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CHAPTER 1. INTRODUCTION

In case of many supercooled liquids, when the temperature is decreased rapidly from the

liquid state, a glass rather than the crystalline solid forms. When the temperature approaches

the glass transition temperature Tg, the viscosity of the system reaches an extremely large

value(∼ 1013 Poise). Traditionally, two different approaches are adapted for explaining this

nonequilibrium glassy behavior, a thermodynamic approach and a kinetic approach.

In the thermodynamic approach, the glass transition temperature is determined by analyz-

ing thermodynamic variables such as the specific volume,the specific heat or the entropy. Fig.

1.1 shows the entropy versus temperature. Below the melting temperature TM , rapid quench-

ing leads to a supercooled liquid instead of a crystal. The limit of supercooling of a liquid is

attained when the entropy of the liquid becomes equal to the entropy of the crystal. For a

typical glass forming liquid, below this limit, we encounter an ”entropy crisis”: the entropy of

the liquid becomes lower than the entropy of the crystal. (1) This limit temperature of super-

cooling, TK , is called ”Kauzmann temperature”. In other words, the Kauzmann temperature

TK is a thermodynamic limit for the glass transition. The actual glass transition, where the

viscosity becomes extremely large(typically 1013 Poise), happens before TK .

One of the prevailing kinetic approach to glassy behavior is the mode coupling theory

(MCT). (2) (4) In MCT, the glassy behavior emerges from ergodicity breaking. In ergodic

phases such as an equilibrium liquid, the system can explore the entire phase space. However, in

nonergodic phases such as a glass, the system is trapped in one of the local minima. Ergodicity

breaks down. When we define the Fourier transform of the correlation function of density

fluctuations Fq(t) = limt→∞
1
T
〈ρq(t)ρ−q(0)〉 , the criterion for glassiness is
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Figure 1.1 Entropy versus temperature. TK and Tm are Kauzmann tem-
perature and melting temperature respectively. Below TK , we
encounter an ”entropy crisis”, the so called ”Kauzmann para-
dox”.
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lim
t→∞Fq(t) = 0, liquid

lim
t→∞Fq(t) 6= 0, glass (1.1)

MCT theory predicts the temperature TA, at which dynamical self arrest sets in. At

the temperature TA, the viscosity η has a power law of divergency η ∼ |T − TA|−γ and the

barrier between local minima diverges. (3) In general, the temperature TA is not identical to

the actual glass temperature Tg. Rather it is known that TA > Tg, which means below TA,

activated relaxation, ignored in the MCT, still continues and the system finally falls out of

equilibrium at Tg.

Figure 1.2 Time dependence of the correlation function obtained using
mode coupling theory for a 3-dimensional Coulomb frustrated
Ising ferromagnet (5)

Fig. 1.2 shows density fluctuation function Fq(t) versus time. At higher temperature,

T >> TA, the correlation function Fq(t) shows a simple exponential decay. At T > TA, the

correlation function Fq(t) shows a slow decay to make a plateau, which demonstrates the slow
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dynamics of particles trapped in the cage of its nearest neighbors. As time increases, the

trapped particles finally escape from the cage and decay to zero. At T = TA, the density

fluctuation function Fq(t) does not decay to zero and saturates into a non-zero value at our

laboratory time scale. The particles are arrested kinetically in the cage of nearest neighbors.

In the viewpoint of statistical mechanics, ergodicity break down at T = TA. In MCT, the

glass transition is a dynamical transition from ergodic phase into nonergodic phase. (5) (4)

(3) The dynamic and thermodynamic descriptions of glasses are not contradictory description

of glassy physics. It has been shown that the MCT temperature TA is precisely the same

temperature, where an exponentially large number of metastable states emerges, leading to an

extensive configurational entropy. Thus, the self arrest at TA has a clear meaning in terms of

the thermodynamic description of glass.

The problem in the theory of glass is that the theoretical description of classical liquids

with strong hard core repulsion leads to major difficulties to perform controlled calculation

for either the liquid and glassy state of these systems. However, a number of ”soft materials”

also show glassy behavior but allow a more controlled theoretical description. For example,

major progress of the equilibrium theory of microemulsions and block copolymers has been

made during last decade. Based on these results, a theory for glassy behavior of such system

will be developed in this thesis.

A microemulsuion consist of oils, waters and surfactants. Oil and water phase separate at

low temperatures, an effect which can be altered by adding amphiphilic surfactant molecules

like soap or lipids. Depending on the nature of the surfactant and its volume fraction, complex

inhomogeneous structures occur. (8) These are caused by the competition between short-

ranged forces between oil and water, favoring the separation of uniformly condensed phases,

and stoichiometric constraints due to the surfactant which energetically frustrate this separa-

tion. Examples of such structures are emulsions, which are non-equilibrium colloidal suspen-

sions, and microemulsions in which oil and water are intertwined in complex structures but are

at equilibrium with respect to overall phase separation. The former consist of macroscopically

large droplets or bicontinuous networks of oil and water separated by monolayer interfaces of
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amphiphiles. Microemulsions, on the other hand, are composed of self-organized mesoscopic

structures often in form of lamellae. These strongly correlated fluids are of great scientific and

technological interest: they present extreme materials properties, like ultra-small surface ten-

sions. Related phases are essential for the stability of cell membranes, formed by phospholipid

molecules; applications of range from medicine to biomolecular assemblies such as the Golgi

apparatus, to food science in the preparation of sauces, and to petroleum industry, just to

name a few prominent examples. Many of the mesoscale structures found in these amphiphilic

systems are extremely long lived while the macroscopic mechanical properties may resemble

those of a soft solid, as in ”stiff mayonnaise”. Sometimes this may arise from phases with true

broken translation symmetry, like smectics. In other cases the system may not exhibit any

clear broken symmetry. The latter would then be analogous to a glass. Light and neutron

scattering reveal the hallmarks of glassy motions also on the mesoscopic scale of a variety of

amphiphilic assemblies. (9) (10) (11)

Block copolymer systems, i.e. macromolecules built of sequences of chemically distinct

repeat units so called monomers, are of particular interest due to the phenomenon of microphase

separation and the resulting formation of complex ordered structures and change in their

macroscopic mechanical properties. (13) (12) (30) (16) For example, a diblock copolymer

melts consisting of blocks of A and B monomers are chiefly characterized by the Flory-Huggins

parameter

χ = vAB − 1
2

(vAA + vBB) , (1.2)

which characterizes the segregation strength between A and B monomers and is inversely pro-

portional to the temperature. Here, vss′ is a measure for the short distance repulsion between

s and s′ monomers (s, s′ = A or B) in units of kBT . For large enough χ, i.e. at low temper-

ature, phase separation into A-rich and B-rich regions occurs. (12) These regions are limited

in size due to the covalent bond between the blocks resulting in the phenomena of microphase

separation. Another parameter which determines the behavior of a diblock copolymer is the

total degree of polymerization S. For large S, the reduction of the contacts between A and

B monomers leads to phase separation due to a loss of entropy. (29) The phase state of a
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block copolymer depends on the product of χ and S. (12) In particular, in case of equal

length of the A and B blocks, the system develops lamellar order with a period. The transi-

tion between the mixed and microphase separated state (lamellar phase) is via a fluctuation

induced first order transition originally proposed by Brazovskii. (14) (13) The observation of

this transition in poly(ethylene-propylene)-poly(ethylethylene) diblock copolymers of approx-

imately equal persistence length is probably the most convincing experimental verification of

the Brazovskii scenario of weak crystallization. (16) Complex inhomogeneous structures in

block copolymer system are caused by the competition between short-ranged repulsive forces

between monomers, favoring macroscopic phase separation, and long range interaction between

different blocks due to a chemical bond which energetically frustrate this macroscopic phase

separation. (30)

Telechelic polymer is one of the simple example of associating polymers. Telechelic polymers

are comprised of the water soluble chains with hydrophobic end groups. The association

between the end groups is due to weak interactions such as hydrogen bonding. (31) (32) The

thermoreversible association between hydrophobic end groups leads to aggregates and physical

networks. Associating telechelic polymers are of technological importance in cosmetics, and

oil recovery and applied to peptide synthesis, enzyme modification and solid rocket propellant.

(33) The structure of telechelic polymers has a form of symmetric ABA triblock copolymer

with extremely small volume fraction of f . In this telechelic polymer, there is an additional

competition between phase separation and molecular association at end groups. (34) Small

angel neutron scattering (SANS)and rheological investigation reveals the glassy behaviors in

diblock copolymers (16) and in gels. (17) (18) (19)

In the next chapter, the electrostatic model for microemulsions and the density functional

theory for block copolymers in equilibrium state will be reviewed. In chapter 3, replica approach

for nonrandomness and self-generated glass of Brazovskii model will be discussed. In chapter

4, the nonequilibrium physics of microemulsion and block copolymers, the main result of this

thesis, will be discussed.
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CHAPTER 2. EQUILIBRIUM THEORY OF MICROEMULSION AND

BLOCK COPOLYMER SYSTEMS

2.1 Charge frustrated Ising model for microemulsions

Water and oil are immiscible. They are thermodynamically unstable. When we add a suffi-

cient amount of surfactant, oil and water becomes miscible and forms a thermodynamical stable

phase. The surfactant is comprised of a polar head group(soluble in water) and hydrophobic

tail group(soluble in oil). The role of the surfactant is to reduce the interfacial energy between

water and oil molecules to stabilize two different phases. (8) Water-oil-surfactant systems are

called a microemulsions, in which small droplets of water is dispersed in a continuous phase of

oil. (20) The various types of microstructure (lamellar, bicontinous and more complex struc-

ture) depends on the temperature, the volume fraction and the chemical component of the

surfactant f and the pressure, which is shown by low angle X-ray crystallography and small

angel neutron scattering experiment. (21) (20)

In this chapter, we will review the charge frustrated Ising model to describe the various

phases of a microemulsion. The charge frustrated Ising model is based on the Landau-Ginzburg

functional motivated by Stillinger’s density functional approach. (22) (24) (23) (25) Also, the

Landau-Ginzburg density functional of a charge frustrated Ising model can be derived by

local gauge theory. (26) By analyzing the Landau-Ginzburg functional, the various phases

of a microemulsion will be investigated as a function of the volume fraction of surfactant f ,

water-oil size a and the temperature.

The oil-water-surfactant system is described by the charge frustrated Ising model. (23).

The frustrated Ising model in zero external field is applied to water-oil-surfactant system with
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the same concentration of oil and water molecule. The model Hamiltonian for a microemulsion

system is given by

H = −1
2

∑

ij

JijSiSj − µ
∑

i

ti +
q2

2

∑

i6=j

VijSiSjtitj . (2.1)

Si = ±1 indicates whether a lattice site i is occupied by a polar or hydrophobic species and

ti = 1, 0 indicates whether this species belongs to the surfactant molecule. In analogy to the

Coulomb interaction, a fictitious positive (negative) charge is assigned to hydrophobic(polar)

species of the system. Vij is Coulomb interaction induced by surfactant. The frustrating charge

q is given by

q = (3/4πβρsr
2
s)

1/2, (2.2)

where β = 1/kT and ρs is the number density of surfactants. rs is the typical distance between

hydrophobic and hydrophilic groups within surfactant. (25) (22) µ controls the relative amount

of surfactant. The nearest neighbor interaction Jij is defined as

Jij = J for rij = a

= 0 otherwise. (2.3)

a corresponds to a lattice spacing, i.e. the typical size of water or oil molecules, which we

assume to be similar. In real system, a corresponds to approximately 3Å. (8) Fig. 2.1 shows

the charge frustrated Ising model on the lattice.

The ti fields can be traced out by using a Hubbard-Stratonovich transformation, which

yields

Z ∼
∑

Si

e
β
2

∑
ij JijSiSj

∫
DΦe−SI [Φi,Si], (2.4)

where

SI [Φi, Si] =
1
2

∑

jk

Φj

(
βq2V

)−1

jk
Φk −

∑

j

ln
[
1 + zeiΦjSj

]
. (2.5)

In Eqn. 2.5, the fugacity z, is defined as z = eβµ. Making a Gaussian approximation on

SI [Φi, Si] and integrating out the Φi degree of freedom we get

Z ∼
∑

Si

e
β
2

∑
ij UijSiSj , (2.6)
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Figure 2.1 Illustration of the charge frustrated Ising model for wa-
ter-oil-surfactant

where

Uij = Jij − 6faT

r3
s

∫
ddk

(2π)d
eik·rij

(
4πq2

q2
D + k2

)
(2.7)

with qD =
√

6
rs

. f is the volume fraction of surfactant. qD is Debye wave vector with screening

length. The long range interaction has Coulombic character, since the chemical binding be-

tween head group and tail group of the surfactant can be regarded as a local electroneutrality

condition. (22) The effective problem corresponds to a competition between a short range fer-

romagnetic interaction and long range antiferromagnetic ordering. This frustration will play

a critical role to form the glass in a microemulsion, which will be discussed in chapter 4. The
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partition function is calculated as

Z =
∑

Si

e
β
2

∑
ij UijSiSj

∼ N−1

∫ ∏
idφie

−β
2

∑
ij U−1

ij φiφj


 ∑

Sj=±1

eβ
∑

j φjSj




∼
∫ ∏

idφie
−βS(φi), (2.8)

where βS(φi) is given by

βS(φi) =
β

2

∑

ij

U−1
ij φiφj −

∑

i

ln

( ∑

S=±1

eβφiS

)

=
β

2

∑

ij

U−1
ij φiφj −

∑

i

ln (2 coshφi) . (2.9)

Using − ln (2 coshx) ∼ (− ln 2)− 1
2x2 + 1

12x4, it follows:

βS(φi) =
β

2

∑

ij

U−1
ij φiφj − β2

2

∑

i

φ2
i +

β4

12

∑

i

φ4
i (2.10)

Within a mean field theory, the order parameter is given by

mi = tanh(βφi), (2.11)

where ∂S(φi)/∂φi|φi
= 0. The free energy can now be expressed as a functional of mi.

F [mi] =
1
2

∑

i

[(1 + mi) ln(1 + mi) + (1−mi) ln(1−mi)]− 1
2

∑

ij

Uijmimj

=
1
2
(T − T 0

c )
∑

i

m2
i +

T

12

∑

i

m4
i −

1
2

6faT

r3
s

∫
ddk

(2π)d

∑

ij

eik·rij

(
4πq2

q2
D + k2

)
mimj

(2.12)

Here, T 0
c (= 3σa2) is oil-water demixing temperature in case of f = 0, i.e. without surfactant.

It can be expressed as a function of the oil-water surface tension σ. In the continuum limit,

Eqn. 3.28 is written as

F [ρ(x)] =
1
2

∫
ddx{r0ρ

2 + [∇ρ]2 +
u

2
ρ4}+

Q

8π

∫
ddx

∫
ddx

′ ρ(x)ρ(x′)
|−→x −−→x ′|e

|−→x−−→x ′|qD , (2.13)
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where we used a rescaled field ρ =
√

σa

2
m. ρ(x) characterizes pesudo-charge degree of freedom

with ρ(x) > 0 in a water, ρ(x) < 0 in a oil region and 〈ρ(x)〉 = 0 on the average. Since we deal

with the same amount of the oil and water molecules, only the quartic term is relevant to the

free energy. The bare mass r0 and the frustration strength Q are given by

r0 = − 6
a2

Q =
36ft

r3
sa

. (2.14)

t is a reduced temperature (t =
T

T 0
c

). This is the Landau-Ginzburg density functional for a

microemulsion.
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2.2 Gauge theory for microemulsions

There exists an interesting analogy between the energy functional for a microemulsion and

a local gauge theory. Inorder to demonstrate this, we start from:

F =
1
2

∫
ddx[

(
(∂µ +

g

2
τAµ)ϕα

)2
+ r0ϕ

2
α +

1
2
uϕ4

α + (−1
2
FµνF

µν)], (2.15)

where α is index for to water and oil molecules which runs from 1 to 2. µ runs form 1

to 3. (= x, y, z) The field ϕ is defined as ϕ(x) = (ϕ1(x), ϕ2(x)), which corresponds to the

density fields of water oil molecules in a microemulsion. And the vector potential Aµ in QED

corresponds to an effective interaction between the surfactant and water-oil molecules. (26).

g is a coupling constant for the interaction. τ is the generator of SO(2) and given as

τ =




0 −1

1 0


 . (2.16)

r0 and u are the bare mass and the coupling constant in the ordinary ϕ4 theory. The SO(2)

transformation is a rotations around the average density fields (ϕ0
1, ϕ

0
2) in 2 dimension. The

partition function is given as

Z =
∫
DADϕ exp

{
−1

2

∫
ddx[((∂µ + gτAµ)ϕα)2 + r0ϕ

2
α +

1
2
uϕ4

α + (
1
2
FµνF

µν)]
}

. (2.17)

Introducing the current field jµ(x), the partition function is given as

Z =
∫
DADϕ exp{−1

2

∫
ddx

[
S0 + Aµ(x)(−∂2gµν + ∂µ∂ν

+2g2gµνϕα(x)ϕα(x))Aν(x)− jµ(x)Aµ(x))
]}, (2.18)

where the current jµ(x) is defined as −g[(∂µϕα) τϕα] and gµν is delta function δµν . Among the

four component of vector field, two are fixed: A0 = 0, and, using Coulomb gauge,
−→∇ · −→A = 0.

Then we have only two degree of freedom and it corresponds to transverse component. The

partition function reads
∫
DADϕ exp

{
−1

2

∫
ddx

[
S0 + Aµ(x)(−∂2 +

g2

4
ϕα(x)ϕα(x))Aν(x)− jµ(x)Aµ(x)

]}

∼
∫
DA exp

{
−1

2

∫
ddx

[
Aµ(x)(−∂2 +

g2

4
< ϕ2

α(x) >)Aν(x)− jµ(x)Aµ(x)
]}

(2.19)
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where we used ϕ∗α(x)ϕα(x) as average value
〈
ϕ2

α(x)
〉

=
[
ϕ0

1(x)
]2 +

[
ϕ0

2(x)
]2.

For the effective interaction between water and oil molecules which is mediated by the

surfactant, the surfactant field(Aµ) is integrated out. Using the Gaussian integral,

∫
Dxe−

1
2

(xiAijxj)+jixi = exp(
1
2
[j(A)−1

ij j]), (2.20)

the integral over the gauge field is straightforward and yields:

∫
DA exp

{
−1

2

∫
ddx

[
Aµ(x)(−∂2 +

g2

4
< ϕ2

α(x) >)Aν(x)− jµ(x)Aµ(x)
]}

= exp[−1
2
Tr ln(−∂2 +

g2

4
〈
ϕ2

α(x)
〉
)]. (2.21)

This leads to the partition function.

Z(j) = Z(0) exp
∫

ddx ddx′
1
2
[j(x)G(x− x′)j(x′)]. (2.22)

The two point correlation function is then determined by the functional derivative

1
Z(0)

δ2Z(j)
δj(x)δj(x′)

= G(x− x′) (2.23)

and is given as

G(x− x′) =
∫

d3q

(2π)3
1

(q2 + g2

4 〈ϕ2
α(x)〉)

eiq(x−x′) (2.24)

=
1

4π(x− x′)
e−m(x−x′), (2.25)

where m is given as g2

4

〈
ϕ2

α(x)
〉

= m2. Using this result, we finally obtain the partition function

Z =
∫
Dϕe−

1
2

∫
ddx[S0] exp

{∫
ddx ddx′

1
2
[j(x)

1
4π(x− x′)

e−m(x−x′)j(x′)]
}

. (2.26)

When we consider the fluctuation field ψ(x) as ϕ0(x) + ψ(x), then j(x)j(x′) can be expressed

as 2× 2 matrix form of g2

4 ψα (x)Wψα(x). W is given by

W =




[
ϕ0

1(x)
]2 −ϕ0

1(x)ϕ0
2(x)

−ϕ0
1(x)ϕ0

2(x)
[
ϕ0

2(x)
]2


 . (2.27)
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It follows, ψ2
1(x) + ψ2

2(x) = 0. This condition is what we used for water and oil density field.

Also, this condition is found for block copolymer as incompressibility condition. Then, the

partition function is given as

Z =
∫

Dϕexp

[
−1

2

∫
ddx[S0]− Q

8π

∫
ddxddx′

e−m(x−x′)

(x− x′)
ϕα(x′)ϕα(x)

]
(2.28)

with Q = g2 g

2
(
[
ϕ0

1(x)
]2 +

[
ϕ0

2(x)
]2). This result is the same with Eqn. 2.13. The mass

acquirement in particle physics is expressed as Debye-Hückel theory in the chemistry. (26)
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2.3 Phase diagrams in equilibrium state

To analyze the equilibrium phases of a microemulsion, we should investigate the correlation

function of the system. Within mean field theory, the density-density correlation function of

the model, G(q) = T−1 〈ρqρ−q〉 is given by

G(q) =
1

r + q2 +
Q

q2 + q2
D

. (2.29)

where r, r0 + u 〈ρ〉2, is the renormalized ”mass” of the theory. G(q) can alternatively written

as

G(q) =
q−2
D

α2
+ − α2−


 α2

+ − 1(
q

qD

)2
+ α2

+

− α2− − 1(
q

qD

)2
+ α2−


 , (2.30)

where

α2
± =

1
2
(

r

q2
D

+ 1)∓
√

1
4

(
r

q2
D

− 1
)2

− Q

q4
D

. (2.31)

After some algebra, Eqn. 2.30 can be written as

G(q) =
q2 + q2

D

(q2 − q2
m)2 + (2qm/ξ)2

, (2.32)

where the modulation length lm = 2π
qm

and the correlation length ξ are defined as lm = 1
α− ,

ξ = 1
α+

. The Fourier transform of Eqn. 2.32 gives a correlation function in a real space. If we

approximate q ∼ qm in the nominator in Eqn. 2.32, we find:

G (x) =
q2
m + q2

D

8πqmx/ξ
e−x/ξ sin(

2πx

lm
). (2.33)

Eqn. 2.33 explains why lm is the modulation length and ξ the correlation length of the mi-

croemulsion. Depending on the ratio of two length scales, a modulated state, a homogeneously

mixed state and, a state with macroscopic phase separation occur.

In what follows we analyze the mean field equation r(T ) = r0 + uT
∫ d3q

(2π)3
G(q) self consis-

tently and determine α+ and α−. This enables us to determine the phase boundaries between

the various phases. The phase diagram of model Hamiltonian 2.13 for different values of rs/a

in the equilibrium state are plotted in Fig. 2.2 and Fig. 2.3 respectively. In the emulsion
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phase, oil and water are macroscopically separated. And in the microemulsion phase, oil and

water are intertwined with each other to form bicontinuous phase or lamellar phase. On the

other hand, in the homogeneously mixed or disordered phase, there is no definite structure.

Each transition lines in Fig. 2.2 and Fig. 2.3 are obtained by solving the mean field equation,

r(T ) = r0 + uT

∫
d3q

(2π)3
G(q), (2.34)

where u = −2π2r0
T 0

c Λ
and Λ is cut off momentum. G(q) is defined as Eqn. 2.30. The line 3 in

Fig. 2.2 and Fig. 2.3, the macroscopic separation of oil and water, is obtained by α2− = 0

and positive real α2
+, which means the modulation length, lm, goes to infinity with the finite

correlation length ξ in real space. From the Eqn. 2.31, the transition into uniformly ordered

state is fulfilled when r(T ) = − Q
q2
D

from Eqn. 2.31. Then, the mean field equation leads to

− Q

q2
D

= r0 − 2π2r0

Λ
T

T 0
c

∫
d3q

(2π)3
q−2
D

α2
+ − α2−


 α2

+ − 1(
q

qD

)2
+ α2

+

− α2− − 1(
q

qD

)2
+ α2−


 . (2.35)

Changing the integral variable q
qD

= x, q2 = q2
Dx2 and dq = qDdx,

− Q

q2
D

= r0 − r0
T

T 0
c

qD

α2
+ − α2−

∫ Λ/qD

0
dss2

(
α2

+ − 1
s2 + α2

+

− α2− − 1
s2 + α2−

)
. (2.36)

When we define the integral

F (z) =
qD

Λ

∫ Λ/qD

0
dx

x2

x2 + z2
= 1− qDz

Λ
tan−1

(
Λ

qDz

)
, (2.37)

Eqn. 2.35 can be written as

− Q

q2
D

= r0 − r0
T

T 0
c

1
1− Q

q4
D

(
F (α2

+)
(
α2

+ − 1
)

+ 1
)
, (2.38)

where we set Λ = 1 and α2− = 0 and α2
+ = 1 − Q

q4
D

. Defining G(x) = F (x)(x − 1), the mean

field equation is written as

Tc

T 0
c

=
r0 + Q

q2
D

r0

1− Q
q4
D

G(
√

1− Q
q4
D

) + 1
. (2.39)

The reduced temperature tc is defined as tc = Tc/T 0
c . We can solve the Eqn. 2.39 self

consistently for the reduced temperature tc as a function of f, rs and a. with Eqn. 2.14. In a
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similar way, the line 1 and line 2 can be obtained by complex α2− and α2
+ in a homogeneous

mixed state. In this state, the modulation length lm goes to infinity and the correlation length

ξ goes to zero. The condition of complex α2− and α2
+ is fulfilled at r(T )

q2
D

= 1 − 2
√

Q
q4
D

and

r(T )
q2
D

= 1 + 2
√

Q
q4
D

respectively from Eqn. 2.31. Introducing the dimensionless parameter ε,

ε =
r − q2

D

r + q2
D

√
4Q(

r − q2
D

)2 − 1. (2.40)

α2± can be expressed as

α2
± = lim

ε→0
(

r

q2
D

+ 1)(1∓ εi)

= lim
ε→0

(
1−

√
Q

q4
D

)
(1∓ εi)

= lim
ε→0

Γ(1∓ εi), (2.41)

where we set
(
1−

√
Q
q4
D

)
as Γ. Then, α2

+ − α2− is given by

α2
+ − α2

− = − lim
ε→0

2Γεi. (2.42)

For the transition line 2, the mean field equation can be written as

1− 2

√
Q

q4
D

=
r0

q2
D

+ lim
ε→0

r0

q2
D

T

T 0
c Λ

∫ Λ

0
dqq2 q−2

D

2Γεi


 α2

+ − 1(
q

qD

)2
+ α2

+

− α2− − 1(
q

qD

)2
+ α2−




=
r0

q2
D

+ lim
ε→0

r0

q2
D

T

T 0
c

G(Γ− Γεi)−G(Γ + Γεi)
2Γεi

=
r0

q2
D

− r0

q2
D

T

T 0
c

G′(Γ), (2.43)

where G′(Γ) denotes d
dx

(
1− qD

√
x tan−1

(
1

qD
√

x

)
(x− 1)

)
. The mean field equation is written

as
T

T 0
c

=
−q2

D + 2
√

Q + r0

r0G′(Γ)
. (2.44)

In a same way, the transition line 1 from the microemulsion state into the homogeneous mixed

state at higher temperature is given as

T

T 0
c

=
−q2

D − 2
√

Q + r0

r0G′(∆)
, (2.45)
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where ∆ = 1 +
√

Q
q4
D

. The remarkable aspect of the phase diagram is the expansion of the

microemulsion region with the increase of the surfactant length. The surfactant plays a role as

catalyst of mixing water and oil molecules to form the intertwined structures. The uniformly

ordered phase emerges at relatively low temperature in the presence of the enlarged surfactant.

The first term of model Hamiltonian, Eqn. 2.13 describes a short range interaction in the

analogy of Ising model, which favors the uniform phase. However, the second term is a long

range interaction to disturb the uniform phase. The competition between these two opposite

interactions supplies the microemulsion system with a mechanism for frustration. This will

lead to glassy behavior under certain conditions. This glassy behavior of a microemulsion will

be discussed in chapter 4.
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Figure 2.2 The phase diagram of the model Hamiltonian 2.13 with
rs/a = 10 in equilibrium state.



20

Figure 2.3 The phase diagram of the model Hamiltonian 2.13 with
rs/a = 20 in equilibrium state.
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2.4 Density functional theory of block copolymers

In this section, we will review of density functional theory for block copolymer. Block

copolymer are made by the covalent bonding of two(diblock) or more polymer chains. (29).

Block copolymers show various morphologies(lamellar, bcc, hexagonal phase· · · ) depending on

three physical parameters: the Flory-Huggins parameter, χ, the degree of polymerization, S,

and the volume fraction f in bulk or in solution. The microstructures of block copolymers

are explained successfully by Leibler’s density functional theory in the weak segregation limit.

Leibler obtained the universal value (χS)MST ∼ 10.5 for microphase separation for symmetric

diblock copolymer. (12) According to his mean field theory, for symmetric diblock copolymer

f = 0.5, a lamellar mesophase undergoes a second order transition from the disordered state.

However, experimentally for the symmetric diblock copolymers, the lamellar mesophase is

known to undergo a first-order transition by the experiment. (15) This contradiction was

solved by Fredrickson and Helfand. (13) They made the composition fluctuation correction to

Leibler’s result and obtained (χS)MST ∼ 10.5 + 41S−1/3, which was more consistent with the

experiment. In addition, it was shown in Ref. (13) that the transition is fluctuation induced

first order transition predicted by Brazovskii. (14) (12) In what follows, we summarize the

approach used in Ref. (12) (13), needed to develop a theory of glassiness in such systems.

We consider N polymer chains (n = 1, ..., N) of asymmetric type ABC triblock copolymers,

each consisting of S segments (n = 1, ..., S). The relevant degrees of freedom of the polymer

are the positions (in d-dimensional space) of the segments Rn,s. We define the composition

values of A block polymer and C block copolymer as f = SA
S and g = SB

S , respectively. The

geometries of the diblock copolymer (g → 0) and symmetric ABA triblock copolymer(g → f)

are special cases of the asymmetric ABC triblock copolymer as Fig. 2.4.

The polymers are characterized by a Gaussian statistical weight and an additional excluded

volume pseudo-potential

HE =
d

2

∑
n,s

(
Rn,s+1 −Rn,s

b

)2

+
1
2

∑

s,s′;n,n′
υs,s′δ

(
Rn,s −Rn′,s′

)
. (2.46)

b is the characteristic persistence length of the polymer and υ the strength parameter of the
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Figure 2.4 The geometry of triblock copolymers. When g → f, it reduces
to a symmetric ABA triblock copolymer. Also when g → 0, it
reduces to a diblock copolymer. 1, 2 are labels for monomers
in A block and B for monomers in B block.
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excluded volume interaction (with dimension of a volume).

To solve the Edward Hamiltonian for block copolymers, it is useful to analyze the condi-

tional partition function

Z [φA, φB] =

〈 ∏

γ=A,B

δ (φγ (q)− ργ (q))

〉E

, (2.47)

where ργ (r) =
∑γ

n,s δ (r−Rn,s) is the particle density of the block A and of block B. The

particle density field ργ (r) is replaced by collective field variables φγ (r) . The average with

respect to this Hamiltonian is given by 〈...〉E =
∫

DR... exp(−HE)∫
DR exp(−HE)

. Averages with respect to the

purely Gaussian distribution with υ = 0 are denoted as 〈...〉W where HW = HE (υ = 0) refers

to a pure Wiener measure.

Next we assume that the system is incompressible in the sense that the total density of the

system does not vary in space:

ρA (r) + ρB (r) = ρ0 =
SN

V
. (2.48)

In our calculation, we assume equal persistence lengths of A and B polymers. ρ0 has a

dimension of ∼ b−3. The incompressible condition enables us to express the density variation of

the A-block in terms of the density variation of the B-block Ψγ (r) = φγ (r)−〈ργ (r)〉W. By an

incompressible condition, we have Ψ (r) = ΨA (r) = −ΨB (r) . Then Ψ (r) > 0 corresponds to

an excess of A-monomers whereas Ψ (r) < 0 refers to an excess of B-monomers. In particular

one obtains very simple expression for the excluded volume interaction in terms of the field Ψ:

Vev [Ψ] = −χ

∫
ddrΨ(r)2 , (2.49)

where Flory-Huggins parameter χ is defined as 2υAB − (υAA + υBB).



24

2.4.1 Tranformation to collective coordinate

The partition function of the system is defined by Z =
∫

DφADφA exp (−S [φA, φB]), the

effective action of these density fields S [φA, φB] = − log Z [φA, φB] .

Z [φA, φB] = exp (−Veff [φA, φB])

〈 ∏

q,γ=A,B

δ (φγ,q − ργ,q)

〉W

, (2.50)

where the average need only be performed with respect to the bare Wiener measure. Veff [φA, φB]

is an interaction term between two different polymer chains. By introducing the integral rep-

resentation of the delta function, the partition function can be expanded in powers of ργ

Z [φA, φB] = exp (−Veff [φA, φB])
∏

γ=A,B

∫
Djγ exp

(
i

∫
ddq

(2π)d
φqjγ,−q

)

×
∞∑

n=0

(−i)n

n!

∑
γ1

...
∑
γn

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Sγ1...γn

n (q1...qn) jγ1,−q1 ...jγn,−qn . (2.51)

The integrals over j goes from −i∞ to i∞ and Sγ
n (q1...qn) denotes the n-the moment of the

density field with respect to the Wiener measure Sγ
n (q1...qn) = 〈ργ1

q1 ...ρ
γn
qn〉W . The logarithm

of the moments corresponds to the cumulant expansion allowing us to rewrite

W [jA, jB] = log
∞∑

n=0

1
n!

∑
γ1

...
∑
γn

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Sγ1...γn

n (q1...qn) jγ1,−q1 ...jγn,−qn

=
∞∑

n=0

1
n!

∑
γ1

...
∑
γ1

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Sγ1...γn

c,n (q1...qn) jγ1,−q1 ...jγn,−qn , (2.52)

where Sγ1...γn
c,n (q1...qn) are the connected correlation with

Sγ1γ2
2,c (q1,q2) = Sγ1γ2

2 (q1,q2)− Sγ1
1 (q1) Sγ2

1 (q2) . (2.53)

The partition function is given as

Z [φA, φB] = exp (−Veff [φA, φB])
∏

γ=A,B

∫
Djγ exp

(
W [jA, jB] + i

∫
ddq

(2π)d
φγ,qjγ,−q

)
.

(2.54)

By introducing a density fluctuation field

Ψγ (r) = φγ (r)− 〈ργ (r)〉W , (2.55)
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we obtain the effective potential Γ [ΨA,ΨB] as

Γ [ΨA,ΨB] =
∞∑

n=0

−1
n!

∑
γ1

...
∑
γn

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Γγ1...γn

n (q1...qn)Ψγ1,−q1 ...Ψγn,−qn , (2.56)

where Γ [φA, φB] is transformed via Legendre transformation:

Γ [φA, φB] = W [jA, jB] + i

∫
ddq

(2π)d
φγ,qjγ,−q. (2.57)

Using the fact that Ψγ (r) = ξγΨ(r) with ξA = 1 and ξB = −1 it follows

Γ [Ψ] =
∞∑

n=0

−1
n!

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Γn (q1...qn)Ψγ1,−q1 ...Ψγn,−qn

=
∞∑

n=0

∑
γ1

...
∑
γn

−1
n!

∫
ddq1

(2π)d
...

∫
ddqn

(2π)d
Γγ1...γn

n (q1...qn) ξγ1 ...ξγnΨ−q1 ...Ψ−qn . (2.58)

We obtain only one field variable, Ψ, but nevertheless have to evaluate a set of matrix propaga-

tors in order to determine the correlation function of this single field. The two point correlation

functions for a noninteracting asymmetric triblock copolymer chain is given by

SAA
k =

2S

x4
(e−gx2

+ e−fx2
+ e−x2 − e−(1−f)x2 − e−(1−g)x2

+ e−(1−f−g)x2 − (2− fx2 − gx2)

SBB
k =

2S

x4
(e−(1−f−g)x2 − x2 + (1− f − g)x2)

SAB
k =

S

x4
e−(2+f)x2

(e−(1+f)x2 − e−(2−g)x2
)(2e(1+f)x2 − e−x2 − e(1+f−g)x2

). (2.59)

The two point correlation functions for noninteracting diblock copolymer chains(g → 0) are

given as (12)

SAA
k =

2S

x4
[e−fx2

+ fx2 − 1]

SBB
k =

2S

x4
[e−(1−f)x2

+ x2(1− f)− 1]

SAB
k =

S

x4
[1 + e−x2 − e−(1−f)x2 − e−fx2

]. (2.60)

The two point correlation functions for a noninteracting symmetric ABA triblock copolymer

chains (g → f) are given as (37)

SAA
k =

2S

x4
[2(e−fx2

+ fx2 − 1) + e−(1−2f)x2 − 2e−(1−f)x2
+ e−x2

]

SBB
k =

2S

x4
[e−(1−2f)x2

+ x2(1− 2f)− 1]

SAB
k =

2S

x4
[1− e−fx2

+ e−(1−f)x2 − e−(1−2f)x2
], (2.61)
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where x2 = q2
0R

2
0. R0 is a total gyration length of the block copolymer. In Fig. 2.5, we show

the correlation function Gq for f = 0.25 and different χS.

Figure 2.5 Scattering intensity of diblock copolymer for f = 0.25 is plotted
as a function of q2R2 for three different values of χS. (12)

If χS grows, the correlation function is sharply peaked at ∼ 1/R0. Then, the correlation

function of block copolymer can be expanded around peak position of scattering function.

Gq = (
SBB

k + SAA
k + 2SAB

k

SAA
k SBB

k − (
SAB

k

)2 − 2χ)−1

=
N

F ∗ − 2χS + F ∗∗(qR0 − x∗)2
, (2.62)

where F ∗ = F (x∗, f) and F ∗∗ = 1
2

∂2F (x,f)
∂x2

∣∣∣
x=x∗

. For example for f = 0.5 it holds x∗ ' 1.945

with 1
2F

(
x∗, 1

2

) ' 10.5 and 1
2

∂2F(x, 1
2)

∂x2

∣∣∣∣
x=x∗

' 7.29 for diblock copolymer. In the case of

symmetric ABA triblock copolymer f = 0.25, x∗ ' 2.633 with 1
2F

(
x∗, 1

2

) ' 17.99 and

1
2

∂2F(x, 1
2)

∂x2

∣∣∣∣
x=x∗

' 8.18.

Since the Flory-Huggins parameter is inversely proportional to the temperature, the inter-

action parameter χS = 17.5 corresponds to a lower temperature than χS = 16 or χS = 12.5
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for fixed degree of polymerization S. When we decrease temperature, the scattering inten-

sity increases and finally diverges at χS = 17.6 within mean field theory. The critical value

χS = 17.6 is spinodal point and denoted as (χS)spinodal .

Fig. 2.6 shows the spinodal line of diblock copolymer for different volume fraction f.

Figure 2.6 The spinodal line of a diblock copolymer for different volume
fraction f

Even though we can predict the borderline for ordered state and disordered state as a

function of the interaction parameter χS and the volume fraction f, more information is

required for the prediction of a variety of microstructure of diblock copolymer. The information

lies in the higher order terms. By constructing Landau density functional with the higher

order terms, we can predict the specific phases of diblock copolymer by energy minimization.

In the next section, we will review how to calculate the higher order terms in Landau density

functional.
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2.4.2 The derivation of higher order vertex functions

The higher vertex terms Γ3 and Γ4 can be obtained directly from an effective potential

approach. (35) The free energy in the presence of external source field J is written as

F [J ] = − log Z[J ], (2.63)

where the partition function of the system is given by

Z[J ] =
∫

Dϕ exp[−H − Jϕ]. (2.64)

Using Legendre transformation, we can define a new function as Γ[ϕ(x)], which corresponds

to Gibbs free energy of the system.

Γ[ϕ(x)] = F [J ]−
∫

J(y)ϕ(x). (2.65)

ϕ(x) is a field value at the saddle point. We find there is a relation between the second

derivative of F [J ] with respect to external source fields and the second derivative of Legendre

transformed function Γ[ϕ(x)] with respect to ϕ(x):

(
δ2F [J ]

δJ(x)δJ(y)

)
=

(
δ2Γ[ϕ(x)]

δϕ(x)δϕ(y)

)−1

= S(x, y), (2.66a)

where S(x, y) is two point correlation function between two points x, y in real space. By simple

algebra, the third derivative of F [J ] with respect to external source fields gives us a relation

−Gijk =
∑

lmn

SilSjmSknΓlmn, (2.67)

where Gijk is a three point correlation function and defined as δ3F [J ]
δJ(x)δJ(y)δJ(z) and Γlmn is given

by δ3Γ[ϕ(x)]
δϕ(l)δϕ(m)δϕ(n) . The expansion coefficients in Landau free energy correspond to amputated

diagrams(cutting the external legs in diagram). The amputation is carried by multiplying

S−1
il S−1

jmS−1
kn on both sides of Eqn. 2.7 and summing over the indices l, m, and n. Fig. 2.7

shows the diagrammatic method to calculate the third order vertex function.

The fourth order vertex function is obtained by fourth derivative of F [J ] and Γ with same

amputation procedure. Fig.2.8 shows the diagrams for 4th order vertex function.
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Figure 2.7 3rd order vertex function. The coefficient of the Landau free
energy is the gray diagram without any external line. This is
done by an amputation procedure. (35)

Figure 2.8 Diagramms for the 4th order vertex function (35)
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The results show that

Γ(3)(q1,q2,q3) = −∑
ijkG

(3)
ijk(q1,q2,q3)[S

−1
iA (q1)− S−1

iB (q1)]×

[S−1
jA (q1)− S−1

jB (q1)][S−1
jA (q1)− S−1

jB (q1)]. (2.68)

Γ(4)(q1,q2,q3,q4) =
∑

ijkl

γijkl[S−1
iA (q1)− S−1

iB (q1)][S−1
jA (q1)− S−1

jB (q1)]×

[S−1
kA(q1)− S−1

kB(q1)][S−1
lA (q1)− S−1

lB (q1)] (2.69)

with

γijkl =
∑

q′,mn[Gijm(q1,q2,q′)S−1
mn(q′)Gnkl(−q′,q3,q4)

+ Gikm(q1,q3,q′)S−1
mn(q′)Gnjl(−q′,q2,q4)

+ Gilm(q1,q4,q′)S−1
mn(q′)Gnjk(−q′,q2,q3)]−Gijkl(q1,q2,q3,q4), (2.70)

where S−1
iA (q1) is inverse two point correlation function. The calculation for the three and four

point correlation functions are explained in Appendix A. Fig.2.9 shows the third and fourth

order vertex functions as a function of the volume fraction f .

After these considerations, we are ready to construct the Landau free energy for block

copolymers. The Hamiltonian for block copolymer can be written as

Fblock =
1
2

∫

q
ΨqG−1

q Ψq +
W

3

∫

q,q′
ΨqΨq′Ψ−q−q′ +

U

4

∫

q,q′,q′′
ΨqΨq′Ψq”Ψ−q−q′−q”, (2.71)

where
∫
q denotes

∫ ddq
(2π)d and the integration is performed over momentum space and W and U

are defined as 1
2Γ3,

1
6Γ4. In the vicinity of critical point, 10.5 < χS < 12, the composition profile

of A and B components in block copolymer is sinusoidal. In this weak segregation regime, we

calculate the higher order vertex functions at |q| = q0. Fig. 2.10 shows a composition profile

of block copolymer in the WSL regime.

Fig. 2.11 shows sets of wave vector in the hpc(parallelogram) and bcc(octahedron) struc-
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Figure 2.9 The third and fourth order vertex functions as a function of the
volume fraction f (12)

Figure 2.10 A composition profile of block copolymer in WSL regime (36)
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ture. For hpc and bcc structure in Fig. 2.11, higher order vertex terms are given by

Γhpc
4 (q1,q2,q3,q4) ∼ 18[Γ4(0, 0) + 4Γ4(0, 1)]

Γbcc
4 (q1,q2,q3,q4) ∼ 36[Γ4(0, 0) + 8Γ4(0, 1) + 2Γ4(0, 2) + 4Γ4(1, 2)]. (2.72)

For lamellar phase, higher order vertex functions are given by

Γ3(q1,q2,q3) ∼ Γ3(q0)

Γ4(q1,q2,q3,q4) ∼ 6Γ4(0, 0). (2.73)

Figure 2.11 Wave vector sets in hpc and bcc structure. This structure
determines the higher order vertex function. (37)

The Landau free energy for each structure is minimized in Ψq giving Ψq = 0 in the dis-

ordered state and Ψq = Ψq 6= 0 in the microphases. (37) The correlation function of block

copolymer can be transformed into Brazovskii type correlation function.

Gq =
Z

ε2
0q

2
0 + (q − q0)2

(2.74)
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with the bare mass ε2
0 =

F ∗ − 2χS

F ∗∗x∗2
, q0R0 = x∗ and Z =

S

F ∗∗R2
0

=
6

F ∗∗b2
. Fig. 2.12 shows the

phase diagram of diblock copolymer for different volume fraction within mean field calculation.

The higher order vertex functions are calculated from Eqn. 2.72.

Figure 2.12 The phase diagram of a diblock copolymer for different volume
fraction within the mean field calculation (37)

Especially, the mean field solution predicts that the order-disorder transition of a lamel-

lar mesophase for f = 0.5 is second order(disorder→bcc→hexagonal→lamellar). When the

temperature approaches to order-disorder transition region, the composition fluctuation with

|q| 6= q0 plays an important role. (12) It was known that the fluctuation induces a first or-

der transition for the symmetric case f = 0.5. (14). The Fredrickson-Helfand analysis with

the fluctuation effect demonstrates order-disorder transition of lamellar phase for f = 0.5

undergoes a first order transition(Disorder→Lamellar), which is quite consistent with the ex-

perimental result. Fig. 2.13 shows the order-disorder phase transition of lamellar phase for the

volume fraction f by mean field calculation and the fluctuation effect correction to the mean

field solution.
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Figure 2.13 The phase diagram of a diblock copolymer by mean field cal-
culation and fluctuation correction to the mean field solution.
(16)



35

Qualitatively, the first order transition behavior can be understood using Fig. 2.14. Fig.

2.14 shows the free energy density in Hartree approximation as a function of the amplitude of

lamellar phase. The Hartree free energy density is given by fH(A) = τRA2 + uR
4 A4 + wR

36 A4.

τR,uR and wR are temperature dependent renormalized parameter. (13) (a) in Fig. 2.14 shows

a disordered state with the minimum A = 0. (b) shows a metastable state and (c) shows the

fluctuation induced first order transition with the minimum A = 0 and A 6= 0 at (χS)t. (d)

shows a stable lamellar phase with A 6= 0 below (χS)t. (38)

Figure 2.14 The fluctuation induced first order transition (38)

Quantitatively, the mean field solution is modified by the fluctuation effect as

Gq
−1 =

1
S

[
F (x, f)− 2χS +

c3dλ

S
1/2

Gq0√
S

]
, (2.75)

where S = Sb6/υ2 and b, υ are persistence length and volume. (13) d = 3x∗/2π, c, and λ

are composition dependent coefficients. (13) F (x, f) is defined in Eqn. 2.62. For example,

c = 1.10195, d = 1.8073, and λ = 106.18 for symmetric block copolymer(f = 0.5). (38) From
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the nonlinear equation, (χS)t is given by

(χS)t ∼ 10.5 + 41S
−1/3

. (2.76)

When we set b = 1 and υ = 1=1, (χS)t ∼ 10.5 + 41S−1/3. Fig. 2.9 shows the vertex functions

are inversely proportional to the degree of polymerization number S. Longer polymeric chains

in block copolymer imply the smaller vertex terms, which means that the validity of the

perturbative treatment to block copolymer depends on the chain length of the block copolymer.

This perturbative correction to the mean field theory is safe only for large S( S > 104). (13)

The equilibrium physics of block copolymer is well described by the Brazovskii model, which

motivates to analyze the nonequilibrium properties of it. We expect the nonequilibrium physics

of block copolymers to be deeply relevant to the nonequilibrium properties of Brazovskii model.

In chapter 3, the glassy behavior of Brazovskii model will be discussed.
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2.5 Model for a physically reversible associating polymer

In this section, we consider a physically reversible associating polymer, in which there exists

an attractive hydrophobic interactions between the end segments of ABA type symmetric

triblock copolymer chains. There are two types interactions, the excluded volume interaction

between monomers and the attractive interaction at end segments, which causes a frustration

in a physically reversible associating polymer.

There are two kinds of gels, chemical gel and physical gel. A strong bond such as covalent

bond is involved in a chemical gel, an effect of great importance to vulcanization phenomena.

Destruction of the chemical bonds leads to the denaturation of polymer chains. On the other

hand, the weak chemical bonds such as van der Waals or hydrogen interactions are involved

in making physical gels. Since the bonding interaction is weak (order of kT ), the gelation in

the physical gel is thermoreversible. (39)

The two point correlation functions of symmetric ABA triblock copolymer are adapted in

this associating polymer problem. The number of associations in the system is controlled by

an interaction strength Q. In equilibrium, the partition function is characterized in addition

to excluded interaction term,

Zasscoation = 〈exp(−VP )〉E

VP = −
∑

n1,··· ,np

∑
s1,··· ,sp

U(Rn1,s1 , · · · ,Rnp,sp
)
∏

i,j(i>j)(1− δni,njδŝi,ŝj
), (2.77)

where VP is the potential energy causing the aggregations and The label of the end point

segments ŝ is defined as ŝ = 1 · · · fS and S − fS · · ·S.P is the number of segments which are

joining at a given association. From the definition of interaction energy for the association,

we exclude the self interaction for the same end segments within the same polymer chains

(δni,njδŝi,ŝj
= 1). However, for even the same polymer chains, we allow the association between

a different end segments within the same polymer chain. (δni,nj = 1 & δŝi,ŝj
= 0). Fig. 2.15

shows the dumbbell and backfolding structure of the end to end looping.

As the composition value f of the end point segments increases, we should consider a

backfolding structure despite the entropy penalty comes along with it. (41) (40) In what
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Figure 2.15 The dumbbell and backfolding structure.

follows we consider P = 3 and P = 4. It holds

V3 = −
∑

n1,··· ,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn2,s2,Rn3,s3)
∏

i,j(i>j)(1− δni,njδŝi,ŝj
)

V4 = −
∑

n1,··· ,n4

∑
s1,··· ,s4

U(Rn1,s1,Rn2,s2,Rn3,s3 ,Rn4,s4)
∏

i,j(i>j)(1− δni,njδŝi,ŝj
), (2.78)

where we assumed the form of the three and four body interaction causing the associated

interaction between end segments. We express V3 and V4 in terms of these collective coor-

dinates:density of end segments. We assume that the three body and four body interaction

as

U(R,R,R′′) = u(R−R′)u(R−R′′)

U(R,R′,R′′,R′′′) = u(R−R′)u(R−R′′)u(R−R′′′) (2.79)

and the finite range potential u(r) can be characterized by a strength

Q1/2 =
∫

d3ru(r). (2.80)
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Typical length scale a1(for example, u(r) = Q1/2

a3
1

exp
(−(8π)1/3r/a1

)
). In the limit a1 → 0,

we obtain u(r) = Q1/2δ(0).In case, we obtain u(0) at some point, this has then to be under-

stood as Q1/2δ(0) = Q1/2a−3
1 . The typical size of a single end segment ,lend, has a range of

(
1
6fS

)1/2
b < lend < fSb. Clearly, the characteristic length a1 should be larger than lend for

an actual association. We demand a1/lend = M > 1. Especially, the attractive interaction

between the end segments is originated from a hydrophobic polymers such as poly(styrene) or

HEUR (hydrophobic ethoxylated urethane). (42) The stiffness of the end segments will be an

important factor for the association. In our calculation, we increase M for an effective inter-

action between the end segments of polymer chains instead of changing the persistence length

b of the end point segment. Using the lower estimate for lend,which is the more conservative

constraint on a1, we find

a1 = Mb

(
1
6
fS

)1/2

. (2.81)

The particle density of the end point segments are given as

ρc(r) =
′∑

n,s

δ (r−Rn,s)

ρe(r) =
′′∑

n,s

δ (r−Rn,s) . (2.82)

The
∑′′

n,s summation over only the end point segments s = 1 · · · fS and S−fS. The end point

segments corresponds to A polymer block region and the central part to B block region in a

triblock copolyemr. In this section, we use a notation ρe(r) rather than ρA(r) to emphasize

the end segments. As shown in Appendix C, V3 and V4 can be expressed in terms of ρe(r).

Introducing the density field fluctuation field, Ψ(r) = ρe(r)− ρe and using
∫

ddrΨ(r) = 0, we

obtain V3[Ψ(r)] and V4[Ψ(r)] as

V3[Ψ(r)] = −Q

∫
d3rΨ(r)3 + 3Q(2fSa−3

1 − ρe)
∫

d3rΨ(r)2 + const.

V4[Ψ(r)] = −Q3/2

∫
d3rΨ(r)4 + 4Q3/2(3a−3

1 fS − ρe)
∫

d3rΨ(r)3

+ 6Q3/2(6a−3
1 fSρe − ρe

2 − 10f2S2a−6
1 )

∫
d3rΨ(r)2 + const. (2.83)
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In Fig. 2.16 and Fig. 2.17, we show various types of diagrams and their contributions for

V3 and V4 interactions.

Figure 2.16 The diagrams for V3 interaction

The rescaled free energy for associating polymer in terms of ϕ(r)(= Z−1/2Ψ(r)) can be

written as

Frescaled =
1
2

∫

q
ϕqG−1

q ϕq +
υeff

3

∫

q,q′
ϕqϕq′ϕ−q−q′ +

ueff

4

∫

q,q′,q′′
ϕqϕq′ϕq”ϕ−q−q′−q”,

(2.84)

where the rescaled correlation function G−1
q is defined as like block copolymer system

G−1
q =

1
ε2
0q

2
0 + (q − q0)

2 (2.85)

with only the difference of rescaled vertex coefficients

ueff = Z2U = Z2

(
1
6
Γ4(q0, q0)− 4Q3/2

)

υeff = Z3/2W = Z3/2

(
1
2
Γ3(q0) + 12Q3/2(3a−3

0 fS − ρe)− 3Q

)
(2.86)
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Figure 2.17 The diagrams for V4 interaction

also with

ε2
0 =

F ∗ − 2χeffS

F ∗∗x∗2

χeff = χ− 3Q(2fSa−3
1 − ρe)− 6Q3/2(6a−3

1 fSρe − ρe
2 − 10f2S2a−6

1 ), (2.87)

where the average density of end segments is given by ρe =
2fNS

V
. For a description of 3-

dimensional network between the end segments, we choose Γ3(q1,q2,q3) and Γ4(q1,q2,q3,q4)

as Γ3(q0) and Γ4(q0, q0) since Γ4(q0, q0) makes nonplanar circuit. The effective interaction

coefficients υeff , ueff are the net results of the repulsive excluded volume interaction between

polymer chains and the attractive association between end segments.



42

CHAPTER 3. REPLICA APPROACH TO A GLASSY BEHAVIOR

3.1 Introduction

The purpose of this chapter is to discuss the replica approach for self generated glassiness,

in which the glassiness is generated without quenched randomness. The replica approach

is one of the prevailing method to deal with glassy behavior in glass forming materials. The

replica approach has been applied first in the theory of spin glasses with quenched randomness.

(43) Later on, the replica approach was developed to describe the self generated glassiness in

systems without quenched randomness. (6) At first, the basic concept of the replica approach

to glassiness in the systems with quenched randomness will be discussed. And then, the

replica approach to the self generated glassiness will be explained in detail. The two replica

approaches to glassy systems with and without quenched randomness share the similarity in

that they introduce copies of the system(replicas) in calculating its free energy. Within the

replica scheme for the self generated glassiness, the overlap between two different replicas is

interpreted as long time correlation function. In obtaining long time correlation function,

which is the order parameter of glassiness, two different mathematical techniques are used,

an analytical and a numerical method. The analytical method is self consistent perturbation

theory using Feynman diagrams called the SCSA(self consistent screening approximation). On

the other hand, the numerical method is based on the dynamical mean field theory (DMFT),

which was developed for strongly correlated electrons in transition metals. (52) At the end of

this chapter, the analytical and numerical methods are compared for same model.
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3.2 Replica approach for a system with quenched randomness

As an example of glassiness in case of quenched randomness, we will consider an Ising spin

glass with infinite long range interaction known as Sherrington-Kirkpatrick (SK) model. (44)

The Hamiltonian of the SK model is

H = −1
2

∑

ij

JijSiSj − h
∑

i

Si, (3.1)

where i, j includes all the site. Jij is random interaction between the magnetic materials and

h is external We assume Jij has distribution as

P (Jij) =
(

N

2πJ2

)1/2

exp
[
−N(Jij − J0/N)

2J2

]
, (3.2)

where N is total number of spins and J0 is a mean value. We are interested in the free energy

of the system

F [J ] = −T ln Z[J ]. (3.3)

Since the free energy is an extensive quantity, the self averaging is satisfied. The average is

performed over the distribution of J. Eqn. 3.3 is given as

F = −T

∫
dP [J ] lnZ[J ]. (3.4)

We have to evaluate the average lnZ[J ]. The mathematical trick is to perform this average

based on the identity:

lnZ = lim
m→0

Zm − 1
m

, (3.5)

where m is a replica index. The average is performed over Zm[J ]. The replicated partition

function for SK Ising model can be written as

[Zm]av = Trs

∫ ∏

ij

dJij

(
N

2πJ2

)1/2

exp


−N(Jij − J0/N)2

2J2
+

β

2

∑

ij,a

JijS
α
i Sα

j + βh
∑

i,a

Sα
i


 .

After some algebra, [Zm]av is written as

[Zm]av = Trs exp


J2β2

8N

(
mN2

)
+

∑

αβ

J2β2

8N

(∑

i

Sα
i Sβ

i

)2

+
βJ0

2N

∑
α

(∑

i

Sα
i

)2

+ βh
∑

i,a

Sα
i


 ,

(3.6)
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where m is dimension of replica space and N is number of spins. We introduce Hubbard-

Stratonovich transform, by which we can decouple a spin interaction at a different site. By

penalty for the transform, we should calculate a spin coupling for a different replica space. we

can express [Zm]av in more simple form as

[Zm]av = exp[mN
1
2

(βJ)2]×
∫ ∞

−∞

∏

αβ

βJN1/2

√
2π

dqαβ
∏
α

(
βJ0N

2π

)1/2

dxα exp[−NG] (3.7)

with

G ≡ 1
2
N (βJ)2

∑

αβ

(
qαβ

)2
+

1
2
NβJ0

∑
α

(xα)2

− log Trs exp


1

2
(βJ)2

∑

αβ

qαβSαSβ + β
∑
α

(J0x
α + h)Sα


 (3.8)

Applying the saddle point method to calculate 3.7, the condition at the saddle points(qαβ
0 , xα

0 )

∂G

∂qαβ
0

= 0 and ∂G
∂xα

0
= 0 leads to

qαβ
0 =

〈
SαSβ

〉
≡ Z̃−1Trs

[
SαSβ expHeff

]

xα
0 = 〈Sα〉 ≡ Z̃−1Trs [Sα expHeff ]

Z̃ ≡ Trs [expHeff ] (3.9)

with the effective Hamiltonian Heff = 1
2 (βJ)2

∑
αβ qαβ

0 SαSβ + β
∑

α(J0x
α
0 + h)Sα. The free

energy density(f = F/N) with the saddle point ( ∂f

∂qαβ
0

= 0 and ∂f
∂xα

0
= 0) is given by

−βf = lim
n→0


1

2
(βJ)2


1− 1

m

∑

αβ

(
qαβ
0

)2




−βJ0

2m

∑
α

(xα
0 )2 +

1
m

log Trs expHeff

]
. (3.10)

The order parameters qαβ
0 and xα

0 are relevant to glassiness and ferromagnetic ordering.

The glass order parameter qαβ
0 depends on the replica index α, β. The simple way of solving

Eqn. 3.10 is to make qαβ
0 replica independent q, which is so called replica symmetric solution
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(RS). In the RS solution, qαβ
0 = q and xα

0 = M, the free energy density in the limit of m → 0

leads to

−βf =
1
2

(βJ)2 (1− q2)− 1
2
βJ0M

2 +
1√
2π

∫ ∞

−∞
dze−

1
2
z2

log cosh η(z), (3.11)

where η(z) = β(J
√

qz +J0M +h). From the condition for free energy density (∂f
∂q = 0 and ∂f

∂M

= 0), we can get the self consistent equation for two order parameters q and M such as

M(T, h) =
1√
2π

∫ ∞

−∞
dze−

1
2
z2

tanh η(z) (3.12)

q(T, h) =
1√
2π

∫ ∞

−∞
dze−

1
2
z2

tanh2 η(z). (3.13)

The phase diagram for Ising SK with infinite range interaction for h = 0 is shown in Fig.3.1.

The line 1 in Fig.3.1 is obtained from q → 0,M = 0. By expanding Eqn. 3.13 with

tanh2 x ∼ x2 − 2
3x4 near by the transition temperature Tf , we have

q ∼ (βJ)2q − 2(βJ)4q2

1 = (βJ)2 − 2(βJ)4q. (3.14)

For small q, the glass transition temperature Tf is given as

Tf = kJ. (3.15)

The line 3 in Fig. 3.1 is obtained from q = 0,M → 0. By expanding Eqn.3.12 with tanhx ∼
x− 1

3x3 near by the magnetic transition temperature Tc, we have

M ∼ MβJ0 − 2
3
M3β3J3

0

1 = βJ0 − 2
3
M2β3J3

0 . (3.16)

For small M, the ferromagnetic transition temperature Tc is given as

Tc = kJ0. (3.17)

The line 3 in Fig. 3.1 is obtained from the condition of q 6= 0,M = 0 numerically. However,

SK Ising model has two problems in that the solution is not stable below AT line(Almeida-

Thouless line):eigenvalues of the Hessian matrix Aαβ,γδ ≡ ∂2G
∂qαβ∂qγδ are not positive and entropy
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Figure 3.1 Phase diagram of the Ising SK model with infinite range inter-
action for h = 0(27)(44)
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is negative, which requires us to find another solution beyond mean field calculation.(45) AT

line is obtained from the inequality
(

1
Jβ

)2

>
1√
2π

∫
dze−

1
2
z2

Sech4 [β(J
√

qz + J0M + h)] (3.18)

with Eqn. 3.12 and Eqn. 3.13. (45) More accurate solution is found by replica symmetry

breaking (RSB) schemes. (46) The RSB solution is replica permutation breaking solution. In

the replica symmetric solution(RS), the order parameter matrix qαβ
0 in m ×m replica space

has all the same elements q0. The RSB strategy is to divide m × m replica matrix into

m/m1×m/m1(m/m1 is integer for m ≥ m1 ≥ 1) and replace q0 by q1 in the diagonal block in

one step RSB. Fig. 3.2 shows one step and two step RSB schemes. q0 in the block diagonal is

replaced by q1 and the elements of the off diagonal block are not changed in one step RSB. And

the same procedure is repeated with m1×m1 block diagonal submatrix. In this case, m1×m1

replica matrix is broken into m1/m2 ×m1/m2(m1/m1 is also integer for m ≥ m1 ≥ m2 ≥ 1)

and replace q1 by q2 in the diagonal block in two step RSB.

Figure 3.2 Iterative procedure for the construction of the matrix qαβ (47)

This iterative procedure can be repeated infinitely. Finally, in the limit m → 0, we have
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0 ≤ m1 ≤ m2 · · · ≤ 1. mi become not integer but continuous value xi by analytic continuation.

The order parameter qi also becomes a continuous function q(x) for the interval 0 ≤ x ≤ 1.

The analysis of eigenvalues with RSB schemes show that there are no negative eigenvalues,

which proves the Parisi solution is marginally stable for all the fluctuation (48). The instability

below AT line and negative entropy problems in SK model for zero magnetic field are cured by

RSB schemes. (27) Summarizing the replica steps to glassiness with quenched randomness, at

first we calculate the replicated partition function [Zm]av with saddle point method. And then

one write down the saddle point equation ∂G

∂qαβ
0

= 0 and Hessian matrix ∂2G
∂qαβ∂qγδ . In next step,

we make an ansatz for qαβ, for example, one step RSB as like Fig. 3.2, to plug this ansatz to

saddle point equation and the Hessian matrix. The check of the stability of eigenvalues in the

limit of m → 0 becomes the final step of the replica calculation. (49) The above procedure

for replica approach can be applied to the glassiness without quenched randomness with the

main difference of m → 1. In next section, we will discuss about the replica approach for the

system without quenched randomness.
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3.3 Replica approach for a system without quenched randomness

The theoretical approach to glassiness without and with quenched randomness is com-

plwtely quite different. A widely accepted view is that the system gets trapped in local

metastable states for very long time and can therefore not realize a considerable part of the

entropy of the system, called the configurational entropy Sc = logNms, where Nms is the num-

ber of metastable states. (68) (69). If Nms is exponentially large with respect to the size of the

system, Sc becomes extensive and equilibrium thermodynamics cannot be applied anymore.

There are several theoretical approaches which offer a solution to this breakdown of equilibrium

many body theory. On the one hand one can solve for the time evolution of correlation and

response functions, an approach which explicitly reflects the dynamic character of the glassy

state. Mostly because of its technical simplicity, an alternative (but in many senses equivalent)

approach is based on a replica theory. (6)(7) Even though this approach does not allow to

calculate for the complete time evolution, long time correlations as well as stationary response

functions can be determined which are in agreement with the explicit dynamic theory. We

will use the replica approach because of its relative simplicity. A simple example of ergodicity

breaking occurs in ferromagnetism. As shown in Fig. 3.3, the spin up region and spin down

region is separated by a large barrier that diverges with the system size. Ergodically averaging

the magnetization for spin up and spin down region gives us zero. However, after applying

an infinitesimal external field to the system to select only the spin up region like Fig. 3.3, we

obtain finite magnetization. Thus, an external field can select one of the various states in the

system. After the thermodynamic limit N → ∞, one can then take the limit h → 0 and the

magnetization becomes finite.

The only half of the state, which is on one side from barrier, contributes to the physical

observable. (28). Basically, the replica approach for the self generated glassiness adapts the

similar scheme in the ergodicity breaking in ferromagnetic case. In this section, we will discuss

the mathematical technique of this replica approach to the self generated glassiness.
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Figure 3.3 Ergodicity breaking in ferromagnetic system

The partition function in the presence of the ergodicity breaking field is given as

Z̃[h] =
∫

dφe−βH[φ,h]. (3.19)

And we choose the following form for this additional field:

H[φ, h] = H[φ] +
g

2β

∫
dx [φ(x)− h(x)]2 , (3.20)

where g > 0 is a coupling constant. Usually, we have to take the limit g → 0 after the ther-

modynamic limit. When the external field lies nearby the bottom of a well of the unperturbed

free energy, the exponential term, g
2β

∫
dx [φ(x)− h(x)]2, becomes most dominant. Therefore

we can find a useful information about the free energy landscape by scanning the entire space

of the configurations of the external field h(x). (6)

The free energy density for such a local metastable configuration is given by

f̃ [h] = − 1
β

log Z̃[h]. (3.21)

The random external field leads to a number of ground states, which introduce the con-

cept of probability for the configurations p̃[h]. The probability p̃[h] has a form of Boltz-
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man factor exp[−βf̃ [h]] which is justified from maximizing the configurational entropy Sc(=

− ∫ Dhp̃[h] log p̃[h]). The weight average of the free energy density is given as

F̃ = − lim
g→0

1
β

∫ Dhp̃[h]f̃ [h]∫ Dhp̃[h]
(3.22)

= − lim
g→0

1
β

∫ DhZ̃[h] log Z̃[h]∫ DhZ̃[h]
. (3.23)

The mathematical trick to integrate log Z̃[h] is to use the following identity:

∂

∂m
log

(∫
DhZ̃m[h]

)
=

∫ DhZ̃m[h] log Z̃m[h]∫ DhZ̃m[h]
(3.24)

which leads to the result:

F̃ = − lim
g→0

1
β

∫ DhZ̃[h] log Z̃[h]∫ DhZ̃[h]

= − lim
g→0

1
β

∂

∂m
log

(∫
DhZ̃m[h]

)∣∣∣∣
m→1

. (3.25)

Defining F (m) as

F (m) = − lim
g→0

1
mβ

log
(∫

DhZ̃m[h]
)

= − lim
g→0

1
mβ

log
(∫

Dh exp[−mβf̃ [h]
)

(3.26)

with

Z̃m[h] =
∫

dmφ exp

[
−

m∑

α=1

H[φα, h]

]
, (3.27)

where α is replica index, the typical free energy of metastable state can be derived from

F̃ =
∂mF (m)

∂m

∣∣∣∣
m=1

. (3.28)

Also, the configurational entropy Sc can be calculated as

Sc = −
∫
Dhp̃[h] log p̃[h]

= −
∫
DhZ̃[h] log Z̃[h]. (3.29)

Using
∫ Dhp̃[h] = 1, the configurational entropy Sc is given as

Sc =
m2

T

∂F (m)
∂m

∣∣∣∣
m=1

. (3.30)
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The Eqn. 3.28 and 3.9 can be derived from pseudo thermodynamics by replacing β by mβ.

Defining Teff = T/m, the configurational entropy can be expressed as

F = F̃ (Teff )− TeffSc. (3.31)

As the system is quenched, it is not equilibrated at T . Rather it is described by its own

characteristic temperature Teff . As an analogy with the ordinary thermodynamics, F̃ (Teff ) is

considered as internal energy U. From the simple relation of thermodynamics, Eqn. 3.28 and

Eqn. 3.9 are equivalent to

F̃ = −T 2
eff

∂( F
Teff

)

∂Teff
, Sc = − ∂F

∂Teff
. (3.32)

The replicated integration
∫ DhZ̃m[h] in Eqn. 3.26 can be performed using Gaussian integral

easily. We expand [φα(x)− h(x)]2 and perform an integration over the ergodicity breaking

field h(x).

∫
dmφ exp

[
−

m∑

α=1

H[φα]− g

2

∫
dx

m∑

α=1

φ2
α(x)

]

×
∫
Dh exp

[
−g

2

∫
dx

m∑

α=1

[
h2(x)− 2h(x)φα(x)

]
]

. (3.33)

The integration over h(x) leads to

∫
Dh exp

[
−g

2

∫
dx

m∑

α=1

[
h2(x)− 2h(x)φα(x)

]
]

=
∫
Dh exp

[
−gm

2

∫
dxh2(x) + g

∫
dx

m∑

α=1

h(x)φα(x)

]

= C exp[
g

2m

∫
dx

m∑

α,β=1

φα(x)φβ(x)]. (3.34)

Finally, we have

∫
DhZ̃m[h] =

∫
dmφ exp


−

m∑

α=1

H[φα]− g

2

∫
dx

m∑

α=1

φ2
α(x) +

g

2m

∫
dx

m∑

α,β=1

φα(x)φβ(x)


 .

(3.35)
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Thus, the typical free energy of metastable state F (m) up to an irrelevant constant is

F (m) = − lim
g→0

1
mβ

log
∫

dmφ exp

[
−

m∑

α=1

H[φα]− g

2

∫
dx

m∑

α=1

φ2
α(x) +

g

2m

∫
dx

m∑

α=1

φ2
α(x)

+
g

2m

∫
dx

m∑

α,β 6=1

φα(x)φβ(x)


 . (3.36)

In Eqn. 3.36, the overlap term between two different replica, g
2m

∫
dx

∑m
α,β 6=1 φα(x)φβ(x),

appears. As in case of the usual replica theory, we consider m to be an arbitrary integer

numbers and perform the analytical continuation to arbitrary m at the end. To investigate the

physical meaning of the replica coupling, we consider the correlation function in replica space

Gαβ(q) = 〈φα(q)φβ(−q)〉 . The Dyson equation in replica space can be written as

G−1
αβ(q) = G−1

0 (q)δαβ + Σαβ(q)− g

m
(3.37)

where G−1
0 is bare propagator and includes g − g

m . Σαβ(q) is a self energy in replica space

and can be decomposed into a diagonal part and off diagonal part in replica space such as

Σαβ(q) = ΣK(q)δαβ + ΣF (q). We then construct the correlation function in replica space

Gαβ(q) with a diagonal part and off diagonal part such as

Gαβ(q) = K(q)δαβ + F (q) (3.38)

where K(q) is a response function and is defined as K(q) ≡ G(q)− F (q). This ansatz corre-

sponds to one step RSB as mentioned in section 3.2. Eqn. 3.38 has an inverse relation of Eqn.

3.37. Using the inverse matrix in replica space, we have

G−1(q) = G−1
0 (q) + ΣG(q)

F (q) = G(q)− 1
G−1(q)−m(ΣF (q)− g

m)
(3.39)

with ΣG(q) ≡ ΣK(q)+ΣF (q). For example, in case of the microemulsion problem in chapter 2,

the original Hamiltonian is given as Eqn. 2.13. The renormalized diagonal correlation function

G(q) is given as

G(q) =
1

r + q2 + Q
q2+q2

D

+ g − g

m
. (3.40)
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The replica scenario for self generated glass sets m → 1 and g → 0 at the end of calculation

as like the ergodicity breaking in ferromagnetic case. In the limit of m → 1 and g → 0, the

two correlation functions in replica space becomes

G(q) =
1

r + q2 + Q
q2+q2

D

F (q) = G(q)− 1
G−1(q)− ΣF (q)

. (3.41)

When ΣF (q) = 0, the off diagonal function F (q) goes to zero. However, despite of g → 0,

the nonzero ΣF (q) makes F (q) nonzero, which signals self generated glassiness. The physical

meaning of two correlation functions in replica space can be interpreted as

G(q) = 〈φq(t)φ−q(t)〉 : instant correlation function

F (q) = lim
t→∞ 〈φq(t)φ−q(0)〉 : long time correlation function. (3.42)

The off diagonal correlation function can be obtained by analytical and numerical method. In

next two sections, these two different methods will be discussed.
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3.4 DMFT (Dynamical mean field theory) - numerical method

The major problem of the replica theory to self generated glassiness is the determination

of the partition function Z (m). Even for the liquid state (i.e. m = 1 and g = 0 at the outset)

this is a very hard problem without known exact solution and we are forced to use computer

simulations or to develop approximate analytical theories. In developing such an approximate

theory we take advantage of the fact that glass forming systems are often driven by strong

local correlations, as opposed to the pronounced long ranged correlations at a second order

phase transition or the critical point of the liquid-vapor coexistence curve. This is probably

most transparent in the mode coupling theory of undercooled liquids where a given molecule

is locally caged by its environment built of other molecules.

Calling a physical system local does not necessarily imply that its correlation function

is rapidly decaying in space. In the language of many body theory it only implies that the

irreducible self energy Σ (k) ' Σ is independent of momentum. Here, Σ is related to the

correlation function G (k) = 〈φ(k)φ(−k)〈 via Dyson equation

G (k)−1 = G0 (k)−1 − Σ. (3.43)

If we consider the emergence of glassy states we have to use the replica theory and Eqn. 3.43

becomes an (m×m) matrix equation with Gαβ(q) = 〈φα(q)φβ(−q)〉 , G0
αβ(q) = G0(q)δαβ as

well as self energy matrix Σαβ.

Traditionally, the self energy is introduced because it has a comparatively simple structure

within perturbation theory. However, in the theory of strongly correlated Fermi systems it

has been recognized that a momentum independent self energy allows conceptually new, non-

perturbative insight into the dynamics of many body systems. (51) (52) We will adopt the

main strategy of this dynamical mean field theory to our problem.
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3.4.1 DMFT theory

In a solid state physics, despite a good understanding of the weakly correlated electrons in

a metal and the localized electrons in an insulators, it is hard to properly describe transition

metals such as vanadium, iron and their oxides since the electrons on flat narrow d and f

orbitals feel a strong Coulomb repulsion. (50) As one of the effective Hamiltonian to describe

correlated electrons, the Hubbard Hamiltonian is widely used in a condensed matter physics.

The Hubbard Hamiltonian is given by

H = −
∑

〈ij〉,σ
tij(c+

iσcjσ + c+
jσciσ) + U

∑

i

ni↑ni↓, (3.44)

where tij and U represent electron hopping term between site i, j and on-site(local) Coulomb

interaction respectively. σ is a spin index. The competing interaction between a kinetic

hopping term and local repulsive Coulomb term controls the physical properties. Even though

the Hubbard model has a simple and intuitive picture, the model is only solvable exactly

in one dimension. To understand the physics in two and three dimension, it is inevitable

to make proper assumptions even for numerical calculations such as exact diagonalization

method and quantum Monte Carlo method, which leave some controversial problems. (52)

The DMFT is one candidate method even for the nonperturbative region. In a classical spin

model, for example, Ising model, the mean field solution becomes exact in the limit of large

spatial dimension d → ∞ or in the limit of large coordination number Z → ∞. In this limit,

the fluctuations in the ”bath” of the surrounding neighbors become negligible, such that the

Ising model reduces to a single-site problem. The surrounding of any site is completely is

described by a single effective mean field parameter hMF (Weiss field). The Ising Hamiltonian

becomes purely local. (51) In DMFT, the spatial fluctuations freeze out by making the spatial

dimension or coordination number large. However, in quantum system, we should consider the

local quantum fluctuation, i.e. the fluctuation of neighboring spins as a ”bath”, which is not

frozen. In the case of the quantum system, the Weiss field becomes a function of time instead

of constant in a classical case. That is the main difference between the classical and quantum
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case. The kinetic energy part of the Hubbard Hamiltonian is given as

Ekinetic = −t
∑

〈ij〉,σ
c+
iσcjσ =

∑

k,σ

εkn̂kσ, (3.45)

where n̂kσ = c+
iσciσ. The energy dispersion εk is given as εk = −2t

∑d
i=1 cos ki. The density of

state(DOS) Nd(E) =
∑

k δ(E − εk) for d →∞ by central limit theorem is given by

Nd(E) → 1
2t
√

πd
exp

[
−

(
E

2t
√

d

)2
]

. (3.46)

The only nontrivial DOS is obtained by the proper scaling of

t → t∗√
2d

. (3.47)

(53)

The transition nonvanishing amplitude between nearest neighbor
〈
c+
iσcjσ

〉 ≡ gij,σ, should

take the form of O( 1√
d
) since the order of the hopping term t ∼ O( 1√

d
) and O(d) for

∑
〈ij〉,σ .

This property gives us an interesting feature of the irreducible self energies in d → ∞. As a

simple example, Fig.3.4 shows the 2nd order irreducible self energy Σ(2) in Coulomb repulsive

energy U. (51) Since the order of the transition amplitude has O( 1√
d
), Σ(2) has a form of

∑
〈ij〉,σ O(1

d)3/2 ∼ O( 1√
d
), which vanishes in d → ∞. The diagrams comprised of more than

two paths for i 6= j collapsed to a single site and the diagrams survives only for i = j. (51) (52)

(54) Since the irreducible self energy becomes a local quantity, we have an important result

for the irreducible self energy.

The self energy becomes momentum independent.

Σij,σ(ω) = Σii,σ(ω) for d →∞. (3.48)

The Fourier transform reads

Σk,σ(ω) = Σσ(ω) for d →∞. (3.49)

In the case of classical problem, the self energy in d →∞ becomes a number. The purpose

of this section is to combine DMFT with replica method for self generated glass.
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Figure 3.4 collapsed irreducible self energy in 2nd order in U . (51)

3.4.2 Application of the DMFT to glasses

Returning to the replica problem to self generated glassiness, F (m) determines the con-

figurational entropy and the average free energy of the system. We use the fact that the free

energy F (m) determined by Eqn. 3.36 can be written as (55) (56)

F (m) =
1
2
tr log

(
G−1

0 − Σ
)

+
1
2
tr (ΣG) +

1
2
Φ [G] , (3.50)

where the trace goes for each q-point over the (m×m) matrix components together with a

sum over q. The latter can also be written as a matrix trace of real space functions G (x,x′)

etc. The functional Φ [G] is well defined in terms of Feynman diagrams as the sum of skeleton

diagrams of the free energy. In what follows we will not try to calculate Φ but merely use the

fact that such a functional exists. From the definition of Φ it follows that it determines the

self energy via functional derivative:

Σαβ

(
x,x′

)
= − δΦ [G]

δGβα (x′,x)
. (3.51)
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Since we made the assumption that Σ is momentum independent, Fourier transformation yields

Σαβ (x,x′) = Σαβδ (x− x′). Thus, the functional derivative, Eqn. 3.51, vanishes if x 6= x′,

which implies that for a local theory, Φ solely depends on the local, momentum averaged,

correlation function,

Gαβ =
∫

ddq

(2π)d
Gαβ (q) . (3.52)

Since all our interactions, V [φ] are (by assumption) local as well, we conclude that there

exists a local problem with Hamiltonian

H =
∑

αβ

φαJαβφβ + ad
0

∑
α

V [φa] , (3.53)

which has an identical functional Φ [G] of its own correlation function G, which is also a

(m×m) matrix but does not depend on position or momentum. a0 is a typical microscopic

length scale, for example a hard core diameter and need be specified for each system. Even

though, H has no spatial structure anymore, the perturbation theory up to arbitrary order is

the same for both system. This holds for an arbitrary choice of the so called Weiss field, J .



60

3.4.3 Derivation of Weiss field by cavity method

In the mapping the original lattice problem into local problem, we adapt a cavity method

for fulfilling this purpose. The cavity method was developed for describing the short range

interaction effect near Tc in a mean field theory by Onsager. We consider the action Sloc of

local space in ϕ4 model at first since this cavity method is easily extended to ϕ3.

Sloc =
1
2
ϕoJϕo +

uloc

4
ϕ4

o, (3.54)

where ϕo is a localized field at the origin and the uloc is a local coupling constant for ϕ4

theory. As mentioned in the previous section, the purpose of this procedure is to solve the

local problem rather than the original lattice problem. In case of a block copolymer, we can

assume that the monomers of polymer are located on the lattice. In the lattice problem, the

action Slattice in the ϕ4 continuum model is given as

Slattice =
1
2

∫
ddxddx′ϕ(x)g(x− x′)−1

0 ϕ(x′) +
u

4

∫
ddxϕ(x)4, (3.55)

where g(x − x′)0 is non-interacting Green’s function and d is a dimension. And this action,

Slattice, of the lattice problem in the continuum model also can be written as

Slattice =
a2d

0

2

∑

i,j

ϕig
−1
ij,0ϕj +

uad
0

4

∑

i

ϕ4
i

=
1
2

∑

i,j

ϕiG
−1
ij,0ϕj +

uad
0

4

∑

i

ϕ4
i , (3.56)

where G−1
ij,0 is defined as a2d

0 g−1
ij,0. Within the cavity method, Slattice can be expressed as the

sum of actions at o site and the environment.

Slattice = So +
∑

i6=o

toiϕoϕi + S(o), (3.57)
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where So is the action at o site and S(o) is the action when the o site is removed. And toi is a

coupling term between o site and the environment and given by

So =
1
2
ϕoG

0−1
oo ϕo +

uad
0

4
ϕ4

o

S(o) =
1
2

∑

i,j 6=o

ϕiG
0−1
ij ϕj +

uad
0

4

∑

i 6=o

ϕ4
i

toi ≡ G0−1
oi

∆S =
∑

i6=o

toiϕoϕi. (3.58)

The partition function Zlattice of the lattice problem is then given as

Zlattice =
∫
Dϕe−Slattice

=
∫
Dϕo

∫ ∏

i6=o

Dϕie
−So−∆S−S(o)

=
∫
Dϕoe

−So

∫ ∏

i 6=o

Dϕie
−S(o)−∆S

= Z(o)

∫
Dϕo

〈
e−So−∆S

〉(o)
, (3.59)

where
〈
e−So−∆S

〉(o)is the average value when the o site is removed. Expanding exp(−∆S)

with respect to toi, we have

〈
e−So−∆S

〉(o) ∼ e−So(1−
∑

i6=o

toiϕo 〈ϕi〉(o) +
1
2

∑

i,j 6=o

toitojϕoϕo 〈ϕiϕj〉(o) + · · · ). (3.60)

If the expectation value 〈ϕi〉(o) = 0 for ϕ4, it follows

〈
e−So−∆S

〉(o) ∼ e−So(1 +
1
2

∑

i,j 6=o

toitojϕoϕo 〈ϕiϕj〉(o) + · · · )

= e−So(1 +
1
2

∑

i,j 6=o

toitojϕoϕoG
(o)
ij +

1
4!

∑

i,j,k,l 6=o

toitojtoktolϕoϕoϕoϕoG
(o)
ijkl + · · · ),

(3.61)

where G
(o)
ij is the non interacting Green’s function in the absence of o-site. In the case

of ϕ3 interaction, 〈ϕi〉(o) 6= 0. In this case, we have extra terms in the expansion as like
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−
∑

i 6=o

toiϕo 〈ϕi〉 ,−1
2 [

∑

i6=o

toi 〈ϕi〉]2ϕoϕo. This extra term requires an introduction of new Weiss

fieldH, which is defined as
∑

i 6=o

toi 〈ϕi〉 . By power counting in d →∞ dimension,
∑

i,j,k

toitojtokG
(o)
ijk

(for i = l) and
∑

i,j,k,l

toitojtoktolG
(o)
ijkl should vanishes. Based on the power counting,

〈
e−So−∆S

〉(o)
= e−So(1 +

1
2

∑

i,j 6=o

toitojϕoϕoG
(o)
ij ). (3.62)

Reexponentiating Eqn. 3.62 (which is correct up to second order)

〈
e−So−∆S

〉(o)
= exp(−So +

1
2

∑

i,j 6=o

toitojϕoϕoG
(o)
ij ). (3.63)

We find the relation between Sloc and Slattice

Sloc = So −
∑

i,j 6=o

toitojG
(o)
ij

=
1
2
ϕoJϕo +

uloc

4
ϕ4

o, (3.64)

where the Weiss field J is given as

J = G
0−1
oo −

∑

i,j 6=o

toitojG
(o)
ij . (3.65)

Since G
(o)
ij is the non-interacting Green’s function in the absence of site o , it’s convenient to

express G
(o)
ij as the Green’s function Gij without the restriction of site o removed. This can be

done by introducing a potential V on site i = o and find the propagator Gij(V ). And then we

can exclude the site by taking the limit V →∞. Gij(V ) is given as

Gij = Gij + GioV Gjo, (3.66)

where V is the repulsive potential at site o. When we analyze the paths which connect site i, j

through site o, it follows.

Gij = Gij + GioV Gjo

= Gij + GioV Gjo + GioV GooV Gjo + GioV GooV GooV Gjo + · · ·

= Gij +
GioV Gjo

1− V G0
oo

. (3.67)



63

By making the potential V at site o infinity, we can create the cavity at site o. Then, we can

express G
(o)
ij as the full Green’s function.

G
(o)
ij = lim

V→∞
Gij(V ) = Gij − GioGjo

Goo
. (3.68)

Then, the Weiss field is now expressed in terms of the full Green’s function which include the

site i = o.

J = G0−1
oo −

∑

i,j

toitoj(Gij − GioGjo

G0
oo

), (3.69)

where the sum over i, j does not need to be restricted, since the contributions either i = o, j = o

or both i = j = o all vanish. Introducing the Fourier transform of Gij ,

Gij =
∑

q

G(q)eiq(ri−rj), (3.70)

we can write

∑

i,j

toitojG
0
ij =

∑
q

∑

i,j

toitoje
iq(ri−rj)G(q) (3.71)

=
∑

q

ε2qG(q),

where εq =
∑

i,j

tije
iq(ri−rj). In a similar way, one finds

∑

i

toiGio =
∑

q

εqG(q)

Goo =
∑

q

G(q). (3.72)

The Weiss field is given as

J = G
0−1
oo −

∑

i,j

toitoj(Gij − GioGjo

Goo
)

= G0−1
oo −

∑
q

ε2qG(q) +

(∑
q εqG(q)

)2

∑
q G(q)

, (3.73)

where ε−1
q = G0(q). Defining ρ(ω) =

∑
q

δ(ω − εq),
∑

q εqG(q) is given by

∑
q

εqG(q) = 1 + ΣGoo. (3.74)
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In a similar way,
∑

q

ε2qG(q) =
∑

q

εq + ad
0Σ(1 + ΣGoo). (3.75)

After some algebra, we can write

J −G0−1
oo = −

∑
q

εq + ad
0Σ + G−1

oo . (3.76)

Since by definition
∑

q εq = G0−1
oo , it follows

J = G−1
oo + ad

0Σ. (3.77)

Eqn. 3.77 holds for ϕ3 model. Thus, the bare propagator at the local site is given in terms

of the full lattice propagator as well as the full self energy of the problem. Following Ref.

(52), we use the freedom to chose J in order to guarantee that G = G. This implies that not

only the functional Φ but also its argument is the same for the actual physical system and

the auxiliary local one. It then follows that the self energy of the original system Σαβ is, up

to trivial prefactor, equal to the self energy of the auxiliary system, ad
0Σαβ . We solely need to

solve the much simpler problem, H, and determine for an assumed the Weiss field J the local

self energy as well as the local propagator related by

G =
(
J − ad

0Σ
)−1

. (3.78)

We made the right choice for J if simultaneously holds that self energy and averaged correlation

function are related by

G =
∫

ddk

(2π)d

(
G0 (k)−1 − Σ

)−1
. (3.79)

If this second equation is not fulfilled we need to improve the Weiss field J until Eqn. 3.78 and

Eqn. 3.79 hold simultaneously, posing a self consistency problem. This is the most consistent

way to determine the physical correlation functions under the assumption of a momentum

independent self energy. It has been applied to a large class of problems in the field of strongly

correlated Fermi systems, but is, as we have demonstrated here, very useful in a rather different

context. The major task of the DMFT is therefore to solve H for given J . This will be done

for the specific choice of a replica symmetric correlation function

Gαβ (q) = K (q) δαβ + F (q) (3.80)
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as well as the self energy

Σαβ = ΣKδαβ + ΣF . (3.81)

Below we will analyze the stability of this choice for a specific example.
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3.4.4 The Brazovskii model of microphase separation

We are now in the position to apply our approach to a specific physical system. We consider

a one component system (L = 1) governed by the three dimensional Brazovskii model (14),

H =
1
2

∫
d3x

(
ε2
0q

2
0φ

2 +
2υ

3
φ3 +

u

2
φ4 +

q−2
0

4
([∇2 + q2

0

]
φ
)2

)
(3.82)

which has a broad range of applicability in systems with microphase separation like the theory

of micro-emulsions (22) (57) (58), block copolymers (12) (13) or even doped transition metal

oxides (59) (61). In Ref. (60) it was even argued that it might be used as a simple toy model

for glass forming liquids. From Eqn. 3.82, it follows the dimensionless bare coupling constants

are given by u/q0 and υ/q
3/2
0 . The bare correlation function follows from Eqn. 3.82

G0 (q) =
1

ε2
0q

2
0 + 1

4q2
0

(
q2 − q2

0

)2

' 1
ε2
0q

2
0 + (q − q0)

2 . (3.83)

The Brazovskii model is interesting because of the large phase space of low energy fluctu-

ations as is evident from the gradient term, ∇2 + q2
0, in the Hamiltonian. All fluctuations

with momenta |q| = q0 can, independent of the direction of q, be excited most easily. The

wave number q0 is related to various physical quantities in all these different systems. In

microemulsions, q0 is determined by the volume fraction of amphiphilic molecules whereas it

is inversely proportional to the radius of gyration in block copolymers and to the strength

of the Coulomb interaction in doped transition metal oxides. Clearly, the role played by the

microscopic length scale a0 of the previous section is q−1
0 . If the self energy is momentum

independent the correlation function has a form like

G (q) =
1

(q − q0)
2 + ε2q2

0

(3.84)

with ε2 = ε2
0 − q−2

0 Σ > 0, which yields G =
∫ d3q

(2π)3
G (q) = q0

2πε .
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3.4.5 DMFT for the liquid state

Ignoring glassiness for the moment, the local Hamiltonian is given by

H =
1
2
J φ2 +

υq−3
0

3
φ3 +

uq−3
0

4
φ4 + hφ, (3.85)

which leads to the partition sum Z =
∫∞
−∞ dφe−H and correlation function

G =

∫∞
−∞ dφφ2e−H

Z . (3.86)

Z and G are elementary integrals and can be expressed in terms of elliptic functions. The

Weiss field which leads to the correct propagator can be obtained as J = ε2
0+2πε−ε2

q0
which,

together with Eqn. 3.85 and 3.86, leads to nonlinear algebraic equation for ε. In addition h is

determined from the condition 〈φ〉 = 0. We have a self consistent nonlinear algebraic equation.

q0

2πε
=

∫∞
−∞ dφφ2e−H

Z
0 =

∫∞
−∞ dφφe−H

Z . (3.87)

The solution of Eqn. 3.87 can be obtained numerically and the results are shown in Fig.3.5

for υ = 0 and Fig. 3.6 for υ 6= 0. In the limit of small ε one finds

∣∣ε2
0

∣∣ =
u/q0

2πε
+ 4πε. (3.88)

In equilibrium behavior, we have made the assumption that no phase transition to a state

with a long range order of 〈φ〉 6= 0 takes place despite that the Brazovskii Hamiltonain 3.82

undergoes a first-order phase transition to an ordered crystal in mean field for υ 6= 0 and

fluctuation induced first order transition for υ = 0. The assumption implies that the fluid

phase has been supercooled below the ordering temperature. In the laboratory this will likely

be a kinetic issue that needs a nucleation theory for quantitative predictions. The results of

Ref. (75), where the nucleation theory of the fluctuation induced Brazovskii transition at υ = 0

was developed, demonstrate that the nucleation kinetics of the model is indeed very complex

and supercooling is possible.
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Figure 3.5 Inverse correlation length versus coupling constant u/q0 for dif-
ferent bare segregation strength ε2

0 = −1 and ε2
0 = −4 for υ = 0.

The dashed line is for Hartree approximation.
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Figure 3.6 Inverse correlation length ε versus coupling constant u/q0 for
different cubic coupling constant υ/q

3/2
0 in a liquid state.
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3.4.6 DMFT in the glassy state

Within the replica theory of the glassy state we have to specify the replica structure of

the correlation function for the original problem as well as for the auxiliary local one. We

first chose a given structure and discuss its stability later. In replica space we start from the

following structure of the propagators and self energies:

Gαβ (q) = K (q) δαβ + F (q)

Σαβ = ΣKδαβ + ΣF . (3.89)

Inverting the Dyson equation leads to:

K (q) =
1

(q − q0)
2 + κ2q2

0

mF (q) =
1

(q − q0)
2 + ε2q2

0

− 1
(q − q0)

2 + κ2q2
0

(3.90)

with

κ2q2
0 = ε2

0q
2
0 − ΣK (q)

ε2q2
0 = ε2

0q
2
0 − ΣK (q)−mΣF (q) . (3.91)

The diagonal elements K (q) + F (q) can be interpreted as the equilibrium, liquid state

correlation function and is only determined by ε which can be related to the liquid state

correlation length ξ ' 1
εq0

. On the other hand F (q) = limt→∞ limt′→∞ 〈φq (t) φ−q (t + t′)〉
characterizes long time correlations in analogy to the Edwards-Anderson parameter. Clearly,

if ΣF 6= 0, κ > ε and F (q) > 0. Depending of whether one considers q values close to or away

from q0, F (q) is governed by the correlation length ξ or the Lindemann length of the glass λ0 =

q−1
0

(
κ2 − ε2

)−1, respectively. The physical significance of λ0 as the length scale over which

defects and imperfections of an crystalline state can wander after long time was discussed in

Ref. (62). Finally, the correlation function K (q) (which is solely determined by the short length

1
κq0

) is the response function of a local perturbation. Obviously, any response of the glassy

system is confined to very small length scales even though the instantaneous correlation length
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can be considerable. This is a clear reflection of the violation of the fluctuation dissipation

relation within the replica approach. Averaging these functions over momenta gives:

K =
∫

d3q

(2π)3
K (q) =

q0

2πκ
.

F =
∫

d3q

(2π)3
F (q) =

q0

2πm

(
1
ε
− 1

κ

)
. (3.92)

The auxiliary local Hamiltonian is

H =
1
2

∑

ab

Jabφaφb +
∑

a

(
υq−3

0

3
φ3

a +
uq−3

0

4
φ4

a + hφa

)
. (3.93)

Within DMFT, we then find for its correlation function

G = Kδab + F. (3.94)

In addition, the Weiss field is given by:

Jαβ = J δαβ − C. (3.95)

These relations can be used to express the Weiss fields in terms of the ε and κ:

J =
2πκ + ε2

0 − κ2

q0

C =
2π (κ− ε) + ε2 − κ2

mq0
. (3.96)

Thus, we have to determine K and F for given J and C and make sure that the latter are

chosen such that G =
∫ d3q

(2π)3
G (q) = q0

2πε is fulfilled. The partition sum of the local problem is

given by

Z (m) =
∫

dmφe−
∑m

α=1 H0[φα]+ 1
2
C(∑

α φα)2

, (3.97)

where H0 [φα] = 1
2J φ2

a + υq−3
0
3 φ3

a + uq−3
0
4 φ4

a + hφa. dmφ refers to the fact that φ is an m-

component vector and the integral goes over an m-dimensional space with arbitrary m. The

coupling between different replicas can be eliminated by performing a Hubbard-Stratonovich

transformation, which leads to

Z (m) =
∫

dλ√
2πC e−

λ2

2C Ω(λ)m , (3.98)
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where

Ω (λ) =
∫

dφe−(H0[φ]+λφ) (3.99)

is the equilibrium partition function however in an external field λ, with Gaussian distribution

function. In order to determine the propagators of the local problem, we consider the sum of

the diagonal elements
∑

a

Gaa = m
(
K + F

)
, (3.100)

which is equal to −2∂ logZ(m)
∂J , yielding

K + F = −2
∫

dλe−
λ2

2C Ω(λ)m−1

Z (m)
√

2πC
∂

∂J Ω(λ) . (3.101)

The derivative with respect to J leads to

∂

∂J Ω(λ) = −1
2

∫
dφe

−
(

1
2
Jφ2+

υq−3
0
3

φ3+
uq−3

0
4

φ4+(h+λ)φ

)

φ2, (3.102)

which gives the final expression for the diagonal element of the replica correlation function

K + F =

∫
dλ√
2πC e−

λ2

2C Ω(λ)m 〈
φ2

〉
λ

Z (m)
(3.103)

with

〈
φ2

〉
λ

=
∫

dφe
−

(
1
2
Jφ2+

υq−3
0
3

φ3+
uq−3

0
4

φ4+(h+λ)φ

)

φ2

Ω(λ)
. (3.104)

In addition we also need to determine the off diagonal elements in replica space of the corre-

lation function. We use
∑

a,b

Gab = mK + m2F , (3.105)

which equals to 2∂ logZ(m)
∂C and obtain an equation which can be used to determine the off

diagonal elements F

K + mF = −
∫

dλ√
2πC e−

λ2

2C Ω (λ)m C−1 〈φ〉λ λ

Z (m)
. (3.106)

Eqn. 3.103 and 3.106 are only independent equations if m differs from 1.

We next analyze these equations for small but finite m−1. This can be done by expanding

Eqn. 3.103 and 3.106 into a Taylor series for small m− 1 and comparing order by order. First
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we consider the zeroth order term and find that both equations yield for m = 1, the results for

the liquid state which determine ε. The next step is to consider the first corrections linear in

m− 1. This can be used to check whether there are nontrivial solutions for κ > ε and thus for

the off diagonal self energy and long time correlation function. The difference between Eqn.

3.103 and 3.106 gives

F =

∫
dλ√
2πC e−

λ2

2C Ω(λ)m (〈
φ2

〉
λ

+ C−1 〈φ〉λ λ
)

(1−m)Z (m)
. (3.107)

Expanding the numerator for m close to 1 gives

F =
δI

Z (m = 1)
(3.108)

with

δI = −
∫

dλ
(C−1 〈φ〉λ λ +

〈
φ2

〉
λ

)
e−

λ2

2C Ω(λ) log Ω (λ)√
2πC . (3.109)

As expected, it follows that F = 0 if κ = ε, where C = 0. This can be seen from the expansion

〈φ〉λ ' − 〈
φ2

〉
λ
λ, valid for small λ and by substituting µ = λ/

√C. It follows

F (κ = ε) ∝
∫

dµ√
2π

e−
µ2

2
(
1− µ2

)
= 0. (3.110)

In addition h is determined from the condition of 〈φ〉 = 0. In Fig. 3.7, we plot the dimensionless

coupling constant u/q0 where a solution with F 6= 0 occurs for the first time. (i.e., at the

dynamic transition to the glass) as a function of the bare phase segregation strength ε2
0 for

υ = 0.
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Depending on the interaction u, there will be some segregation strength beyond which

the system develops nonergodic behavior. The emergence of a self-generated glassy state is

therefore, not a consequence of the perturbation, but is a generic aspect of the mean field theory.

In agreement with Refs. (61) (62), F jumps discontinuously from zero in the liquid state to

a finite value in the glass. In Fig. 3.8, we show the result for the onset of a glassy solution

with F 6= 0. he interesting is the region of glassy behavior increases due to the additional

interaction that destroys the perfect symmetry between φ and −φ in the Hamiltonian. A

glassy state becomes possible already for ε2
0 > 0, i.e., while the liquid is still stable even within

the simplest mean field approach. The effects due to the φ3 interaction are even more dramatic

for the dimensionless inverse correlation length εA at the transition where F 6= 0 for the first

time. The corresponding result is shown in Fig. 3.8. In case of υ = 0, the correlation length at

the transition increases as the interaction between the modes decreases. Most importantly, we

find that there is a nontrivial solution κ > ε. The emergence of a self generated glassy state

was not a consequence of the perturbative solution used in Refs. (61) (62). The calculation is

performed for a temperature T = 1. We can reintroduce the temperature into the calculation

by substituting u → uT . A critical value for u leads to a temperature TA (for fixed u) where

within mean field theory an exponential number of metastable states emerges. In addition we

obtain that at the transition the ratio κA/εA ' 3.5 for υ = 0, which is close to the result

κA/εA = 3, obtained within perturbation theory. However, for υ 6= 0, κA/εA decreases. In

case of a finite υ/q
3/2
0 the transition for u/q0 → 0 remains at a finite value for εA, including a

finite value for κA. Thus, in case of only a moderate additional cubic interaction is the glassy

state strongly stabilized. As υ/q
3/2
0 increases, the behavior changes and the correlation length

at the glass transition has an upper limit (minimum of εA), which is reached if u/q0 ∼ υ/q
3/2
0 .

In the limit of strong interaction u/q0 →∞, we find a limiting value εA ' 0.45. This behavior

is in qualitative agreement with the result obtained with perturbation theory.
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Figure 3.7 Dimensionless coupling constant, u/q0,where a nonergodic state
F 6= 0 occurs as a function of the bare phase segregation
strength ε2

0. Results for different strength of the asymmetric
interaction υφ3 are shown. Finite υ increases the glassy part of
the phase diagram.
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Once the correlation functions are determined we can use the fact that the functional Φ [G]

is the same for the local problem as well as the original one and obtain

F (m) = F (m) +
T

2m

(
tr logG−1 − Tr logG

−1
)

. (3.111)

Here Tr refers to the trace over replicas, but does not include the momentum integration, as

opposed to tr which corresponds to a trace with respect to all degrees of freedom. Finally,

F (m) = − T
m logZ (m) is the counter part of F (m) for the local problem. Using Eqn. 3.9 it

then follows for the configurational entropy

Sc,loc = log Z(1)− 1
Z(1)

∫
dλ√
2πC

e−
λ2

2C (
λ2 − C

2C2
)

∂C

∂m

∣∣∣∣
m=1

Ω(λ)

−
∫

dλ√
2πC

e−
λ2

2C Ω(λ) log Ω(λ) (3.112)

with

∂C

∂m

∣∣∣∣
m→1

= −(ε− κ)(2π(ε− κ) + κ(ε + κ))
q0κ

C =
ε2 − κ2 + 2π(κ− ε)

q0
. (3.113)

As expected, in the limit κ → ε without glassy long time correlations, it follows Z (1) = Ω (0)

as well as ∂Z(m)
∂m

∣∣∣
m→1

= Ω (0) log Ω (0) and F (q) goes to zero, leading to Sc (κ = ε) = 0. The

configurational entropy is finite only for nontrivial solutions κ > ε. The temperature, TA, where

this happens for the first time is equal to the dynamic transition temperature of the system.

The result for Sc (T ) also enables us to determine the Kauzmann temperature, TK < TA. In

Fig. 3.9, we show the Kauzmann temperature for different
∣∣ε2

0

∣∣ . The configurational entropy

vanishes like Sc ∝ T − TK.
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Figure 3.8 Dimensionless inverse correlation length vs coupling constant
u/q0 at the dynamical transition where a nonergodic state with
F 6= 0.
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Figure 3.9 Configurational entropy Sc vs. temperature for different bare
segregation strength ε2

0. The configurational entropy vanishes
at TK .
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3.4.7 Stability of the solution

An important simplification of our approach resulted from the simple form, Eqn. 3.89, of the

correlation function in replica space. All diagonal elements as well as all off diagonal elements

are assumed to be identical. Whether this assumption is indeed stable can be addressed by

evaluating the eigenvalues of the stability matrix

Ĥαβ;γδ =
δ2F

δGαb (q) δGγδ (q′)
(3.114)

If there are negative eigenvalues of Ĥ our assumption for the replica structure is unstable.

Following Ref. (45) we find that the lowest eigenvalue with respect to the replica indices is

determined by the lowest eigenvalue of the matrix

ĥq,q′ = δ
(
q− q′

)
K−2 (q) + v0 (3.115)

in momentum space, where v0 = δ2Φ

δG
αβ

δG
αβ − 2 δ2Φ

δG
αβ

δG
αδ + δ2Φ

δG
αβ

δG
γδ with distinct α, β, γ and δ.

In deriving this result we started from Eqn. 3.50 but used the fact that the functional Φ only

depends on the momentum averaged correlation function, such that v0 becomes momentum

independent. Eqn. 3.115 is similar to the Schrödinger equation in momentum space of a single

particle with bare Hamiltonian K−2 (q) and local potential v0. The lowest eigenvalue, E, of

this problem is given by

1 = v0

∫
d3q

(2π)3
(
K−2 (q) + E

)−1
. (3.116)

This equation can be analyzed if we find a way to calculate v0 which is determined by the

first derivative of the self energy with respect to the correlation function δΣαβ

δGγδ
. This derivative

can be evaluated by following closely Ref. (55). First we add to our local Hamiltonian an

additional term −∑
αβ Uαβφaφβ and analyze all correlation functions for finite U . At the end

we will take the limit U → 0 and the correlation function has the simple structure Eqn. 3.115.

For finite U , the correlation function is determined from the function Z [U ]:

Gαβ [U ] = 〈φαφβ〉 = −δ logZ [U ]
δUαβ

. (3.117)
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The self energy is a functional of only G [U ] and not of U explicitly such that

δΣαβ

δUγδ
=

∑
µν

δΣαβ

δGµν

δGµν

δUγδ
. (3.118)

If we furthermore introduce

Lαβ;γδ =
δGαγ

δUδβ

= 〈φαφβφγφδ〉 − 〈φαφγ〉 〈φδφβ〉 , (3.119)

which can be evaluated explicitly once U = 0, one finds

∑
µν

(
G−1

αµG−1
νγ −

δΣµν

δGαγ

)
Lαβ;γδ = δµδδβν , (3.120)

which determines δΣµν

δGαγ
and thus v0.

Applying this approach to the Brazovskii model we find that the replica structure is

marginally stable at the temperature TA where the glassy state occurs for the first time.

Below TA the replica symmetric ansatz Eqn. 3.115 becomes unstable however it can be made

stable if the replica index m does not approach 1 anymore but rather takes a value m = T
Teff

which defines the effective temperature Teff of the glass. This is a situation similar to one step

replica symmetry breaking with break point given by m. (6)

Stability of the replica symmetric ansatz was only possible because we consistently made

the assumption of the dynamical mean field theory. Going beyond the local approach, for

example by using cluster DMFT techniques, enables one to study whether or not nonlocal

phenomena change the replica structure of the theory.
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3.5 SCSA (Self consistent screening approximation) - analytical method

SCSA method developed by Ref. (63) (62) will be discussed in this section. Eqn. 3.36

has a formal similarity to the action of the random field Ising model, obtained within the

conventional replica approach, which allows us to use techniques, developed for this model

(65). Introducing an N component version of Eqn. 2.13 with field ϕ = (ϕ1, ..., ϕN ) and

coupling constant, u = u0
N , with fixed u0 we use a self consistent screening approximation (63),

which is exact up to order 1/N . At the end we perform the limit N = 1.

The matrix correlation function, Gαβ (q) = 〈ϕa(q)ϕb(−q)〉, in replica space with Dyson

equation:

G−1 (q)
∣∣
ab

= G−1
0 (q) δab + Σab (q)− g

m
(3.121)

Here, G0 (q) is the bare propagator. Σαβ (q) is the self energy in replica space. If the

ergodicity of the system is broken by the infinitesimal perturbation, g, the off diagonal element

of Σαβ (q) has nonzero value, which is the signal of the glassy dynamics. On the other hand,

if the off diagonal term of Σαβ (q) is zero, we expect a conventional ergodic dynamics and the

system is in its liquid state or may build an ordered solid. However, it turns out that in the

present case the off diagonal elements of Σαβ (q) jump discontinuously from zero to a finite

value.

Introducing a matrix E such that Eab = 1 and the unit matrix 1, it is easy to see that the

product of any two m×m matrices with structure

A = a11 + a2E (3.122)

is given by

AB = (a1b1)1 + (a1b2 + a2b1 + ma2b2)E

. This leads to

A−1 =
1
a1

1− a2

a1 (a1 + ma2)
E (3.123)

for the inverse of A. The self consistent screening approximation is described by the set of

Feynman diagrams shown in Fig. 3.10.
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Figure 3.10 Feynman diagrams for SCSA approximation

The self energy is given as

Σab (q) =
2
N

∫
d3p

(2π)3
Dab (p)Gab (p + q) (3.124)

where

D (p) =
(
v−1
0 + Π(p)

)−1 (3.125)

is determined self consistently by the polarization function

Πab (p) =
∫

d3q

(2π)3
Gab (q + p)Gba (q) . (3.126)

In the above set of equations the p-integration has to be cut-off at |p| = Λ and the temper-

ature, T , and the coupling constant, u0, occur only in the combination v0 = u0T . The Ansatz

?? for the Green’s function implies an analogous structure for Σab (q) and Πab (q) in replica

space. Inserting this ansatz into Πab (p) gives

Π = (ΠG −ΠF )1 + ΠFE (3.127)
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where the diagonal and off-diagonal elements of the polarization function are

ΠG (p) =
∫

d3q

(2π)3
G (q + p)G (q)

ΠF (p) =
∫

d3q

(2π)3
F (q + p)F (q) . (3.128)

It is now straightforward to determine Dab (p) which leads, in the limit m → 1, to

D = (DG −DF )1 +DFE (3.129)

where

DG (p) =
(
v−1
0 + ΠG (p)

)−1 (3.130)

and

DF (p) = − ΠF (p)D2
G (p)

1−ΠF (p)DG (p)
. (3.131)

Analogously, inserting the above equations into 3.124, we get for the self energies Σ =

(ΣG − ΣF )1 + ΣFE where

ΣG (q) =
2
N

∫
d3p

(2π)3
DG (p)G (p + q) (3.132)

and ΣF (q) = 2
N

∫ d3p

(2π)3
DF (p)F (p + q).

The self consistent screening approximation is used to calculate the self energy. The key

assumption of the analytical approach to the self consistent screening approximation is that

the off diagonal self energy ΣF (q) is weakly momentum dependent. We will then calculate

ΣF (q0) at the modulation wave vector q0.

ΣF (q) ∼ ΣF (q0) (3.133)

Due to our assumption that ΣF is weakly dependent on q, we concentrate on ΣF (q0)

at the modulation wave vector. One easily finds that ΣF (q0) ≤ 0. A dimensional analysis

furthermore shows that ΣF is length−2. This suggests to define a new length scale, λ, via

ΣF (q0) = −
(

2
λ

)2

. (3.134)
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The length scale λ which determines whether long time correlations are similar or different

from instantaneous ones. For the subsequent calculation it is convenient to introduce in addi-

tion to the dimensionless parameter ε which gives ξ−1 = εq0

2 a new dimensionless parameter,

κ, defined via

λ−1 =
√

κ2 − ε2q0

2
(3.135)

Obviously, in the liquid state, where ΣF → 0, we find λ → ∞ and it holds κ = ε. In a

glassy state κ > ε. The correlation function K = G − F . Note that K has the same structure

as G but with ε → κ.

The glassy behavior of the Brazovskii model for φ4 model (υ = 0 in Eqn. 3.82) is investi-

gated using SCSA replica approach in local real space. In local real space, the self energy does

not depend on the momentum, the Eqn. 3.133 is satisfied automatically and all the physical

quantities have only replica index.

Σab = 2DabGab. (3.136)

The polarization function is given by the multiplication of the correlation matrix

Πab = GabGba. (3.137)

D is given as

D =
(
u−1

loc + Π
)−1 (3.138)

where uloc is defined as uloc = ua3
0. The length scale a3

0 is q−3
0 . The correlation matrix in a

replica space is expressed as the replica ansatz as like

Gab = Kδab + F

Πab =
(
K

2 + 2KF
)

δab + F
2

≡ ΠKδab + ΠF , (3.139)

where D−1 is given as

D−1 =
(
u−1

loc + ΠK

)
δab + ΠF . (3.140)
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By the inverse matrix property of Eqn. 3.123 in a replica space, D is given by

D =
1

u−1
loc + ΠK

δab − ΠF(
u−1

loc + ΠK

) (
u−1

loc + ΠK + ΠF

)

≡ DKδab + DF (3.141)

where

DK =
1

u−1
loc + ΠK

DF = − ΠF D2
K

1 + ΠF DK
. (3.142)

The local diagonal self energy and the local off diagonal self energy are given as

Σab = 2 (DKδab + DF ) (Kδab + F )

= 2 (DKK + DKF + DF K) δab − 2DF F

≡ ΣKδab + ΣF (3.143)

where

ΣF = 2DF F

ΣK = 2 (DKK + DKF + DF K) . (3.144)

From Eqn. 3.92 and Dyson equation, ε and κ have the relation with the local self energies

as follows;

κ2q2
0 = ε2

0q
2
0 − q3

0ΣK

ε2q2
0 = ε2

0q
2
0 − q3

0 (ΣK − ΣF )

κ2q2
0 = ε2q2

0 + q3
0ΣF . (3.145)

By some algebra, the off diagonal self energy, the signal of the glassy dynamics, is given by

ΣF = 2DF F

= 2
ΠF D2

K

1 + ΠF DK
F

=
(

1
ε
− 1

κ

)
4π

q0

(1− ε
κ)2

1+ε2a−1

a−1 + 1
ε2 −

(
1
ε − 1

κ

)2 (3.146)
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where a−1 = u−1
(

2π
q0

)2
. From the relation of Eqn. 3.134, the self consistent equation for a

local off diagonal self energy ΣF is given by

κ2 − ε2 = 4π

(
1
ε
− 1

κ

)
ε2 (1− ε

κ)2

1+ε2a−1

ε2a−1 + 1− (
1− ε

κ

)2 . (3.147)

The numerical and analytical calculation for the glassy behavior of Brazovskii model (φ4)

are plotted in Fig. 3.11.For small coupling constant u/q0, the SCSA approach is quite consistent

with numerical one. However, as the coupling constant u/q0 increases, the SCSA prediction

for glassiness shows a deviation from the numerical result.
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Figure 3.11 The glassy behavior for Brazovskii model by two different ap-
proaches



88

CHAPTER 4. NONEQUILIBRIUM PHYSICS OF MICROEMULSIONS

AND BLOCKCOPOLYMERS

In this chapter, we will discuss the nonequilibrium physics of a microemulsion and block

copolymer. The glassy behavior of a microemulsion is supported by small angle neutron

scattering and dynamical light scattering. (20) (76) The density correlation function of the

droplets shows a slowing down with nonexponetial KWW(Kohlrausch-Williams-Watts) decay.

(77) The diffusion of droplets becomes dynamical self arrest due to an entrapment in cages

formed by environment under certain conditions. (77) We analyze the glassy behavior of a

microemulsion with a SCSA replica approach discussed in chapter 3. The boundary of the

glassy state in a microemulsion is obtained by determining the dependence of the correlation

length ξ and the modulation length lm as a function of t, f , and rs/a. Since the glass occurs for

a fairly moderate correlation length, we can ignore effects due to critical fluctuations (relevant

as ξ →∞) and use our results for ξ and lm of the Hartree analysis to determine the boundary

to the microemulsion glass state. This leads to the following implicit equation for the onset

temperature of glassiness TA = tAT 0
c :

f =

(
1 + B

(
tA, rs

a

)
f
)2

rs
a tA

(4.1)

where B (t, x) = 61/3π8/3t3

x(t−1)2
. The glass temperature for a microemulsion is derived in Appendix

D. The solution of this equation for different rs gives the boundary of the microemulsion glass

shown in Fig. 4.1. Examples for the temperature dependence of ξ and lm for f > f∗ and

f < f∗ are shown in Fig. 4.2.

Since the frustrating potential is of finite range, a finite critical strength of the frustration,

∼ f∗, must be reached to form a microemulsion glass. The larger the amphiphilic molecule and
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Figure 4.1 The emergence of a microemulsion glass for different ratio of
rs/a.
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Figure 4.2 The ratio of ξ/2 to lm for different surfactant volume fraction.
At f = 0.3, ξ/2 ∼ lm, at which the glassy behavior sets in.
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the larger its volume fraction, the more pronounced is the glass state. Yet, the sizes of the oil

and water regions have to be much larger than the size of their interfaces, i.e., lm À rs. In the

proximity of the glass transition we find lm
rs

= 2π√
6
(
√

rs
a t f − 1)−1/2. Provided that rs ¿ 54.45a

(a value much larger than the critical value of rs for glassiness) we indeed find that lm À rs.

The glassy state of our theory is self generated, i.e., it is due to the frustrated nature of the

interactions of the system. One way to test our theory is to deliberately “lift” this frustration.

For example, we expect that if some disorder is imposed in the surfactant chain length, the

glass formation might be reduced. In fact, glassiness will disappear if we add a certain amount

of short chain amphiphiles to a system with long chain surfactants. Since the effective mean

square root length of the surfactant molecule is then given by (25) rs =
(∑

i xir
2
s,i

)1/2
, with

xi being the mole fraction of a surfactant with length rs,i, rs can easily become smaller than

the critical value r∗s . Another way of testing our theory is to compare the transitions on the

high-T and low-T side of the glass state for given f . As shown in Fig.3, we find that the

low-T transition has a larger modulation length. Thus, using Sc ∝ l−3
m , (62), it has a smaller

configurational entropy compared to the high-T side of the transition, an effect which can be

observed by measuring the specific heat anomaly at the vitrification. At the same time, along

the glass transition curve ξ/lm ' 2. Thus, the position of a small angle neutron scattering

(SANS) peak should be shifted along the transition curve, whereas the peak-width ratio should

stay essentially unchanged. The phase diagrams of a microemulsion for different rs/a values

are plotted in Fig. 4.3 and Fig. 4.4 respectively.

When we increase the ratio of rs/a, the microemulsion glass region is expanded, which is

due to the increase of the frustration by increasing the length of the surfactant in the system as

mentioned in Chapter 2. Fig. 4.3 and Fig. 4.4 show the role of frustration in forming glass in

microemulsion. These results are based on the ϕ4 model, since we consider the same amount

of oil and water molecules. The different amount of water and oil molecules requires to add the

symmetry breaking ϕ3 term in our model Hamiltonian 2.13, which will estimate more broad

microemulsion region from the result of Fig.3.8.

We analyzed the glassy behavior of lamellar phase for f = 0.5. The cubic and quartic terms,
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Figure 4.3 The phase diagram of a microemulsion with rs/a = 10
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Figure 4.4 The phase diagram of a microemulsion with rs/a = 20



94

Γ3(q1,q2,q3) and Γ4(q1,q2,q3,q4) are given by Γ3(q0) and Γ(0, 0) in a weak segregation limit

respectively.

From the self consistent solution for fixed f , S, q0, we can determine the critical ε2
0 value

which indicates that the glassiness sets in. We find there is only one solution for a critical

point and no solution for a liquid phase and two non trivial solutions for a glass phase. Once

ε0 is determined, the critical Flory-Hugggins parameter can be obtained from the relation of

ε2
0 =

F ∗ − 2χS

F ∗∗x∗2
for the glass transition of the diblock copolymer. In Fig. 4.5, (χS)A is plotted

versus the volume fraction f for S = 1026. And (χS)A is compared to spinodal line (χS)spinodal

and mean field solution of Leibler, (χS)MF . Since the perturbation theory breaks down below

S = 104, only the mean field calculation result is shown in Fig. 4.5.

In Fig. 4.6, (χS)A for S = 104 and (χS)A for S = 1026 are plotted versus the volume

fraction f for S = 1026. Fig. 4.6 shows that the (χS)A value for S = 104 becomes more closer

to the MST line by increasing the chain length of block copolymer.

The Flory-Huggins parameter χ can be expressed as A
T + B. A,B is constant and T

is absolute temperature. From this, the glass transition temperature can be plotted as a

function of the chain length of block copolymer approximately.(χ ∼ 1
T ). Fig. 4.7 shows the

glass transition temperature of block copolymer for f = 0.5 versus the chain length. The

glass transition temperature increases as the chain length of polymer increases. This is quite

consistent with the free volume theory. The chain ends introduce incremental amounts of the

free volume over the end segments, which increase the glass temperature as the chain length

increases. (83).

However, comparing our theoretical calculation with experimental data, we should consider

the stiffness of polymeric chains. Since the restriction of a rotation by a stiff chain gives a

rise to an entropy decrease, we expect the stiffness of polymer chains changes the magnitude

of vertex functions. In the case of homopolymer, for example, only by attaching a bulky

side chain to a homopolymer backbone chain, the stiffness increases, which elevates a glass

transition temperature. (84) This implies the glass temperature of diblock copolymers would

have a strong dependence on the stiffness of polymer chains as like homopolymer chain. The
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Figure 4.5 The phase diagram of lamellar and glass phase for S = 1026
and f = 0.5
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Figure 4.6 The phase diagram of lamellar and glass phase for S = 1026
and S = 104
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Figure 4.7 The glass transition temperature versus degree of polymeriza-
tion. The temperature has an arbitrary unit.



98

theoretical calculation of (χS)A for a different stiffness of polymer chains is required for the

comparison with experimental data.

Fig. 4.8 shows an inverse maximum scattering intensity I−1(q0) (∼ε2q2
0 ) versus 1/temper-

ature (χ ∼ 1
T ) for f = 0.5, S = 1026 in a diblock copolymer.

Figure 4.8 Inverse scattering intensity versus 1/temperature for f = 0.5,
S = 1026

The linearity in a graph determines the temperature 1/TMF , at which ordering sets in.

The nonlinearity shows the emergence of fluctuation effect as the temperature approaches to
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TODT . (78) Fig. 4.9 shows the schematic inverse maximum scattering intensity for the order-

disorder transition and glass-disorder transition for lamellar phase. Despite of the controversies,

the small gap in the inverse scattering intensity at TODT is verified by some experimental

groups. (79) (80) (81) This schematic picture reminds us the thermodynamic behavior of the

supercooled liquid and the crystal.

Figure 4.9 Schematic picture for inverse scattering for order-disorder tran-
sition(experiment) and glass-disorder transition(calculation)

Fig. 4.10 shows the configurations in a real space for disorder and glassy state from Fourier
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transformation of the correlation function G(q) and F (q) by the clipped random wave analysis.

(10)

Figure 4.10 The visualization of the configurations of A block and B block
in disordered state and glassy state.

The method for the visualization is explained in Appendix C. The white part corresponds

to A block and the black part to B block. (a) in Fig. 4.10 shows a certain configuration in

disordered state at t = t1. (b) shows the configuration in disordered state at t = t2 with

t = t2 > t = t1. We find there is no correlation between (a) and (b) as like liquid state.
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However, there is a strong correlation in (c) and (d) configurations in glassy state. The

configurations within circles in Fig. 4.10 are conserved as time elapses at lab time scale. In

the glassy state far below TODT , two configurations show the memory effect due to a slow

dynamics of block copolymer.

In Fig. 4.11 we plotted critical Flory-Huggins parameter for the gelation versus the inter-

action strength Q.As we increase the interaction strength Q, the χA decreases to zero sharply.

At certain value of Q, the χA becomes negative. In negative χA, the aggregation happens not

only between the end segments of A blocks but also between the middle block (B block). The

repulsive excluded volume interaction between polymeric chains and the attractive interac-

tion at the end segments generates an additional frustration within triblock copolymer chains,

which makes aggregation process easier.

In the calculation of the gelation, two different configurations are considered: loop structure

and no loop structure. When the interaction energy VP is given as

VP = −
∑

n1,··· ,np

∑
s1,··· ,sp

U(Rn1,s1 , · · · ,Rnp,sp
), (4.2)

the architecture of bridge or loop is not allowed. Our result shows χA without loop or bridge

structure for the gelation is larger than the χA of the loop structure. This implies the aggre-

gation with the bridge or loop structure comes before the fully extended network structure

when the temperature is decreased. Fig. 4.12 shows a schematic gelation process as a function

of the temperature. This is quite consistent with the solid/liquid transition of the acrylic tri-

block copolymers (19). In our theory, the basic difference between the gelation and glassiness

depends on the presence of the configurations such as loop or bridge in the interaction.
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Figure 4.11 The critical Flory Huggins parameter of the gelation for loop
structure and no loop structure at M = 4.
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Figure 4.12 The schematic picture of gel configuration according to the
temperature change (19)
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CHAPTER 5. SUMMARY AND DISCUSSION

The main purpose of this work is to investigate the glassy behavior of microemulsions and

block copolymers. The origin of glassy behavior in microemulsions and block copolymers is

frustration due to a competition between short-range interaction and long range interaction.

According to the charge frustrated Ising model, the competition between ferromganetic inter-

action and antiferromagnetic interaction is the origin of frustration in microemulsions. The

competition between entropic effects and stoichiometric constraints responsible for the forma-

tion of micelles in microemulsions can lead to the emergence of a self generated glassy behavior

in these systems. In the block copolymer, the competition between the repulsive short range

interaction between monomers in polymer chains and the long range interaction by chemical

bonds can lead to the emergence of a self generated glassy behavior. The criteria for the fluc-

tuation induced first order transition and our microemulsion and block copolymer glasses are

essentially the same. Both are a consequence of the large phase space of low energy excitations

(14) (62) (all states with momenta q which fulfill |q| = qm) and are of at the most a moderate

supercooling of the liquid state is required. This is strongly supported by the observation in

Ref. (14) that the metastable states which are first to appear at a fluctuation induced first

order transition are the ones build by a superposition of large amplitude waves of wavenumber

qm, but with random orientations and phases, i.e. just the ones which form the metastable

states of our microemulsion and block copolymer glass. (38)

In a microemulsion, we showed that there is a critical volume fraction to achieve the

glassy behavior which depends solely on rs
a . Owing to the smaller energy densities at the

larger length scales relevant to them, nonlinearity is easier to achieve in the laboratory for

microemulsion glasses than the usual structural glasses. In fact, the mechanical properties
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of the microemulsion glass proposed here are likely much closer to soft materials (72) (73)

(74) such as gels and pastes than to a rigid window glass. It is intriguing that in several

copolymer systems a “stiff gel” was found in a region of volume fraction - temperature phase

diagram similar to the one where we find our microemulsion glass (67). Despite these different

mechanical properties, the universality class of the microemulsion glasses is identical to the

one which is believed to apply to structural glasses (68) (69) (70) (71), a conclusion which is

also supported by the results of Refs. (72) (73).

In block copolymer, we showed that (χS)A is larger than (χS)MF for the symmetric diblock

copolymer, which means the temperature TA is lower than TMF . This is evident in the inverse

scattering intensity versus 1/temperature picture. The glass-disorder transition temperature

for the symmetric diblock copolymer is lower than the TODT . Also, the glass transition tem-

perature increases with the increase of the chain length, which is consistent with the traditional

free volume theory. However, for the qualitative comparison with the experimental data, the

dependence of higher vertex terms on the stiffness of the polymeric chains should be considered.

The higher vertex terms, the entropic terms, are sensitive to the chain stiffness. Numerical

method enables us to deal with the glassy behavior of asymmetric polymer chains (f 6= 0.5)

as well as symmetric case. The asymmetric case of block copolymer is applied to the gelation,

especially with telechelic structure. In the gelation of the symmetric ABA triblock copolymer

with the hydrophobic ends groups, there exists an additional frustration by the competition

between the repulsive interaction between polymeric chains and the attractive interactions at

the end groups. (34) The increase of the interaction Q, the additional frustration, leads to

the easier gelation process. Basically, the gelation and glassy behavior are treated in the same

manner: same criterion for the self arrest from the solution of the self equation for F . Only

the main difference between the gel state and glassy state is whether the bridge or loop are

involved in the association or not. For the qualitative comparison with the experimental data,

more careful rheology analysis about elasticity in the gel and glassy states is required.

Based on the recent development in the theory of strongly interacting electron systems we

developed a dynamic mean field theory for self generated glasses. The key assumption of our
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approach, which applies to physical systems with short range higher order virial coefficients, is

that glass formation is the consequence of predominantly local correlations. It is then possible

to map the problem onto a purely local theory with same interaction and with a Gaussian

part of the energy which is determined self consistently. A complete numerical approach did

not make any assumption with respect to the momentum dependence of the self energy. The

approach is a comparatively simple first step to investigate the glass problem and can easily

be applied to multi component systems : the gelation of triblock copolymer in a solution.

Most importantly, recent developments in the cluster DMFT approach allow to generalize this

theory to include non-local effects and to investigate the role of dynamic heterogeneity, droplet

and mosaic formation etc. This is an aspect no other existing mean field theory of the glass

transition seems to have.



107

APPENDIX A. CALCULATION OF THE HIGHER ORDER VERTEX

FUNCTIONS

A.1 Three point correlation function in triblock copolymers

Three point correlation function in triblock copolymer is given as

G
(3)
ijk(q1,q2,q3) =

1
N

N∑

I=1

N∑

J=1

N∑

K=1

θ
(i)
I θ

(j)
J θ

(k)
K PIJK(q1,q2,q3) (A.1)

with q1 + q2 + q3 = 0 and |q1| = |q2| = |q3| = q0.PIJK(q1,q2,q3) is Fourier transform

of PIJK(r1, r2, r3), which is the probability that the same chain has the monomer I, J,K at

the position r1, r2, r3.PIJK(r1, r2, r3) is expressed in terms of the pair correlation function

PIJ(r1, r)PJK(r2, r3). For example, when the sequence of monomer is arranged as I < J <

K, PIJK(r1, r2, r3) = PIJ(r1, r)PJK(r2, r3).The Fourier transform of PIJK(r1, r2, r3) is given

by PIJ(q1)PJK(q3) with PIJ(q1) = exp(−x2

N |I − J |).
For example, G2BB

G2BB =
2
N

∫ N

(1−g)N

∫ (1−g)N

fN

∫ j

fN
exp[−x2

N
(j − i)] exp[−x2

N
(k − j)]didjdk (A.2)

=
2N2

x6
[−e−x2

(−efx2
+ e(1−g)x2 − efx2

x2 + fefx2
x2 + gefx2

x2)+

e−(1−g)x2
(−efx2

+ e(1−g)x2 − efx2
x2 + fefx2

x2 + gefx2
x2)],

where x2 = q2R2.When we set g → 0 and g → f,we obtain three point correlations function

for a diblock copolymer and a symmetric ABA triblock copolymer. The whole building blocks
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for a calculation of a third order vertex function Γ(3) are given as

GAAA = G111 + G112 + G121 + G122 + G211 + G212 + G221 + G222

GAAB = G11B + G22B + G12B + G21B

GABA = G1B1 + G2B2 + G1B2 + G2B1

GABB = G1BB + G2BB

GBAA = GB11 + GB22 + GB12 + GB21

GBBA = GBB1 + GBB2

GBAB = GB1B + GB2B

GBBB. (A.1)



109

A.2 Four point correlation function in asymmetric triblock copolymers

When we calculate Γ(4) term, we consider two angle dependence in momentum space for

weak segregation limit. For example, Γ(4)(q0, q0) is define the angle dependence as like

|q1 + q2|2 = q2
0 = |q3 + q4|2 (A.3)

|q1 + q4|2 = q2
0 = |q2 + q3|2

|q1 + q3|2 = 2q2
0 = |q2 + q3|2 .

GBBB1 =
2
N

∫ (1−g)N

fN

∫ k

fN

∫ j

fN

∫ fN

0
{exp[−x2

N
(i− l)] exp[−2x2

N
(j − i) exp[−x2

N
(k − j)]

+ exp[−x2

N
(i− l)] exp[−x2

N
(j − i) exp[−x2

N
(k − j)]+

exp[−x2

N
(i− l)] exp[−2x2

N
(j − i) exp[−x2

N
(k − j)]}dldidjdk. (A.4)

G
(4)
ijkl(q1,q2,q3,q4) =

1
N

N∑

I=1

N∑

J=1

N∑

K=1

θ
(i)
I θ

(j)
J θ

(k)
K θ

(l)
L PIJK(q1,q2,q3,q4). (A.5)
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The 16 building blocks for a fourth order vertex function Γ(4) are give as

GAAAA = G1111 + G1112 + G1121 + G1211 + G1122 + G1221 + G1212 + G1222

+ G2221 + G2212 + G2122 + G2211 + G2112 + G2121 + G2111 + G2222

GBBBA = GBBB1 + GBBB2

GBBAB = GBB1B + GBB2B

GBABB = GB1BB + GB2BB

GABBB = G1BBB + G2BBB

GAABB = G11BB + G22BB + G12BB + G21BB

GBBAA = GBB11 + GBB22 + GBB12 + GBB21

GABBA = G1BB1 + G2BB2 + G1BB2 + G2BB1

GBAAB = GB11B + GB22B + GB12B + GB21B

GBABA = GB1B1 + GB2B2 + GB1B2 + GB2B1

GABAB = G1B1B + G2B2B + G1B2B + G2B1B

GAAAB = G111B + G222B + G112B + G121B + G122B + G211B + G212B + G221B

GAABA = G11B1 + G22B2 + G12B2 + G12B1 + G21B1 + G21B2 + G22B1 + G22B2

GABAA = G1B11 + G2B22 + G1B22 + G2B11 + G2B12 + G1B22 + G1B21 + G2B22

GBAAA = GB111 + GB222 + GB112 + GB121 + GB221 + GB212 + GB122 + GB222

GBBBB. (A.2)

The higher order vertex functions Γ3(q1,q2,q3) and Γ4(q1,q2,q3,q4) can be expanded

near a critical point and only one characteristic length scale q−1
0 exists.(30)
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APPENDIX B. THE ASSOCIATING INTERACTION ENERGY V3 and

V4

In this appendix we derive the form of the three and four body interaction causing the

associated interaction between end segments. We express V3 in terms of these collective coor-

dinates. We assume that the three body and four body interaction as

U(R,R,R′′) = u(R−R′)u(R−R′′)

U(R,R′,R′′,R′′′) = u(R−R′)u(R−R′′)u(R−R′′′) (B.1)

and the finite range potential u(r) can be characterized by a strength

Q1/2 =
∫

d3ru(r). (B.2)

In case, we obtain u(0) at some point. This is understood as u(0) = Q1/2δ(0) = Q1/2a−3
0 ,

where a0 is a typical length scale.

V3 = −
∑

n1,··· ,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn2,s2,Rn3,s3)
∏

i,j(1− δni,njδŝi,ŝj
)

= −
∑

n1,··· ,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn2,s2,Rn3,s3)

+ 3
∑
n1,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn1,s2,Rn3,s3)δŝ1,ŝ2

− 2
∑
n1

∑
s1,··· ,s3

U(Rn1,s1,Rn1,s2,Rn3,s3)δŝ1,ŝ2
δŝ2,ŝ3

, (B.3)

where we used that

(1− δ1,2) (1− δ1,3) (1− δ2,3) = 1− δ1,2 − δ1,3 − δ2,3 + δ1,3δ2,3

+ δ1,2δ2,3 + δ1,2δ1,3 − δ1,2δ1,3δ2,3

= 1− δ1,2 − δ1,3 − δ2,3 + 2δ1,3δ2,3 (B.4)
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with δi,j = δni,njδŝi,ŝj
.Also, the total end segment particle density ρe(r) is given as

ρe(r) =
′′∑

n,s

δ (r−Rn,s) . (B.5)

We can thus write

I1 = −
∑

n1,··· ,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn2,s2,Rn3,s3)

= −
∫

d3rd3r′d3r′′ρe(r)ρe(r′)ρe(r′′)u(r− r′)u(r− r′′)

= −Q

∫
d3rρe(r)3 (B.6)

as well as

I2 = 3
∑
n1,n3

∑
s1,··· ,s3

U(Rn1,s1,Rn1,s2,Rn3,s3)δŝ1,ŝ2

= 3
∑
n1,n3

∑
s3




fS∑

s1,s2=1

U(Rn1,s1,Rn1,s1,Rn3,s3) +
S∑

s1,s2=S−fS

U(Rn1,s1,Rn1,s1,Rn3,s3)




= 6fSu(0)
∑
n1,n3

∑
s1,s3

u(Rn1,s1 −Rn3,s3)

= 6fSu(0)
∫

d3rd3r′ρe(r)ρe(r′)u(r− r′)

= 6fSQa−3
0

∫
d3rρe(r)2. (B.7)

I2 term describe the ”bridge form”.

I3 = −2
∑
n1

∑
s1,··· ,s3

U(Rn1,s1,Rn1,s2,Rn1,s3)δŝ1,ŝ2
δŝ2,ŝ3

= −2
∑
n1




fS∑

s1,s2,s3=1

U(Rn1,s1,Rn1,s2,Rn1,s3) +
S∑

s1,s2,s3=S−fS

U(Rn1,s1,Rn1,s2,Rn1,s3)




= −2u(0)2(2fS)3
∑
n1

u(Rn1,ŝ1
−Rn1,ŝ1

)u(Rn1,ŝ1
−Rn1,ŝ1

)

= −2Qa−6
0 (2fS)3N. (B.8)

It then follows the result

V3 = −Q

∫
d3rρe(r)3 + 6fSQa−3

0

∫
d3rρe(r)2 + const. (B.9)
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In a similar way, the four point associating interaction term V4 is calculated as

V4 = −
∑

n1,··· ,n4

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn2,ŝ2,Rn3,ŝ3
,Rn4,ŝ4

)
∏

i,j(i>j)(1− δni,njδŝi,ŝj
)

= −
∑

n1,··· ,n4

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn2,ŝ2,Rn3,ŝ3
,Rn4,ŝ4

)

+ 6
∑

n1,n3,n4

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn1,ŝ2,Rn3,ŝ3
,Rn4,ŝ4

)δŝ1,ŝ2

− 15
∑
n1,n4

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn1,ŝ2,Rn1,ŝ3
,Rn4,ŝ4

)δŝ1,ŝ2
δŝ1,ŝ3

+ 20
∑
n1

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn1,ŝ2,Rn1,ŝ3
,Rn1,ŝ4

)δŝ1,ŝ2
δŝ1,ŝ3

δŝ1,ŝ4
+ · · · , (B.10)

where we used that

(1− δ1,2) (1− δ1,3) (1− δ1,4) (1− δ2,3) (1− δ2,4) (1− δ3,4)

= 1− 6δ1,2 + 15δ1,2δ1,3 − 20δ1,2δ1,3δ1,4 + · · · (B.11)

with δi,j = δni,njδŝi,ŝj
. We can thus write

J1 = −
∑

n1,··· ,n4

∑

ŝ1,··· ,ŝ4

U(Rn1,ŝ1,Rn2,ŝ2,Rn3,ŝ3
,Rn4,ŝ4

)

= −
∫

d3rd3r′d3r′′d3r′′′ρe(r)ρe(r′)ρe(r′′)ρe(r′′′)u(r− r′)u(r− r′′)u(r− r′′′)

= −Q3/2

∫
d3rρe(r)4 (B.12)

as well as

J2 = 6
∑

n1,n3,n4

′′∑
s1,··· ,s4

U(Rn1,s1,Rn1,s2,Rn3,s3 ,Rn4,s4)δŝ1,ŝ2

= 12u(0)fS
∑

n1,n3,n4

′′∑
s1,s3,s4

u(Rn1,ŝ1
−Rn3,ŝ3

)u(Rn1,ŝ1
−Rn4,ŝ4

)

= 12u(0)fS

∫
d3rd3r′d3r′′ρe(r)ρe(r′)ρe(r′′)u(r− r′)u(r− r′′)

= 12Q3/2a−3
0 fS

∫
d3rρe(r)3. (B.13)
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J3 = −12
∑
n1,n4

′′∑
s1,··· ,s4

U(Rn1,s1,Rn1,s2,Rn1,s3 ,Rn4,s4)δŝ1,ŝ2
δŝ1,ŝ3

= −12u(0)2 (2fS)2
∑
n1,n4

∑
s1,s4

u(Rn1,s1 −Rn4,s4)

= −48f2S2Q3/2a−6
0

∫
d3rd3r′ρe(r)ρe(r′)u(r− r′)

= −48f2S2Q3/2a−6
0

∫
d3rρe(r)2. (B.14)

J3 term describe the ”backfolding”.

J ′3 = −3
∑
n1,n3

∑
s1,··· ,s4

U(Rn1,s1,Rn1,s2,Rn3,s3 ,Rn3,s4)δŝ1,ŝ2
δŝ3,ŝ4

= −3u(0)2 (2fS)2
∑
n1,n3

∑
s1,s3

u(Rn1,s1 −Rn3,s3)

= −12f2S2Q3/2a−6
0

∫
d3rd3r′ρe(r)ρe(r′)u(r− r′)

= −12f2S2Q3/2a−6
0

∫
d3rρe(r)2. (B.15)

The remaining terms only contribute to constant terms, then the result follows

V4 = −Q3/2

∫
d3rρe(r)4 + 12Q3/2fSa−3

0

∫
d3rρe(r)3 − 60Q3/2f2S2a−6

0

∫
d3rρe(r)2 + const

(B.16)
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APPENDIX C. VISUALIZATION OF THE CORRELATION

FUNCTIONS

C.1 Visualization of instantaneous configurations

If one wants to visualize a configuration φ (r) of a field with correlation function in mo-

mentum space

Gk = 〈φkφ−k〉 , (C.1)

one can use the following procedure: Introduce a set of uncorrelated random numbers ξk with

correlation function

〈ξkξk′〉 = δk+k′ (C.2)

and then the configuration

φk =
√

Gkξk (C.3)

can be averaged to

〈φkφk′〉 =
√

GkGk′ 〈ξkξk′〉 = δk+k′Gk (C.4)

as desired. The Fourier transformation, φ (r), of φk is then a real space configuration which,

after averaging over all possible random numbers ξk is correlated according to Gk.

A useful random number for a situation without broken symmetry is

ξk = Ak exp (i2πηk) (C.5)

where Ak and ηk random numbers between [0, 1] which are statistically independend for dif-

ferent k-values.
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C.2 Visualization with memory between distinct configurations

Generalizing the approach of the previous section one can introduce m different uncor-

related random numbers ξj
k, j = 1, ..., m with

〈
ξj
kξj′
−k

〉
= δjj′ , which generate m distinct

configurations φi
k via

φi
k =

m∑

j=1

Rij
k ξj

k. (C.6)

We require that the correlation of a configuration with itself is

Gk =
〈
φi
kφi

−k

〉
, (C.7)

whereas for all i 6= i′ holds that

Fk =
〈
φi
kφi′

−k

〉
. (C.8)

Inserting the above expression for φi
k yields

Gk =
∑

j,j′
Rij

k Rij′
k

〈
ξj
kξj′
−k

〉
=

∑

j

(
Rij

k

)2

Fk =
∑

j,j′
Rij

k Ri′j′
k

〈
ξj
kξj′
−k

〉
=

∑

j

Rij
k Ri′j

k (C.9)

Next we assume that the m×m-matrix Rij
k has equal diagonal and off diagonal elements, i.e.

Rij
k =





ak if i = j

bk if i 6= j
. (C.10)

Inserting this ansatz gives

Gk = a2
k + (m− 1) b2

k

Fk = 2akbk + (m− 2) b2
k, (C.11)

which implies Gk − Fk = (ak − bk)2. It follows

ak =

√
Gk + (m− 1)Fk + (m− 1)

√
Gk − Fk

m

bk =

√
Gk + (m− 1)Fk −

√
Gk − Fk

m
. (C.12)

Obviously, if Fk = 0, it follows ak =
√

Gk and bk = 0. For the plot routine I used m = 2.
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APPENDIX D. CALCULATION OF THE GLASS TRANSITION

TEMPERATURE IN MICROEMULSIONS

In this appendix we the off diagonal self energy in replica space, ΣF by SCSA approxima-

tion. We start from the correlation function

G(q) =
q2
m + q2

D

(q2 − q2
m)2 + ε2q4

m

. (D.1)

The polarization function ΠG(q) is given as

ΠG (q) =
∫

d3p

8π3
G (p) G (p + q)

=
1

16qε2

(
1 +

(
qD

qm

)2
)2

for qm < q < 2qm.

An analogous calculation for the off diagonal polarization function ΠF (q) can be calculated.

∫
d3p

8π3
K (p) K (p + q) ' 1

16q∆2

(
1 +

(
qD

qm

)2
)2

for qm < q < 2qm

where ∆ is defined as

∆ ≡
[
κ2 +

(
qD

qm

)2

(κ2 − ε2)

]1/2

. (D.2)

Then,
∫

d3p

8π3
G (p)K (p + q) ' 1

16q∆

(
1 +

(
qD

qm

)2
)2

for qm < q < 2qm

For qm < q < 2qm, we can use the approximate expressions

ΠG(q) =
1

16qε2

(
1 +

(
qD

qm

)2
)2

ΠF (q) =
1

16q

(
1
ε
− 1

∆

)2
(

1 +
(

qD

qm

)2
)2

,
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which gives

DG(q) =
16qma

1 + qma
qε2

(
1 +

(
qD
qm

)2
)2

with dimensionless number a = v0
16qm

. 1. The product DG(q)ΠF (q) becomes momentum

independent,

DG(q)ΠF (q) '
(
1− ε

∆

)2

and DF (q) is given as

DF (q) =
[ −DG (q)ΠF (q)
1−DG (q)ΠF (q)

]
DG (q)

'
[
− (

1− ε
∆

)2

1− (
1− ε

∆

)2

]
DG(q).

The off diagonal self energy ΣF is given by

ΣF (q) =
∫

d3p

8π3
DF (q + p)F (p) . (D.3)

From our assumption of weak momentum dependence of the off diagonal self energy, ΣF (q)

can be approximated as

ΣF (qm) '
∫ 2

0
tdt DF (qmt)

∫
p2dp

4π2
(p)

' DF (qm)
∫

p2dp

4π2
(p) (D.4)

where t =
√

2 (1 + cos θ). Using
∫ q2dq

4π2 F (p) = qm

8π

(
1
ε − 1

∆

) (
1 +

(
qD
qm

)2
)

, the off diagonal self

energy ΣF (q) is given as

ΣF (qm) = −8q2
mε2

π

(
1− ε

∆

)2

1− (
1− ε

∆

)2

(
1
ε
− 1

∆

)
1

1 +
(

qD
qm

)2 . (D.5)

When qD → 0, ΣF (qm) becomes consistent with the result by Ref. (82) The self consistent

equation for the off diagonal self energy in SCSA approximation is given by

8ε2

π

(
1− ε

∆

)2

1− (
1− ε

∆

)2

(
1
ε
− 1

∆

)
1

1 +
(

qD
qm

)2 = (κ2 − ε2). (D.6)
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Within mean field approximation, the temperature dependence of r is determined by

r = r0 + u0T

∫
d3q

8π3
G (q) . (D.7)

For the case without frustration, Q = 0, the usual critical temperature T 0
c = 2π2|r0|

uΛ results

from the requirement r
(
T 0

c

)
= 0. Λ is momentum cut-off. For finite Q,

r (T ) = r0 +
u0T

2π2

(
πqm

2ε

(
1 +

(
qD

qm

)2
)

+ Λ

)
. (D.8)

For the glass transition region, r (T ) ∼ q2
D − 2

√
Q, Eqn. D.8 is given as

T

T 0
C

(
π
√

Q

2ε
(√

Q− q2
D

)1/2
+ 1

)
= 1, (D.9)

where we used q2
m + q2

D =
√

Q and set Λ = 1. If εA is obtained from the nontrivial solution of

the Eqn. D.5, the glass temperature is given as

TA =
2εA

(√
Q− q2

D

)1/2
T 0

C

π
√

Q + 2εA

(√
Q− q2

D

)1/2
. (D.10)

From the relation of Eqn. 2.14, TA is plotted as a function of f, t, rs/a.
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