does not naturally conform
to the fully generalized access requirements. For example, consider the case whereby a
sparse matrix object is stored in CRS (Compressed Row Storage) format (see Barrett et
al. [2]), and a column of the matrix is needed. One does not even need to consider the
complicating factor of partitioning the matrix across processors according to rows to
realize that fetching a column of a CRS matrix is an extremely inefficient operation.
Consequently, specializations of the Matrix class are needed to provide for efficient
access to the internal data. As shown below, except for the ability to access the matrix
diagonal, there are no provisions for data access in the Matrix base class. The data access
specializations arise in the derived matrix classes.

The RowMatrix base class is derived from (and inherits the public interface of) the
Matrix base class, and requires further specialization before objects can be constructed.
The added access functions distinguish the RowMatrix class from the Matrix class. The
common (pure virtual) functions are essentially passed through to classes which are

, derived from the RowMatrix class. A specialized set of direct pointer access functions is
available for implementations which can support it. In particular, each row’s data must
be contiguous in memory for pointer access to be viable. This is currently provided for.
four ISIS++ matrix implementations, all derived from the RowMatrix class. A test
function is provided for run-time determination of the viable existence of the pointer
access functions.

We now present the public interfaces for the Matrix and RowMatrix base classes.

Matrix class public interface

class Matrix

// constructor function

Matrix (const Map& map) ;

// default destructor function
virtual -Matrix () {};

// mathematical functions
virtual void vectorMultiply (Vector& y, const

virtual void transposeVectorMul tiply (Vector&

// data access functions

virtual void getDiagonal (Vector& diagVector)

const Map& getMap () const;

virtual void put (double s);

Vector& x) const = O;

y, const Vector& x) const = O;

const = O;

// special functions

virtual void configure (const IntVector& rowCount) = O;
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virtual void fillCompleteo = O;

virtual bool readFromFile(char *filename) = O;

virtual bool writeToFile(char *filename) const = O;

[/ query functions

bool isFilledo const;

bool isconfiguredo const;

// min/max functions

virtual bool rowMaxo const {return false;};

virtual bool rowMino const {return false;};

virtual double rowMax(int rowNumber) const (return –1.0;) ;

virtual double rowMin(int rowNumber) const (return –1.0;) ;

Matrix base class public interface reference notes:

b

●

●

●

●

●

●

Upon construction thematrixobjectdoes not allocatethememory spaceforthedata.
Rather, theconfi gurefunctionpasses the vectorrowCourzt whichcontains the
number ofnon-zeros perrow. At that point thememory for the matrix values and
indices canbe allocated. This isnotneededor even supported by all implementations,
aswillbe seen later.

The use ofthe matrix-vector multiply functions are illustratedin the followingcode
snippet.

DCRS_Matrix A(map) ; // construct DCRS matrix A

Dist_Vector y(map); // construct distributed vector y

Dist_Vector z(map); // construct distributed vector z

(initialize A and z)

A.vectorMultipy(y, z); // y=Az

A.transposeVectorMultiply(y, z); // y=A’z

The getDiagonal functionloads thereferencevectorwith thematrix diagonal

terms.

The getMapfunctlon returnspreference to theassociated Map object,andis the

accesspointforMap and (indirectly)CommInfo information.

The configure functionallocate smemoryforthe storageofallnecessarytermsto

containmatrix data. Callingthisfunctionresetsthe internalstatesuch that(fora

given matrix) subsequentcallsto isconfigured willreturntrue.Itisnotnecessary

tousetheconf igure functionforallmatrix implementations.

The fillCompl etefunction provides aplaceholderfor handlingthedata

consistencychecks as well as message-passing configurationinformation forthe

distributed-memory case. This functionnzustbe invoked once alltheuser datais

loaded intothe matrix object,and before computations areperformed with it.

The put functionassignsthe value given to allthe non-zero elements of an already

configured matrix.
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●

The readFromFile and writeToFile functions read/write to a user-named ASCII
file in the Matrix Market exchange format. As yet, not all ISIS matrix
implementations are fully MatrixMarket conformant, as documented in the file
doc/file-format. txt in the ISIS++ source distribution.

The isFilled function is used to verify that the matrix object has been loaded with
data before attempting to mathematically operate on the matrix, When a matrix
object is constructed, or subsequent to calling the empty function, the matrix state is
internally set to not-filled. Only after calling f i 1 lcomplet e is the state reset to
return true.

The isConf igured function is used to query whether the matrix object has been
configured (i.e., the memory has been allocated).

The boolean rowMax and rowMin (query) functions indicate whether a valid
implementation of the associated functions exist for a particular matrix
implementation,

New matrix implementations require development of the conf igure and
f il l~omplete functions, and potentially anew variant of the Map class.

x RowMatrix class Public interface

class RowMatrix : public Matrix

// constructor function
RowMatrix (const Map& map) : Matrix (map) {};

// default destructor function
virtual -RowMatrix () {};

// mathematical functions

virtual void vectorMultiply (Vector& y, const Vector& x) const

virtual void transposeVectorMul tiply (Vector& y, const Vector&

// special functions

. o;
x) const = O;

virtual

virtual

// data
virtual

virtual

virtual

void configure (const IntVector& rowCount ) = O;

void fillComplete () = O;

access functions ...

void getDiagonal (Vector& diagVector) const = O;

void getRowSum (Vector& rowSumVector) const = O;

int rowLength (ink row) const = O;

// . . . to resize matrix rows (where applicable)
. virtual bool setRowLength (int length, int rowNumber) {return false;};

// . . . to read matrix rows.

virtual void getRow(int row, int& length, double* coefs, int* colInd

virtual void getRow(int row, int& length, double* coefs) const = O;

virtual void getRow(int row, int& length, int* colInd) const = O;

const = O;
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// . . . to write matrix rows.

virtual int putRow(int row, int cardinality, double* coefs, int* colInd) = O;

virtual int sumIntoRow(int row, int cardinality, double* coefs, int* colInd) =

o;

/1 specialized direct pointer access functions ...

// ... test for pointer access viability

virtual bool pointerAccesso {return false;};

// ... read–write pointer access to matrix data

virtual double* getPointerToCoef (int& length, int rowNumber) = O;

virtual int* getPointerToColIndex (int& length, int rowNumber) = O;

// ... read-only pointer access to matrix data

virtual const double* getPointerToCoef (int& length, int rowNumber) const=O;

virtual const int* getPointerToColIndex(int& length, int rowNumber) const=O;

RowMatrix base class public interface reference notes:

●

●

●

●

●

●

Unless otherwise indicated, the RowMatrix functions areidentical to the Matrix class
equivalents.

Thegetllow%nn function returns (viatheargument list) avectorwhose elements are
the sumofthe absolute values oftheentries ofthe corresponding rows.

TherowLength function returns the number of(presumably non-zero) entries inthe
specified row.

The setRowLength function is provided for all RowMatrix class implementations,
but is only functional forthose implementations which support dynamically resizing
rows. For the statically sized implementations, the function will retumjalse. Forthe
dynamically sized implementations, thefunction will return true.

Three variations ofthegetRowfunction areprovidedfor readingmatrixrow data,
each guaranteed nottomodify thematrixdata. Depending ontheargument list,data
is loadedintothe buffers forthe matrix coefficients and/orcolumn indices, andthe
length of the row is returned as an argument.

The poi.nterAccess function’ provides a boolean test for the availability of the

*

direct pointer access functions, which only apply to implementations with rows stored
in contiguous memory.

For implementations which do not support pointer access, the pointerAccess
function returns~alse and the getPointerTo~oef and getPoi.nterToCol Index
functions return pointer to NULL (i.e., zero value) and argument length= -1.

.

7 This approach was chosen over more elegant solutions, as it proved completely portable on all C++
compilers. Dynamic casting would probably bepreferable, butthe compiler support wasmarginal at the
time of this development.
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For implementations which do support pointer access, the functions
getPointerToCoef and get PointerToColIndex provide the means to directly
access the matrix coefficients and column indices, respectively. The cons t versions
of these functions provide read-only access to the data. The value of the return
argument length is the number of entries in the specified row.

2.6 Vector base classes

There are two fundamental vectors abstractions represented in ISIS++ VI. 1: real-
valued (double-precision) and integer-value (int) vectors. A further delineation can be
made regarding uni- or multi-processor implementations, but this is abstracted from the
fundamental representation. The current implementations available in ISIS++ are
discussed in section 5.

The Vector class represents the real-valued vector abstraction and, like the Matrix
class, is designed to provide the operations necessary to support Krylov subspace iterative
methods. Since data access is so much simpler for vectors than matrices, efficient,
generalized data access can be provided.

The IntVector class represents the integer-valued vector abstraction, and is similar
to the Vector class but with a more limited set of mathematical functions. Its primary use
within the ISIS++ native implementations is as a container class for indices and
cardinalities.

Vector base class public interface

class Vector

// default constructor function

Vector (const Map& map) ;

// default destructor function

virtual -Vector () {};

// cloning constructor function

virtual Vector* newVector () const = O;

// mathematical functions
virtual void addVec (double s, const Vector& y) = O;

virtual double dotProd (const Vector& y) const = O;

virtual void linComb(const Vector& y, double s, const Vector& z) = O;

virtual double norm () const = O;

virtual void put (double s) = O;

virtual void scale (double s) = O;

virtual void random( int seed=l) = O;

virtual double normlo const = O;
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Vector& operator= (const Vector& rhs) ;



L

1/ access functions

virtual double& operator[l (int index) = 0;

virtual const double& operator[] (int index) const = O;

const Map& getMapo const;

Vectorbase class reference notes:

● Thenewvector function iscfitical totheuse ofvector objects internally in other
objects (e.g., solvers and preconditioners). When objects use vectorsas internal auto-
variables, the cloning facilityperrnits the object to construct vectors from the passed-
inprototype sothatthey meofsitila type (mdpafiitioning) as the prototype. This
capability allows the abstracted vector types to be used essentially anywhere in a
consistent manner.

. The mathematical functions correspond to the following operations, where x is the
reference vector, y and z are vectors, ands is a scalar:

x.addVec(s, y) ; xi-xi +syi ‘#i

x.dotProd(y) ; return~~i XiYi

x.linComb(y, s,z); xi =yi +szi Vi

x.normo ; return (XviX~)l’2

x.normlo ; return max(l xi 1)

X.put (s) ; Xi=s Vi

x. scale(s) ; xi = Sxi Vi

x. random (seed) ; xiG ~,1] Vi

● The operator= function sets the LHS vector equal to the RHS vector, such as:

X=y; xi = yi Vi.

● The operator [ ] functions provide read-only and read/write access to individual
vector elements. In general, these functions are slower than direct (pointer-based)
data access.

. The getMap function returns a const reference to the map object used to construct
the vector object.

. The random function implemented in ISIS++ is relatively simple. It is drawn from
Carl Pearson’s 1986 book “Numerical Methods in Engineering and Science”.

lntVector base class imblic interface

class IntVector

// default constructor function
ZntVector (const Map& maP) ;

// default destructor function

virtual -IntVector () {};
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// cloning constructor function

virtual IntVector* newIntVectoro const = O;

// mathematical functions

virtual void put(int scalar) = O;

// operator= function
IntVector& operator=(const IntVector& rhs) ;

// access functions

virtual int& operator[] (int index) = O;

virtual const int& operator[] (int index) const = O;

const Map& getMapo const;

IntVector base class reference notes:

. Thenewvector function issimilarin principle tothatofthe Vectorclass.

. The sole mathematical function is used for setting all vector elements to a scalar
value. This corresponds to the following operation, where xis preference integer-
valuedvectorand sisan integer-valued scalar:
X.put(s) ; Xi=s Vi.

. The operator= function sets the LHSvectorequal totheRHS vector, such as:
X=y; xi =yi Vi.

. Theoperator[] functionsprovlderead-onlyandread/write access toindividual

vectorelements. In general,thesefunctions are slower than direct(pointer-based)

data access.

. The getMapfunction returns aconst referenceto themap objectused toconstruct
the vector object.

2.7 LinearEquations class

The LinearEquations class binds the matrix, the solution vector, and RHS vector to
form a system of linear equations (denoted Ax= b ). The LinearEquations object
provides a point of interaction to initiate and control the solution process, including
setting the solver, preconditioned, and scaling functions. Another role of the
LinearEquations class is to check for consistency with the associated matrix and vector
objects. That is, the matrix and vector types can be compared, and the partitioning can be
checked via the Map object (used to construct the matrix and vectors).

We now present the public interface for the LinearEquations class. It is worth
noting that unlike the Solver, Preconditioned, Matrix, and Vector base classes
LinearEquations objects may be directly constructed (i.e., without derivative
implementations).
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LinearEquations class

class LinearEquations

// constructor function

LinearEquations (Matrix& A, Vector& x, Vector& b);

// default destructor function

virtual -LinearEquationso {};

// set preconditioned and solver functions

void setPreconditioner (Preconditioner& Pc) ;

void setSolver(Solver& solver) ;

// invoke solution process

void solveo ;

// scaling functions
bool rowScaleo;
bool colScaleo;

LinearEquations class reference notes:

● The setPreconditioner andsetSolver functions setinternalpointersto
Preconditioned and Solver objects, respectively. Thepointers are subsequently used
in the solve function.

● The rowScale andcolScale functions invoke rowandcolurnn scalingonthe
reference system Ax=h. These operate through related matrix and vector scaling
services, andretm~alse when scaling is not supported orotherwise true. All
rows/columns are scaled according tothemaximum absolute value over the
corresponding roworcolumn. Hence, themaximumvalue inarow/columnis 1
immediately following row/columnscaling.

3 Solver implementations
The solvers currently implemented in ISIS++ are all Krylov subspace iterative

methods. For mathematical background on Krylov methods for linear systems, we refer
the reader to Barrett et al. [2], Freund, Golub and Nachtigal [10], Meier-Yang [16] and
Tong [21], to name just a few of the many works that exist in this field. In this section
we briefly describe the solvers included in the ISIS++ V1.1 framework.

All solver implementations are derived from the IterativeSolver base class, and
inherit its public interface (see section 2.2). Consequently, the primary interaction with
these solvers is defined by the IterativeSolver public interface. Here we present the
functions particular to each of the methods. We have omitted the pure virtual function
s o lve, which is common to all the solvers and is identical to that of the IterativeSolver
class.
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In some of the algorithm descriptions that follow, we refer to the initial residual,
and the Krylov subspace corresponding to the initial residual. The initial residual is

denoted by r @J=b–~c”), where A ~~ “x” is the coefficient matrix, b ~ W’ is the right-

hand-side vector, and x(o) = 91n is the initial guess of the solution vector supplied by the
user. The Krylov subspace of dimension m corresponding to the initial residual is defined

as Km(A, r(0)) = Span{r(o) ,Ar(0) ,A2r(0) ,..., Alr(0)O) }.

3.1 QMR

The QMR (Quasi-Minimal Residual) algorithm, introduced by Freund and
Nachtigal [11], is based on the non-symmetric Lanczos process. It consists of
constructing a hi-orthogonal pair of vector sequences, which are the Krylov subspace
vectors for the matrix A and for the transpose of A. Several variants of QMR have been
developed which add look-ahead techniques to avoid numerical break downs, and which
use two- or three-term recursions to construct the vector iterates. Transpose-free variants
have also been developed (see Freund [9]), in order to avoid the need to calculate a
transpose matrix-vector product since some sparse matrix implementations don’t provide
that capability. The implementations currently in ISIS++, however, use the transpose
product, and employ coupled two-term recurrences without look ahead.

The QMR algorithm may be applied to general linear systems; it requires neither
symmetry nor positive-definiteness of the coefficient matrix. The major computational
components of this algorithm are the two matrix-vector products (one of them a
transpose), some vector updates and two vector dot products per iteration. In terms of
memory requirements, it uses about 15 internal vectors in addition to the matrix and two
vectors that are passed in from the calling program. No special control parameters are
used for the QMR algorithm. Hence the constructor and destructor functions are all that
are required from the user’s point of view.

At present, there are two variants of QMR implemented in ISIS++. The
Q~_Solver class
variant by Buecker
points to improve
numerically stable
mechanisms.

is based on Freund and Nachtigal [11]. The QMR2_Solver is a
and Sauren [3] which reduces the number of global synchronization
scalability. Our experience indicates that QMR is slightly more
than QMR2. We are investigating the addition of look-ahead

QMR_Solver class public interface

class QMR_solver : public IterativeSolver

// constructor function

QMR_Solver ();

// destructor function

virtual -QMR_Solver () {};

QMR2_Solver class public interface
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class QMR2_Solver : public IterativeSolver

// constructor function

QMR2_Solvero;

// destructor function

virtual -QMR2_Solvero {};

3.2 GMRES(nz)

The Generalized Minimum Residual (GMRES) algorithm was introduced bySaad
and Schultz [19]. Itis basedon the Arnoldi algorithm for reducing a general matrix to
upper Hessenberg form. Basically, the Hessenberg matrix is a restriction of the
coefficient matrix A onto the Krylov subspace corresponding to the initial residual. The
approximate solution is obtained by minimizing the residual on the Krylov subspace and
then projecting it back onto the space corresponding to A using the basis vectors that were
produced by the Arnoldi process. This requires that all basis vectors be stored, so that the
memory requirements increase linearly with the iteration count. The computational cost
per iteration also increases linearly, since each new basis vector must be orthogonalized
against all previous ones. In order to avoid prohibitive memory and computational costs,
the algorithm is restarted periodically, at which point the dimension of the Krylov
subspace is reset to 1 and the approximate solution is used for the initial guess in the next
cycle. The optimal number of iterations to perform between restarts is problem-
dependent, and it represents a compromise between memory and computational costs,
and rate of convergence. In general, a smaller restart value causes poorer convergence
behavior, and can in fact lead to a stall situation in some cases.

GMRES(m) can be applied to generaI linear systems, requiring neither symmetry
nor positive definiteness. The restart value (m) is the only special control parameter used
for the GMRES(m) algorithm. Functions are provided to query and set the restart value,
which is by default set to 100 upon construction.

GMRES Solver class Public interface

class GMRES_Solver : public IterativeSolver

// constructor function
GMRES_Solver (int m) ;

// destructor function
virtual -GMRES_SOIVeK () {];

// restart interval
int mo const; // get restart interval

void m(int m) ; // set restart interval

3.3 FGMRES(m)

The FGMRES algorithm is a Krylov subspace method which is described in detail
in Y. Saad [18]. It is a right-preconditioned version of GMRES, which allows the
preconditioned to vary at each iteration. For example, other iterative solvers can be used
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as preconditioners, At this time, preconditioners are being constructed for ISIS++ that
will exploit this capability.

FGMRES_Solver class public interface

class FGMRES_Solver : public IterativeSolver

// constructor function

FGMRES_Solver(int m) ;

// destructor function

virtual -FGMRES_Solvero {};

// restart interval
int mo const; // get restart interval

void m(int m) : // set restart interval

.

3.4 DefGMRES(m)

DefGMRES(m) (Deflated GMRES(rn)) isa modification ofGMRES (m), basedon
an algorithm introduced by Erhel et al. [8]. When GMRES is restarted, the Krylov
subspace that has been constructedis discarded, Containedin the Krylov subspace, is
information about theextremal eigenvalues and eigenvectors of the coefficient matrix A,
which are important to the convergence of the algorithm. Discarding this information is
the reason why restarting harms the convergence of GMRES. The idea of Erhel et al. is
to save some of this eigenvalue and eigenvector information (through deflation) and then
apply it as a preconditioned after the restart, thus enhancing the convergence of the
restarted algorithm. The implementation used in ISIS++ is a variant of the above idea,
whereby the information saved by deflation is applied in addition to any arbitrarily
chosen preconditioned passed in by the user, Our experience indicates that
DefGMRES(nz) can provide significant performance gains for many problems’.

DefGMRES(m) has the same applicability as ordinary GMRES(nZ), requiring
neither symmetry nor positive definiteness. However, the benefits provided by the
deflation strategy will vary from case to case. The restart value (m) is the only special
control parameter used for the deflated GMRES(rn) algorithm. Functions are provided to
query and set the restart value, which is by default set to 100 upon construction.

DefGMRES Solver class mblic interface

class DefGMRES_Solver : public IterativeSolver

// constructor function

DefGMRES_Solver (int m) ;

// destructor function

virtual -DefGMRES_Solver () {};

8Considering both qualitative convergence and wall-clock time.
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// restart interval

int mo const; // get restart interval

void m(int m) ; // set restart interval

3.5 BiCGStab

The Bi-Conjugate Gradient Stabilized (BiCGStab) algorithm is another Lanczos-
based algorithm, which is closely related to the Conjugate Gradient (CG) algorithm. It
produces two mutually orthogonal vector sequences. For more detail regarding this
algorithm see Barrett et al. [2].

BiCGStab maybe applied to general linear systems, and has a computational cost of
two matrix-vector products and four inner products per iteration. No special control
parameters are used for the BiCGStab algorithm. Hence the constructor and destructor
functions are all that are required from the user’s point of view.

BiCGStab_Solver class public interface

class BiCGStab_Solver : public IterativeSolver

// constructor function
BiCGStab_Solvero ;

// destructor function
virtual -BiCGStab_Solvero {};

3.6 CGS

The Conjugate Gradient Squared (CGS) algorithm was described by Sonneveld
[20]. It is applicable to non-symmetric linear systems, but has highly irregular
convergence behavior. Barrett et al. [2] state that it tends to diverge when the initial
guess is close to the solution.

No special control parameters are used for the CGS algorithm. Hence the
constructor and destructor functions are all that are required from the user’s point of view.

CGS_Solver class Public interface

class CGS_Solver : public IterativeSolver

// constructor function

CGS_Solver(int m) ;

// destructor function

virtual -CGS_Solvero {];

3.7 CG

The Conjugate Gradient (CG) algorithm, dueto Hestenes and Stiefel [13], is the
oldest and most well bownofthe =ylovsubspace methods forlinem systems. Like all
of the other Krylov methods, it constructs the approximate solution vector as a linear
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combination of the orthogonal basis vectors for the Krylov subspace generated from the
initial residual. It is closely related to the Lanczos method for symmetric matrices.

The CG algorithm is only guaranteed to converge for linear systems with
symmetric, positive definite (SPD) matrices (though this sufficiency condition for
convergence is useful only in the theoretical setting where round-off error is absent:.
hence this guarantee is of limited utility in practice, as ill-conditioned matrices may result
in extremely slow convergence rates in the absence of an effective preconditioned),
Computationally, it requires one matrix-vector product and two vector inner products per
iteration. Due to its reduced operation count, it is an excellent choice when the linear
system is SPD. No special control parameters are used for the CG algorithm. Hence the
constructor and destructor functions are all that are required from the user’s point of view.

CG_Solver class public interface

class CG_Solver : public IterativeSolver

// constructor function
CG_Solver ();

// destructor function

virtual -CG_Solver () {};

.

3.8 CGNE

. Conjugate Gradients on the Normal equations to minimize the Error (CGNE) is a
simple variant of CG which allows the solution of systems with non-symmetric matrices
(see Barrett et al. [2], Kelly [15] and Nachtigal, Reddy and Trefethen [17], among others).

The idea is to apply the method of conjugate gradients to the linear system AA~y = b,

and then set x = ATy to obtain the solution to the original system Ax= b. The

disadvantage of this approach is that the condition number of AAT is the square of that of
A.

CGNE may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration.
No special control parameters are used for the CGNE algorithm. Hence the constructor
and destructor functions are all that are required from the user’s point of view.

The CGNE solver requires specialized preconditioned implementations. The valid
preconditioners have prefix “CGNl_”. Since the resulting system is SPD, a few
specialized preconditioners are generally sufficient. We have implemented the
polynomial and Block Jacobi preconditioning methods for use with CGNE.

. CGNE_Solver class public interface

class CGNE_Solver : public IterativeSolver

// constructor function

CGNE_Solver ();
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// destructor function

virtual -CGNE__Solvero {};

3.9 CGNR

Conjugate Gradients on the Normal equations to minimize the Residual (CGNR) is
another variant of CG which allows the solution of systems with non-symmetric matrices
(see Barrett et al. [2], Kelley [15] and Nachtigal, Reddy and Trefethen [17], among
others). It is similar in principle to CGNE, with the idea being to apply the method of
conjugate gradients to the linear system AT Ax = ATb. The resulting solution vector is in
principle identical to the solution of Ax= b. This approach is also affected by the fact
that the condition number of AA~ is the square of that of A. See Kelley [15] for an
explanation of the theoretical difference between CGNE and CGNR.

CGNR may be applied to non-symmetric linear systems, and requires a transpose
matrix-vector product in addition to the work performed by ordinary CG at each iteration.
No special control parameters are used for the CGNR algorithm. Hence the constructor
and destructor functions are all that are required from the user’s point of view.

Like CGNE, the CGNR solver requires specialized preconditioned implementations.
The valid preconditioners have prefix “CGNR_”. Since the resulting system is SPD, a
few specialized preconditioners are generally sufficient. We have implemented the
polynomial preconditioning method for use with CGNR.

CGNR_Solver class public interface

class CGNR_Solver : public IterativeSolver

// constructor function

CGNR_Solver ();

// destructor function
virtual -CGNl_Solver () {};

4 Preconditioned Implementations
The current implementation of ISIS++ includes a collection of preconditioned

implementations, all derived from either the Preconditioned or RowPrecontioner base
class. The basic preconditioning model used in ISIS++ is described in section 2.3. For
brevity, we have omitted the interface components common to the base class in the
implementation specifications that follow. Detailed descriptions of the preconditioned
base classes can be found in section 2.3.

A number of unsupported preconditioners based on other packages (SuperLU,
SPARSKIT2, BPKIT, HYPRE, and AMG) are optional in ISIS++. If the user has access
to a package, the corresponding preconditioners can be enabled from the configure script
used when installing ISIS++. We now
preconditioners currently supported in ISIS++.
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4.1 Identity

The identity preconditioned is provided in 1S1S++ to establish a base line for
unconditioned systems. The identity preconditioned is essentially a non-operation,
whereby the solution vector from the preconditioned “solve” functions simply returns the
passed vector. There are no special parameters associated with the identity
preconditioned, so the public interface simply provides constructor and destructor
functions, as follows.

ldentity_PC class public interface

class Identity_PC : public Preconditioned

// constructor function

Identity_PC (const Matrix& A) ;

// destructor function

virtual -Identity_PC () {};

4.2 Diagonal scaling

Diagonal scaling can be viewed as the simplest of the incomplete factorization
schemes applied to the matrix A to form an approximation to A-l. The diagonal scaling
(Point Jacobi) preconditioned takes the fonm given by:

[

aii ifi=j
mu = )

o ifi#j)

where au = (i, j) element of the matrix A, and mti = (i, j) element of the (diagonal)
preconditioning matrix M. Since multiplication on the left by a diagonal matrix merely
scales the corresponding rows of the coefficient matrix, the preconditioned coefficient
matrix A takes the simple form:

a-~a a-la a-~a ... 1
“Inn ”znn .3

There are many practical advantages to this diagonal
simple method works remarkably well on many problems.
characteristics are that it is very simple and hence readily

scaling scheme, and this
Among its chief useful

implemented, and that it
converts all of the diagonal elements to the same sign. This latter feature is helpful when
dealing with matrices that have elements of both signs on the diagonal, such as those
arising from mixed finite-element analyses involving required implementations of
constraint relations (at least, those mixed analyses not characterized by zero diagonal
matrix elements, in accordance with the caveats given below). In addition, if the matrix
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is sparse and stored in a row-oriented format, then this approach is easy to implement and
fast to compute, as the diagonal scaling is applied row-wise.

Unfortunately, there is a practical problem that commonly occurs with Point Jacobi
schemes, in that a zero on the diagonal causes numerical difficulties that add complexity
to this otherwise simple preconditioning scheme. This pathological case is representative
of a general problem where relying only on the diagonal entry for scaling information
provides insufficient information to construct a good preconditioned. We have currently
implemented a heuristic in ISIS++ that sets a zero diagonal to one for the purposes of the
diagonal Jacobi preconditioned.

The row scaling operation is closely related to the diagonal preconditioned, whereby
the maximum absolute value on each row is used instead of the element on the diagonal. .
There is a CGNE variant of this preconditioned in ISIS++.

Diagonal_PC class public interface

class Diagonal_PC : public preconditioned

// constructor function
Diagonal_PC (const Matrix& A) ;

// destructor function

virtual -Diagonal_PC () {};

4.3 Block Jacobi

Block Jacobi preconditioning is a generalization of the Point Jacobi or diagonal
scaling scheme. Block Jacobi creates a block diagonal preconditioning matrix, whose
blocks correspond to the coefficient matrix A. Inverting these blocks gives Ml-l, where

the right-preconditioning matrix A4z=1. The implementation in ISIS++ currently

supports two blocking strategies, namely, allowing the blocks to overlap or not. Interface
functions are supplied to allow the user to set and query the block size as well as the
blocking strategy.

Non-overlapping or overlapping blocking is controlled by setting strategy equal to 1
or 2, respectively, with the blocks trat em set function. There is a CGNE variant of
this preconditioned in ISIS++.

BlockJacobi_PC class public interface

class BlockJacobi_PC : public RowPreconditioner

// constructor function

BlockJacobi_PC (const RowMatrix& A) ;

// destructor function
virtual -BlockJacobiPC () {};

// ccm.trol/access functions

int blockSizeo ;

void blockSize(int size) ;
// get block size

// set block size

●

✎
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int blockStrategyo ; // get blocking strategy

void blockStrategy(int strategy) ;// set blocking strategy

4.4 Block LU

The BlockLU preconditioned usestheSuperLU factorization package ofDemmelet
al. [5],[6] to invert exactly the diagonal blocks of ablock-wise distributed matrix. Inthe
case where asingle processors being used, this preconditioned is in fact adirect solver.
Naturally its performance (in terms of convergence) on a given problem deteriorates
rapidly as the number of processors is increased, since thereis a corresponding decrease
in the size of the diagonal blocks that are being inverted and used to approximate the
matrix inverse. Obviously the diagonal blocks must be non-singular (this is not always
the case in practice).

Memory overheads are severe for this preconditioned. Since it performs a full exact
factorization, there is a lot of fill-in for the factors L and U that are produced and stored
internally. A set of ILU preconditioners have been added to 1S1S++, but are not officially
supported at time of this writing.

Currently, the Block LU preconditioned only works with the BDCRS (see
description in the implementation section) matrix class.

BLU_PC class public interface

class BLU_PC : public Preconditioned

// constructor function

BLU_PC (const BDCRS_Matrix& A) ;

// destructor function

virtual -BLU_PC () {};

4.5 Polynomial

In general, a polynomial preconditioned approximates the inverse of the matrix A by
constructing a matrix ~1 = P.(A), a polynomial in A. The polynomial preconditioned

currently implemented in ISIS++ provides two choices for the type of the polynomial:
Neumann and Least Squares. The polynomial type and order can be set and queried by
the user through public interface functions.

ISIS++ currently supports polynomial orders up to 10. Polynomial type is
controlled by setting type to 1 or 2 for Neumann or least squares, respectively, with the
pol~ype set function. Variants of this preconditioned are included for use with CGNR
and CGNE solvers.

Poly_PC class public interface
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// constructor function

Poly_PC(const Matrix& A, Vector& sample) ;

// composed preconditioning constructor function

Poly_PC(const Matrix& A, Vector& sample, Preconditioner& PC1);

// destructor function
virtual -Poly_PC() {};

// control/access functions

int polyOrdero ; // get the polynomial order

void polyOrder(int order) ; // set the polynomial order

int polyTypeo ; // get the polynomial type

void polyType(int type) ; // set the polynomial type

virtual bool isMatrixFreeo ; // TRUE if preconditioned is matrix free

4.6 SPAI

The SPAI (SParse Approximate Inverse) preconditioned is an incomplete
factorization method which explicitly calculates and stores the approximate inverse
matrix. Ituses an algorithm that isdue toGrote and Huckle [12] and was implemented
by Barnard (see Barnard and Clay [1]). It has a lengthy calculation phase, but it is fully
parallel and produces dramatic improvements in convergence formost problems. Unlike
the Block LU scheme, it doesn’trestrict its attention tothe diagonal blocks ofthe matrix.
Thus, theconvergence performance does notdegradewhen using manyprocessors.

SPAI has several control parameters which are set and queried by interface
functions. Its public interface is given below.

SPAl_PC class Public interface

class SPAI_PC : public RowPreconditioner

// constructor function

SPAI_PC(const RowMatrix& A);

// destructor function

virtual -SPAI_PC() {};

//functions for setting/querying parameters

double spai_epsilono const; // get epsilon

void spai_epsilon (double epsilon) ; // set epsilon

int spai_nbstepso const; // get number of steps

void spai_nbsteps(int nbsteps) ; // set number of steps

int spai_maxapio const; // get maxapi

void spai_maxapi(int maxapi) ; // set maxapi

int spai_maxnewo const; // get maxnew

void spai_maxnew(int maxnew) ; // set maxnew

int spai_maxo const; // get max

void spai_max(int max) ; // set max

int spai_cache_sizeo const; // get cache size

void spai_cache_size (int cache_size) ; // set cache size

.
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int spai_infoo const; // get info

void spai_info(int info) ; // set info

Notes on SPAI_PC parameter control functions:

●

●

●

●

●

m

.

●

5

The term epsilon is a convergence tolerance relating to the Froebenius norm,
influencing the accuracy of the approximate inverse in a trade-off with memory
requirements and calculation speed, A smaller value of epsilon implies a more
accurate approximate inverse.

The term nbsteps is the maximum number of “improvement” steps per column.

The term maxapi is the maximum number of non-zeros in a row or column of the
preconditioning matrix M.

The term maxnew is the maximum number of new entries per “improvement” step.

The term ma is the maximum dimension of the QR subproblems.

The term cache_size is used to control local row caching. The values have the
following mapping:
0-101
1-503
2-2503
3-12503
4-62501.
Values of 3 or 4 are recommended as a starting point, although the optimal values are
problem dependent.

The term info is used to control output specific to the SPAI algorithm. Setting info to
O will disable SPAI output, while setting it to 1 will enable output.

Matrix/Vector Implementations
ISIS++ was designed for scalable, distributed-memory computations. However,

some people are also interested in running in serial mode, particularly on platforms which
do not support the MPI message-passing library. In response to this need, we have
implemented mirror image serial versions of the statically and dynamically sized native
ISIS++ matrix classes.

The static-size implementations are generally faster, since they have more latitude
as regards the underlying data structures, and hence can be more fully optimized for
performance. The resizable matrix classes are based on storing and processing one row at
a time, where each row’s data is stored in contiguous memory. Rows are however, not
necessarily contiguous with each other, and hence the resizable matrix is effectively a
collection of rows, each of which may be resized.

What follows is a description of the matrix/vector implementations currently in
ISIS++. Most matrix implementations are variations on the standard CRS (Compressed
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Row Storage) sparse matrix format, delineated by serial/distributed-memory data and
static/dynamic sizing properties, blocked data distribution, etc. An exception to this is
the Aztec [14] DMSR matrixhector class. For each matrix class we give an annotated
header showing the functions provided by that class. In general though, we ornit the
interface components common to the base matrix class from which the class is derived.
The “native” vector implementations (Seq_Vector and Dist_Vector) can be used with
multiple matrix implementations, with oniy
own vector class.

5.1 Sequential vector classes

The native sequential vector class
implementation of the Vector base class
constructor. The default is to use the

the AztecDMSR matrix class requiring its

implementation Seq_Vector is a direct
(see section 2.6), with an added copy

Fortran BLAS routines for the internal
computations. An alternate version which doesn’t rely on this library is also available.

Similarly, the Seq_IntVector class is a direct implementation of the IntVector class,
specialized for a serial computing model and with a copy constructor. Both of the serial
vector classes are designed to inter-operate efficiently with the native serial matrix
implementations (i.e., SCRS_Matrix and RsSCRS_Matrix classes). In both vector
classes, the copy constructor creates an exact clone of the original vector.

Seq_Vector class public interface

class Seq_Vector: public Vector

// default constructor function

Se~Vector (const Map& map) ;

// copy constructor function

Seq_Vector (const Se~Vector& source) ;

// default destructor function

virtual -Se~Vector () {};

Sea lntVector class Public interface

class Seq_IntVector: public IntVector

// default constructor function
Seq_IntVector (const Map& map) ;

// copy constructor function
Seq_IntVector (const Seq_IntVector& source) ;

// default destructor function

virtual -Seq_IntVector () {};

5.2 Sequential static-size matrix class

The SCRS_Matrix matrix class is a CRS (Barrett et al. [2]) row matrix abstraction
specialized for serial computing. That is, the underlying model for the implementation is
uni-processor, global memory. The primary advantages inherent with this specialization
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include performance and simplicity related to replacing MPI-based message passing with
a global-memory model. Further, the data is contiguous in memory to fully support the
direct pointer access functions.

Unless otherwise shown, the RowMatrix public interface is replicated within the
SCRS_Matrix class. The reader is referred to section 2.5 for the complete specification
of the RowMatrix base class public interface.

As with all the native matrix implementations, the Map object is based on a virtual
global coefficient mapping numbered from 1 to n, the characteristic size of the system.
The simple Map constructor map (n) is designed for the serial case.

The configure function must be called to allocate memory before any data can
be loaded into the matrix.

The function setRowLength returns false, since dynamic row resizing is not
supported for this implementation.

SCRS Matrix class public interface

class SCRS_Matrix : public RowMatrix

// constructor function

SCRS_Matrix (const Map& map) ;

// destructor function
virtual -SCRS_Matrix () {};

/1 information functions

int nonZeros (); // return number of nonzeros in matrix

// direct pointer data access functions
bool pointerAccess () {return true;};

5.3 Sequential re-sizable matrix class

The RsSCRS_Matrix re-sizable matrix class is a CRS (Barrett et al.[2]) row matrix
abstraction specialized for serial computing. It essentially duplicates the functionality of
the static equivalent (see preceding), but fully enables the function setRowLength. The
direct pointer access functions are fully supported.

While the two serial matrix classes share near-identical functionality, we note that
each are completely different implementations. In particular, the SCRS_Matrix
implementation uses one contiguous block of memory for the matrix values and similarly
for the column indices. This data/memory configuration is extremely inefficient for row
resizing, to the extent that we make no attempt to support it. In order to support dynamic
row resizing, the RsSCRS_Matrix effectively treats a matrix as a collection of rows, each
of which is contiguous in memory but may be disjoint from other rows. As a
consequence of this data/memory layout, each row may be resized without affecting other
rows, and hence is relatively efficient for row resizing operations. Furthermore, there is
no need to pre-configure the matrix before loading data into it. Coefficients may be
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inserted using the pUt ROW function, and the appropriate rows will be adjusted as

necessary.

RsSCRS_Matrix class public interface

class RsSCRS_Matrix : public RowMatrix

// constructor function

RsSCRS_Matrix (const Map& map) ;

// destructor function

virtual -RssCRS_Matrixo {};

// set row length -- fully implemented, return value = true
virtual bool setRowLength(int length, int rowNumber) ;

// information functions

int nonZeroso ; // return number of nonzeros in matrix

// direct pointer data access functions

bool pointerAccesso {return trUe;};

5.4 Distributed-memory vector classes

The “native” distributed-memory vector class implementation Dist_Vector is a
direct implementation of the Vector base class (see section 2.6), with an added copy
constructor. As with all the distributed-memory components in ISIS++, the MPI
message-passing library is used for communications. The default is to use the Fortran
BLAS routines for the internal computations. An alternate version which doesn’t rely on
thatlibraryisalso available.

Similarly, the Dist_IntVector class is a direct implementation of the IntVector class,
specialized for a distributed-memory computing model and with a copy constructor.
Both of the distributed-memory vector classes are designed to inter-operate efficiently
with the native distributed-memory matrix implementations (i.e., DCRS_Matrix and
RsDCRS_Matrix classes). In both vector classes, thecopy constructor creates an exact
clone of the original vector.

Dist_Vector class public interface

class Dist_Vector: public Vector

// default constructor function

Dist_Vector(const Map& map) ;

// copy constructor function
Dist_Vector(const Dist_Vector& source) ;

// default destructor function

virtual -Dist_Vectoro {};
.

Dist_lntVector class public interface .

class Dist_IntVector: public IntVector
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// default constructor function

Dist_IntVector (const Map& map) ;

*

.

.

.

// copy constructor function

Dist_IntVector(const Dist_IntVector& source) ;

// default destructor function

virtual -Dist_IntVector () {};

5.5 Distributed-memory static-size matrix class

TheDCRS_Matrixmatrix class is aCRS(BarrettetaI. [2]) row matrix abstraction
specialized for distributed-memory computing, utilizing the MPI message-passing library
for communications. The matrix dataisin contiguous memory to fully supportthe direct
pointer access functions.

As with all the “native” matrix implementations, the map object is based on a
virtual global equation mapping numbered from 1 to n, the characteristic size of the
system. The parallel Map constructor (see section 2.4) is designed for this case. As with
the sequential static-size matrix class, memory must be pre-allocated by calling the
configure function before any data may be loaded.

The function setRowLength returns jidse, since dynamic row resizing is not
supported for this implementation.

DCRS_Matrix class public interface

class DCRS_Matrix : public RowMatrix

// constructor function
DCRS_Matrix (const Map& map) ;

// destructor function

virtual -DCRS_Matrix () {];

// direct pointer data access functions
bool pointerAccess () {return true;];

5.6 Distributed-memory re-sizable matrix class

The RsDCRS_Matrix re-sizable matrix class is a mirror image of the
RsSCRS_Matrix class, but specialized for distributed-memory computing, utilizing the
MPI message-passing library for communications. The RsDCRS_Matrix class
essentially duplicates the functionality of the static equivalent (see preceding), but fully
enables the function setRowLength. The direct pointer access functions are fully
supported. Also, it is not necessary to pre-allocate memory for this matrix by calling the
configure function.

While the two “native” distributed-memory matrix classes share near-identical
functionality, each are completely different implementations. In particular, the
DCRS_Matrix implementation uses one contiguous block of memory for the “local”
matrix values and similarly for the column indices. In order to support row resizing, the
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RsDCRS_Matrix effectively treats a matrix (or sub-matrix when partitioned row-wise) as
a collection of rows, each of which is contiguous in memory but may be disjoint from
other rows. As a consequence of this data/memory layout, each row may be resized
relatively efficiently without affecting other rows.

RsDCRS_Matrix class public interface

class RsDCRS_Matrix : public RowMatrix

// constructor function

RsDCRS_Matrix (const Map& map) ;

// destructor function
virtual -RsDCRS_Matrix () {};

// set row length -- fully implemented, return value = true

virtual bool setRowLength(int length, int rowNumber) ;

// direct pointer data access functions

bool pointerAccesso {return true;};

5.7 Block DCRS matrix class

The BDCRS_Matrix class is intended primarily for the multiple processor case, and
distributes thematrix data block-wise in2 dimensions so that theglobal matrix consists
ofp xp (where pisthenumber of processors) sub-matrices. Each processor owns a row
of sub-matrices. This implementation is not derived from the RowMatrix base class, but
rather from the Matrix base class. While there is no provision for getting a pointer to a
row, it is possible to get a pointer to a sub-block which is itself a CRS_Matrix object.
The CRS_Matrix class, which will be described in the next section, provides many of the
capabilities of the sequential CRS matrix classes described earlier.

The BDCRS_Matrix class can not be pre-configured. It is loaded with data using
the putRow function, which temporarily stores the data in re-sizable sub-blocks. When
all of the data has been loaded (and the f i 1 Icompl et e function is called), it is
transferred into static size CRS_Matrix blocks. A form of direct pointer access to the
data is available by first getting a pointer to a sub-block of the matrix, and then getting a
pointer to that block’s coefficients.

BDCRS_Matrix class public interface

class BDCRS_Matrix : public Matrix

// constructor function
BDCRS_Matrix (const Map& map) ;

/I destructor function
virtual -BDCRS_Matrix ();

// initialization function

void put (double s);
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//access functions

virtual void getDiagonal (VectOr& diagVector) ;

void putRow(int row, int length, double *coef, int *colInd);

// direct sub-block access function

CRS_Matrix* getBlockPtr(int blockl?umber);

5.8 CRS and RsCRS matrix classes

The CRS_Matrix andRsCRS_Matrix classes areessentially stripped-down versions
ofthe previously described SCRS and RsSCRS matrix classes. They are notpart of the
Matrix/RowMatrix hierarchy, require no mapat instanti ation, and are purely sequential.
They were specially created for use as sub-blocks of the BDCRS format (which was
described in the previous section). Their functionality mirrors that of the SCRS and

RsSCRS matrices, with the main difference lying in the constructor functions. The other
difference, in the case of the CRS_Matrix class, is that the get PointerToCoef and
getPointerToCol Index functions are overloaded to simply return pointers to the
beginning of the data block as well as to a particular row.

The CRS_Matrix class also has a specialized function copyToccs which copies its
contents into a CCS_Matrix object.

We now give annotated partial headers for these two classes, showing only those
functions which differ from the SCRS and RsSCRS matrix classes, respectively. All
other functions are identical.

CRS_Matrix class public interface

class CRS_Matrix

// constructor function

CRS_Matrix (int rows, int COIS, int nnz );

// access functions

double* getPointerToCoef (int& nnz );

int* getPointerToColIndex (int& nnz );

// conversion to CCS storage

void copyToCCS (CCS_Matrix **B);

//inquiry functions

int rows ();

int columns ();

int nonZeros ();

RsCRS Matrix class ~ublic interface
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class RsCRS_Matrix

/1 constructor function

RsCRS_Matrix(int rows, int COIS) ;

// access functions

double* getPointerToCoef (int& nnz);

int* getPointerToColIndex(int& nnz) ;

//inquiry functions

int rowso ;

int columnso ;

int nonZeroso ;

5.9 CCS matrix class

The CCS (Compressed Column Storage) matrix is a column-oriented equivalentto
the CRS matrix described above. Itis also intended for use as alocal sub-block ofa
block-wise distributed matrix. It was created foruse inside the Block LUpreconditioner,
since the internal algorithm in Block LUrequires a column-oriented matrix. As with the
CRS matrix, no map is required at instantiation. Its functionality mirrors that of the CRS
matrix, but with operations being column-oriented.

Those functions which are different are shown in the public interface below.

CCS_Matrix class public interface

class CCS_Matrix

// constructor function

CCS_Matrix (int rows, int COIS, int nnz );

// access functions

void getColSum(Vector& colSumVector) ;

int colLength(int CO1) ;

int getCol(int CO1, int length, double *coef, int &rowInd) ;

int getCol(int CO1, int length, double *coef) ;

int getCol(int CO1, int length, int &rowInd) ;

int putCol(int col, int cardinality, double *coef, int *rowInd) ;

int* getPointerToRowIndex (int& nnz) ;

int* getPointerToRowIndex(int& length, int colNumber) ;

int* getPointerToColPtr (int& nnz) ;

//inquiry functions

int rowso ;

int columnso ;

int nonZeroso ;

// min/max functions
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bool colMaxo const;

double colMax(int CO1) const;

bool colMino const;

double colMino const;

5.10 Aztec DMSR matrixhector and map classes

The AztecDMSR_Matrix class issimply awrapper which encapsulates the DMSR
matrix storage format from the Aztec package and allows it to function as an ISIS++
matrix class, working with other ISIS++ components such as solvers, preconditioners,
etc. This allows the core computational kernels (matrix-vector product) to be used by an
ISIS++ Krylov solver, for instance. Details of the DMSR storage format maybe found in
the Aztec documentation [14]. No Aztec source code is included in the ISIS++ code
distribution. The user is responsible for ensuring that a copy of the Aztec library is
available to be linked against. Additionally, the Aztec header file must be available, and
needs to be slightly modified. In the file “a z_az t ec. h“, all function prototypes which
are declared as “extern ...” need to be declared as next ern “c” ...”.

From the user’s point of view, the AztecDMSR matrix class behaves similarly to
the DCRS class, inheriting most of the RowMatrix base class functionality. The most
significant difference is that the Aztec data decomposition doesn’t require that each
processor own contiguous blocks of rows. Instead, the mapping is defined by an arbitrary
lists of rows. Obviously, contiguous blocks of rows are still a possibility, with a linear
decomposition being supplied by default. A specialized Map class, the Aztec_Map
(described below) must be used at construction. The direct pointer access functions
(getPointerToCoef and getPointerToCol index) are not supported. After the
matrix has been configured, data may be loaded using the put Coe f function.
Additionally, these matrices must be used in conjunction with a specialized Vector class,
the Aztec_Vector (also described below).

Below is a partial annotated header for the AztecDMSR class, again showing only
those functions differing from other RowMatrix subclasses.

AztecDMSR Matrix class public interface

class AztecDMSR_Matrix : public RowMatrix

// constructor function

AztecDMSR_Matrix (const Aztec_Map& map) ;

//modified configure function

void configure (int **rowCount) ;

//data load function

void putCoef (int row, int CO1, double value) ;
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The configure functiontakes an “int‘*” as an argument insteadof the IntVector

accepted by previously described implementations. The reason for thisis that there is no
IntVector implementation that is compatible with the AztecDMSR data structures. In this
case rowCount is still a simple (single-dimensional) array of row lengths as before, but it
is declared as a double pointer since it can be allocated and initialized inside other
functions.

Although the AztecDMSR storage format and data decomposition is different to
those used by other ISIS++ matrix classes, the user doesn’t see any difference, for the
most part. The primary point at which the differences affect the user are in the map
object, Aztec_Map. Below is an annotated header for the Aztec_Map class.

Aztec_Map class public interface

class Aztec_Map : public Map

// constructor functions

Aztec_Map (int n, const CormnInfo&corfimInfo);

Aztec_Map (int n, int **update, int N_update, const ConunInfo& commInfo) ;

//query and data mapping access functions

int inUpdate (int globalIndex, int& localIndex) const; .

int **getUpdate () const;

int **getUpdateOrdering () COnSt;

int **getOrderingUpdate () const;
.

int **getExternal () const;

int **getExternIndex () Const;

int *getProcConfigo const;

const int* getN_updateo const;

int **getDataOrgo const;

Aztec_Map reference notes:

●

●

●

There are two ways to construct the Aztec_Map. If only the overall dimension n and
a ComrnInfo object are supplied, then the AZ_linear option is used internally to form
a linear (contiguous blocks of rows) decomposition. Alternatively, the user can
supply the decomposition in the form of a list of local rows or an “update set” in the
array update, and the number of local rows N_update.

The bnUpdate function determines whether the row with global number globalIndex
is in this processor’s local update set. If it is, inUpdat e has a return value of 1 and
that row’s local index is returned in localIndex. If row globalIndex is not in the local
update set, i.nUpdat e has a return value of O.

The getUpdat e function returns a pointer to the list of global row numbers which
make up the local update set.

●
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The getUpdateOrdering function returns a pointer to the list of local indices
which reflects how the local rows were re-ordered by the internal function
AZ_trans f orm when the f incomplete function was called.

The getOrderingUpdate function returns a pointer to the list of local indices
which maps back from the reordered local row numbers to the original ordering: i.e.,
the inverse of the list returned by the getUpdat eOrdering function.

The getExternal function returns a pointer to this processor’s list of external rows,
or rows from which information is needed for local calculations.

The getExternIndex function returns a pointer to the list which gives the local
numbering (after being reordered) of this processor’s external rows.

The getN_update function returns a pointer to the integer which is the number of
rows in the locaI update set. This is the Aztec equivalent of numLocalRows.

The getProcc!onf ig and getDataOrg functions are primarily used internally by

●

.
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Az t ecDMSR_Marix and Az tec_Vect or functions. They return arrays which store

information about the processor configuration~d the data organization,respectively.

For detailedinformation, see the proc_conf ig and data_org descriptionsin the

Aztec documentation [14].

As an example of how some of the Aztec_Map variables relateto each other,

considerthe following declarations.

const int **update = map.getUpdate ();

const int **updateOrdering = map.getUpdateOrdering ();

const int **orderingUpdate = map.getOrderingUpdate ();

const int **external = map.getExternal ();

const int **externIndex = map.getExternIndex ();

Then *update contains a sorted listof (global)row numbers to be updated on this

processor. Before fill~omplete () has been called(i.e.,before the internalmatrix data

has been re-ordered),the following relationholds: if a row’s local index i is known,
(*update) [i] gives that row’s global row number. The mapping arrays

updat eOrdering and order hIgUpdat e are availableonly after Ei 1lcornpl ete ()

has been called. (*updateOrdering) [i] gives the local index of global row

(*update) [i]. If only the local (reordered)index i is known, then we can use the
relation j = (*orderingUpdat e ) [ i ] and then the global row number is
(*update) [-j ] . For the external rows, *external contains a sorted list of this

processor’s external rows (global row numbers), and ( *externIndex) [i] gives the
local (reordered) index of (*external) [i].

As mentioned, the AztecDMSR_Matrix class must be used with the Aztec_Vector
class. This is simply because the other ISIS++ vector classes can’t be instantiated with
the Aztec_Map and must have data corresponding to a contiguous block decomposition.
In the public interface given below for the Aztec_Vector class, only the constructor is



shown, because this is the only way in which it differs from the other vector classes from
the user’s point of view. All other differences are internal.

Aztec Vector class public interface

class Aztec_Vector : public Vector

// constructor function

Aztec_Vector(const Aztec_Map& map) ;

6 Example Problem
A simple example problem is presented in this section as a concrete example of the

process of calling the ISIS++ package from an analysis program. This problem is solved
using the algebraic interface. A finite element interface has been developed, and is
addressed in a separate document. Information on the finite element interface can be
found at URL httP://z.sandia. ~ov/fei. This example problem utilizes a two-dimensional
heat conduction problem to generate a set of finite-difference equations that are solved by
ISIS++. The entire process of mathematical modeling, linear equation construction, and
solution is presented in sufficient detail so that this example can serve as an intermediary
to more complicated problems to be solved using ISIS++.

This section demonstrates the entire process of “solving a problem”, starting with
the underlying mathematical statement, proceeding through the discretization process that .

results in a system of linear algebraic equations, and terminating in the solution of those
simultaneous relations. Also, the example problem is sufficiently “generic” so that it can
be readily modified by the user to handle large or small equations, or a whole range of
solution response, ranging from smooth to singular.

6.1 Problem statement

The example problem represents heat conduction on a rectangular domain, which is
a class of problems that includes many other important engineering and scientific
analyses, such as steady-state diffusion, dispersion, electrical conduction, and membrane
displacement. This problem admits relatively simple discretizations (such as the finite-
difference scheme presented below), but can be easily generalized to more complex
discretization schemes.

The geometry of the problem is a rectangular plate lying in the x-y plane, as shown
in the figure below. The rectangle has dimensions of a and b, and its natural directions
are aligned with the coordinate directions as shown. On the perimeter of the rectangle,
the temperature field vanishes, and within the interior, steady-state heat conduction
occurs with a balance of conductance of heat energy within the plate, lateral convection
from the plate’s area (in the direction perpendicular to the page), and arising from sources
within the plate. .

48



Y

b

i

4+

a

u = Oon perimeterof rectangle x

Figure 3. Geometry of Sample Problem

The balance of heat energy can be made precise by introducing appropriate
definitions. First, define U(X,y) to be the temperature distribution within the rectangular
plate. Let c(x,y) represent the thermal conductivity of the plate, which is taken to be a
scalar because the plate is composed of an isotropic material (in general, the thermal
conductivity is a second-rank tensor, but that complicates the sample problem in a
manner not germane to the demonstration purposes desired here). Take p(x,y) to
represent the surface convection coefficient, which captures the (linearized) temperature-
dependent transfer of heat from the top and bottom of the plate. Finally, let s(x,y)
represent the sources and sinks distributed throughout the plate, with a positive sense
representing a source of heat energy.

With these definitions, the governing boundary-value problem (BVP) for heat
conduction in the plate is given by the partial-differential equation (PDE) and boundary-
conditions (BC’s) defined by:

-[:(c(x,y):)+;[c(x,Y);]+P,x>Y)u(x>Y)=s(x>Y)

u(O,y) = u(a,y] = O for O < y < b and u~x,O) = u(x, b) = O for O < x < a

In order to simplify the example problem development, take each of the material
properties to be a constant, so that a uniform isotropic problem is modeled, in that:

C(X,y) = CO= constant, p(x, y) = pO= constant, s(x,y) = SO= constant

With this simplification, the BVP takes the following form, which is amenable to an
elementary finite-difference discretization:

[

-2 “2
“1

‘co ~+% ‘Pou(x’y) = ‘0

u(O,y) = u(a,y) = O for O < y < b and u(x, O) = u(x,b) = O for O < x < a



6.2 Derivation of equation set

The governing BVP can be discretized by introducing standard difference relations
to replace the partial differential operators, and the resulting discrete problem is readily
cast into the form of a system of linear equations. The process of constructing this set of
equations begins by constructing a grid of difference nodes, and then introducing a
standard finite-difference approximation for the Laplacian operator on each of these
nodes.

The discretization geometry is shown in the figure below.

~

A, NX se~ments
1

a = NX*hX

1
@@$ in x-direction -

[ b = NY*hY

i+ II*Z x

L
a

X = NX + 1 = number of nodes in -

NY= NY+ 1 = number of nodes in $-6

Node fi,i) is atx = {i-l) h. ,Y = ti-1) hY

.

Figure 4. Geometry of Discretization

There are two classes of nodes present in the discretization: interior nodes, where a
difference relation for the Laplacian operator can be written, and exterior nodes, where
the problem’s boundary conditions must be satisfied. In either case, an independent
mathematical relation can be written for each node, which results in a N x N system of
linear relations that can be solved using solution services provided by ISIS++.

In the case of interior nodes, the Laplacian difference relation is given by:

[)

d% a% ‘i+l, j
– 2~~,j+ ‘i_~,j ‘i j+~ – 2ui j + ‘i ~-1

——
~’+b’ = 2

(h)
+’ ‘ ‘

(h, )’
node(i,j) x

On the exterior, the boundary condition specification is given by:

uil=ui Mr=o
‘I, j = ‘MX, j =

o
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A vector storage format can be used to represent all of the nodal temperature values by
introducing a single subscript k defined by:

.
k=i(MY)+j+I fori = O, 1,2, ... NX; j = O,1,2, ... NY

This culminates in the following set of linear algebraic relations:

Left Edge:

Uk=o l<k<~y

Right Edge:

Uk=o i14X*NY+l Sk SMX*MY

Top Edge:

‘k
=0 kmodMY=O

Bottom Edge:

Uk=o lcmodMY=l

Intetior Nodes:

.

[
) /iX2hY2p01 hX2hY&2

–ukhY -– Ukllx’ -1-uk3 2(hX2+ hY2 + – ukdhX2 h’=—‘k5 y
co co

.

where

kl=(i–l)*MY+j+l

k2=i*MY+j

k3=k=i*A4Y+ji-1

ka=i*MY+j+2

k~=(i+l)*MY+j+l

In practice, the matrix would be populated by looping over all the (i,j) nodes using a
program control structure such as the following:

for (i = O to NX)
for (j = O to NY)

k=i*MY+j+l
case:

left edge node
generate simple eqyation for left edge

right edge node
generate simple e~ation for right edge

top edge node

. generate simple equation for top edge
bottom edge node

generate simple equation for top edge
interior node

0
generate complicated difference equation

The structure of the resulting system of linear equations is pictured below, for the
case of NX= NY= 10. Note that because of the simple manner in which the boundary
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conditions are implemented, the matrix is not symmetric (e.g., examine the initial rows
and columns). It is relatively straightforward to symmetrize matrices arising from self-
adjoint differential and symmetric difference relations, but since ISIS++ is capable of

.

solving non-symmetric systems of equations, no attempt at symmetrizing these difference
relations will be made.

6.3

(The

Figure 5. Sample Problem Matrix Structure

Overview of code to generate problem

The C++ code required to generate the equations derived above is outlined below. .
complete working program is supplied with the ISIS++ code distribution in file

“isis/drivers/FDexample. cc.”) The f~st block shown is the declaration of the various
geometric and material parameters, named to match (or augment, in the case of single-
letter terms, like “a”) the actual parameter names from the heat conduction problem:

/ / parameters def~niwj the physical and discxeti.zed problem
int ~, nyr til W;
double conduct, convect, source;
double a_length, b_length;

Next, various program variables are declared, including those required to construct the
solution, such as the column indices (k_co lumn [ I ) and matrix equation terms
(matrix_terms [ ] ) required to store the various nonzero elements of a given row of the
matrix.

I / variables to construct matrices for the discretization
int i, j, k, m, n, num_cols;
ine k_cOl~s [51 ;
double x_s~ze, y_size, sq_x_size, sq_y_size;
double sol_f ac tor, rhs_f actor;
double rhs_term, matrix_terms [5] ;

The next block of code expresses the initialization of the program dat% including all
geometric, material, and discretization data required to express the matrix equations in a
simple form.

/ / initialize the physical problem parameters here
conduct = 100.0; / / isotropic thermal conductivity
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convect = 1.0; // lateral convection coefficient
source = 1.0; // distributed heat source term
a_length = 20.0; // length of rectangle in x-direction
b_length = 10.0; // length of rectangle in y-direction

nx = 24; // nx = number of elements in x-direction
ny = 16; // ny = number of elements in y-direction
mx = nx + 1; // mx = number of nodes in x-direction
my = ny + 1; // my = number of nodes in y-direction
n = mx*my; // size (number of equations) of problem

x_size = a_length/nx;
y_size = b_length/ny;
sq_x_size = x_size*x_size;
s~_size = y_size*y_size;
sol_factor = 2.O*(s~x_size + s~y_size) +

sq_x_size*s~_size*convect/conduct;
rhs_factor = s~x_size*sW_size*source/conduct;

// now that we know the size of the problem, we can
// initialize the sparse matrix structures appropriately
Map map(n) ;

// construct vector for configuring the matrix structure.
Seq_IntVector myRowCount(map) ;

// get the row lengths to establish matrix structure.
// determine the number of nonzero terms in each row (k)
// of the matrix by stepping over the entire finite-
// difference grid (i,j)
for (i = O; i <= nx; i++) {

for (j = O; j <= ny; j++) {
k=i’my+j+l;

// check for interior (difference) vs. exterior (boundary) nodes
// (these cases are treated separately in case we wish to
// generalize the boundary conditions)
if ((1 <= k) && (k <= my)) // left edge

num_cols = 1;
else if ((my*nx+l<=k) && (k<=mx’my)) // right edge

ntun_cols = 1;
else if ((k % my) == O) // top edge

num_cols = 1;
else if ((k % my) == 1) // bottom edge

num_cols = 1;
else // interior node (difference)

num_cols = 5;
myRowCount[k] = nun_cols;

}
}

// construct solution and RHS vectors.
Se~Vector x(map), b(map);

// construct an “empty” matrix, then set its structure.
RsSCRS7Matrix A(map);
A.conflgure (myRowCount);

The following code generates the matrix on a row-by-row basis, using the same
mathematical relations presented earlier.

for (i = O; i <= nx; i++) {
for (j = O; j <= ny; j++) {

k = i’my + j + 1;

// check for interior (difference) vs. exterior (boundary) nodes
// (these cases are treated separately to simplify generalization
// to more complicated boundary conditions
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if ((l<=k) && (k<= my)) {
num_cols = 1;
k_columns [O] = k;
matrix_terms [O] = 1.0;
rhs_term = 0.0;

}

// left edge

else if ((my*nx+l<=k) && (k<=mx*my)) { // right edge
num_cols . 1;
k_columms[O] = k;
matrix_terms[O] = 1.0;
rhs_term = 0.0;

~lse if ((k % my) == O) { // top edge
nun_cols = 1;
k_columms[O] = k;
matrix_terms[O] = 1.0;
rhs_term = 0.0;

~lse if ((k % my) == 1) { // bottom edge

*

.

num_cols = 1;
k_colwnns[O] = k;
matrix_terms[O] = 1.
rhs_term = 0.0;

}
else { //

num_cols = 5;
k_colunms[Ol = (i-1
k_columns[l] = i’my
k_columns[2J . i’my
k_columns[3] . i’my
k_columns[4] = (i+l

o;

interior node (difference)

*my + j + 1;
+ j;
+j+l;
+j+2;
*my + j + 1;

matrix_terms[O] = -s~_size;
matrix_terms[l] . –sq_x_size;
matrix_terms[2] . sol_factor;
matrix_terms[3] = –sgx_size;
matrix_terms[4] = -s~y_size;
rhs_term = rhs_factor;

}

double *coeffs = A.getPointerToCoef (num_cols, k);
int *column_indices = A.getPointerToColIndex(num_cols, k) ;
for (m = O; m < num_cols; m++) {

column_indices[m] = k_columns[m] ;
coeffs[m] = matrix_terms[m];

1
b[kl = rhs_term;

}
}

// indicate matrix data is loaded and internal structures
// can be checked and finalized.
A.fillCompleteo ;

Now the data structures areloaded and the linear system canbe solved. Sothe following
code instantiates and uses apreconditioner and solver.

// construct the preconditioned
Identity_PC preconditioned;

// construct the solver.
QMR_Solver solver;

// declare strings for passing parameters to the solver.
char **paramStrings;
paramStrings = new char*[2]; // we’ll pass in 2 parameters
paramStrings[O] = new char[32]; //set max string length=32
paramstrings[l] = new char[32];

,
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.

// now set the parameters
sprintf (paramStrings[O],“%s’’,’’maxIterations 10000”);
sprintf (paramStrings[l],“%s’’r’’tolerance l.e-10”);

// now pass the parameters to the solver
int numparams = 2;
solver.parameters (numParams,paramStrings) ;

If construct the system of equations object.
LinearEquations lse(A, x, b);

// set solver & preconditioned for the lse object.
lse.setSolver (solver);
lse.setPreconditioner (preconditioned);

// compute the preconditioned.
preconditioned .calculateo ;

// solve linear system 1% = b.
int SolveStatus = lse.solveo ;

At this point, if the solve was successful, the solution vector is available in x and can be
used by the application code.

6.4 Results

The following figures apply tothe problem data in the program listing above. This
set ofparameters results inasmall algebraic system (425 equations) which was solved by
ISIS++ using the Quasi-Minimum Residual (QMR) and Conjugate-Gradient-Squared
(CGS) algorithm utilizing an identity preconditioned (i.e., no preconditioning). The
convergence histories ofthese two solution methods are shown inthefigurebelow.

4.00

T

Iteration Counter
O.a I I

o.0 50.00

-4.Ook. ua$i-MhkmResidud(QMR)

-8.00L _

Conjugate-Gradient-Squared(CGS)

-12. ooJ_

Figure6. Thermal Example Problem Convergence Histories

The results of this simulation are graphed in the contour plot shown below. Note
that the problem is doubly symmetric, although no attempt has been made in this example
tot&e advmtage ofthissymme~ toreduce thesize oftie equation set. This neglect of
symmetry arises from two causes. The first reason is that the implementation of
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symmetry lines in a simple finite-difference model requires specification of a Neumann
(normal derivative) boundary condition along the line of symmetry, and such a
modification of a centered-difference relation is non-trivial, and beyond the desired scope
of this simple example problem. The other reason is that since 1S1S++ is designed to
solve systems with millions of equations, there is no real need to utilize symmetry in this
simple example merely to reduce the already very smallequation set size.
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Figure 7. Contour Plot of Temperature Field

7 Installation Procedures

7.1 System requirements

The primary requirement for building ISIS++ is a sound C++ compiler. In fact,
most of ISIS++ can be built and used (serially) with that alone. However, the distributed-
memory components rely on the MPI message-passing library. Also, several of the
algorithms use dense linear algebra methods provided by the LAPACK and BLAS
libraries.

Additionally, the automated building of the library requires a “make” facility.
There is also a “configure” script which uses the standard “sh” shell. As discussed
below, the distribution includes automated facilities for configuring and building ISIS++
using UNIX makefiles.

7.2 Building the library

At the time of this writing, ISIS++ has been built and run on the following types of
computers:

● Cray T3D MPP (native and KAI C++ compilers)
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●

●
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●

●

●

●

●

●

●

●

Cray T3E MPP (native C++ compiler)

ASCI Pacific Blue (native compilers)

ASCI Red TFLOP (Portland Group compilers)

SGI 02K (native compilers)

IBM SP2 (native compilers)

Meiko CS-2 MPP (KAI C++ compiler)

HP workstations (native and gnu compilers)

SGI workstations (native and gnu compilers)

DEC alpha workstations running Digital Unix (native, gnu, and KAI C++ compilers)

DEC alpha workstations running Linux (gnu compilers)

Sun Solaris workstations (native and gnu compilers)

Intel x86 processors running Linux (gnu compiler)

Intel x86 processors running Windows NT 4.0 (MS compilers).

The basic development environment and target platforms are UNIX systems, although
building and running ISIS++ on other platforms is a relatively straightforward matter
based on our experience so long as adequate compilers are available. Naturally, the
distributed-memory components are not available without MPI.

F The installation scripts that are distributed with ISIS++ are targeted at UNIX
systems. Essentially, the installation involves running a configure script followed by
“making” the code. The entire process is set up to be run from the root ISIS++ directory,

,
without need to modify any of the lower-level make files. The installation process is aIso
documented on the web site and in the INSTALL file included in the distribution. We
now present the basic installation procedure.

1.

To perform the standard UNIX installation process, carry out the following steps:

From the root ISIS++ directory, type the command “configure”.

This will ask you a couple of questions such as whether to build for serial or parallel
execution, and (if it can ‘t find them) the paths to yours ystemk MPI directory and to
your data files (for when you run the test programs in the drivers directory). Note that
the script first searches the typical paths for auxiliary libraries (MPI, LAPACK,
BLAS) and will only prompt for information if it cannot find the libraries. The default
answers obtained by hitting “Enter” or “Return” at all the prompts are usually
adequate.

Type the command: “make”.

If all went well, you now have the ISIS++ library, located in:

$ISIS_ROOT/lib/$ISIS_ARCH/Iibisis_mpi .a (parallel case)
or $ISIS_ROOT/lib/$ISIS_ARCH/libisis_ser. a (serial case)

where $ISIS_ROOT is the path to the top-level ISIS++ directory and $ISIS_ARCH
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3.

4.

5.

6.

8

represents your computer’s architecture. If it takes more than one attempt to make
library (e.g., because one or more of your path variables was wrong), type the
command “make clean” before trying “make” again, to make sure that all of the
objects get made correctly.

Type the command: “make test”.

the

This will solve the example of section 6. If libisis_mpi.a was compiled this will also
solve a test matrix (extrude_ 1590) using QMR on first one and then two processors.
You can compare the results to those found for extrude_1590 in the file

$ISIS_ROOTMrivers/vefify. The problem should converge in 600-700 iterations.

If there is still difficulty with the build after several attempts at using the configure
script, the file $ISIS_ROOT/make. options can be edited directly. make. options is
generated by the configure script. Here the compiler, linker, and library options can
Demanually custotmzeci. 1ne autnors would lllfe to lcnow or
make. options when ISIS++ is ported to a new platform.

Type the command “make install”.

This will install the libraries and headers in /usr/local/isis++.

, 1, ,. , -. ., ... ..,.

“ any changes necessary

You may need root
privileges to complete this step. If you specified a different installation path to
configure, the libraries and headers will go there instead.

To compile against ISIS++ headers, the flag required is –1/usr/local/isis++, and the
include statement is

#include cisis-mpi .h> // if you have MPI

or
#include <isis-ser.h> // if you don’t have MPI.

To linkagainstthe library,give the fullpath to the ISIS++ library,e.g.,

/usr/locallisis++/lib~INUX/libisis-mpi.a

where you substitutethe name of your architecture for LINUX.

overall Schema
The class hierarchy used to implement ISIS++ follows a patter of single inheritance,
shown below.

class Map

class Aztec_Map : public Map

Class IntVector

to

as
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.

*

class Seq_IntVector : public IntVector

class Dist_IntVector : public IntVector

class Vector

class Aztec_Vector : public Vector

class Se~Vector : public Vector

class Dist_Vector : public Vector

class Matrix

class BDCRS_Matrix : public Matrix

class Rowllatrix : public Matrix

class AztecDMSR_Matrix : public RowMatrix

class AztecDVBR_Matrix : public RowMatrix

class CRS2_Matrix : public RowMatrix

class DCRS_Matrix : public RowMatrix

class RsDCRS_Matrix : public RowMatrix

class RsRDCRS_Matrix : public RowMatrix

class RsSCRS_Matrix : public RowMatrix

class SCRS_Matrix : public RowMatrix

class LinearEquations

class Preconditioned

class Composed_PC : public Preconditioned

class Diagonal_PC : public Preconditioned

class Identity_PC : public Preconditioned

class Poly_PC : public Preconditioned

class RowPreconditioner : public Preconditioned

class BlockJacobi_PC : public RowPreconditioner

class CGNE_BlockJacobi_PC : public RowPreconditioner

class CGNE_Diagonal_PC : public RowPreconditioner

class CGNE_Poly_PC : public RowPreconditioner

class CGNR_Poly_PC : public RowPreconditioner

class SAILS_PC : public RowPreconditioner

class SPAI_PC : public RowPreconditioner

class Solver

class IterativeSolver : public Solver

class BiCGStab_Solver : public IterativeSolver

class CGNE_Solver : public IterativeSolver

class CGNR_Solver : public IterativeSolver

class CGS_Solver : public IterativeSolver

class CG_Solver : public IterativeSolver

class DefGMRES_Solver : public IterativeSolver

class FGMRES_Solver : public IterativeSolver

class GMRES_Solver : public IterativeSolver

class QMR2_Solver : public IterativeSolver

class QMR_Solver : public IterativeSolver

class CCS_Matrix

class CRS_Matrix
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class DenseMatrix

class RsCRS_Matrix

class IntArray

class DenseVector

class GlobalIDArray

class CommInfo

class Mvcomm

class MVConununicator

class LocalCormData

class hash_tables

template<class T> class SmartArray // to disappear soon

9 Changes from ISIS++ VI.0
The changes from version 1.0 are small, involving two new preconditioners and new
member functions in several classes. The preconditioners are Composed_PC and
SAILS_PC. The changes to class member functions areas follows:

Map
constructor for rectangular matrices.
initComplete/isInitComplete, to support matrix assembly protocols.
numGlobalRows, numGlobalCols replace function no, which is deprecated.
globalStartRow, globalEndRow, globalStartCol, globalEndCol.

Matrix
put(s) to fill the nonzeros of a matrix with values.

Vector
random, to generate uniform reals between O and 1.
norml, to compute the one-nom of a vector.

Poly_Pc
isMatrixFree, to return boolean value of matrix usage,

SCRS_Matrix, RsSCRS_Matrix
nonZeros, to return the entry count of the sparse matrix.
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