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ABSTRACT

Lesion detection is an important task in emission tomography. Localization ROC (LROC) studies are often used
to analyze the lesion detection and localization performance. Most researchers rely on Monte Carlo reconstruction
samples to obtain LROC curves, which can be very time-consuming for iterative algorithms. In this paper we
develop a fast approach to obtain LROC curves that does not require Monte Carlo reconstructions. We use
a channelized Hotelling observer model to search for lesions, and the results can be easily extended to other
numerical observers. We theoretically analyzed the mean and covariance of the observer output. Assuming
the observer outputs are multivariate Gaussian random variables, an LROC curve can be directly generated by
integrating the conditional probability density functions. The high-dimensional integrals are calculated using
a Monte Carlo method. The proposed approach is very fast because no iterative reconstruction is involved.
Computer simulations show that the results of the proposed method match well with those obtained using the
tradition LROC analysis.

1. INTRODUCTION

Iterative image reconstruction based on the maximum a posteriori (MAP) principle (also called penalized max-
imum likelihood) has been applied to emission tomography to deal with the low signal-to-noise ratio.1–4 Evalu-
ation of the image quality for task performance is of importance for comparing different reconstruction methods
and imaging systems. A standard methodology for studying lesion detectability is the receiver operating charac-
teristic (ROC) study that compares true positive rate vs. false positive rate for human observers for the task of
lesion detection.5–7 Building on the recent progress on the theoretical analysis of resolution and noise proper-
ties of iterative reconstruction algorithms8–18 and the development of numerical observer models,19, 20 we have
derived theoretical expressions for fast evaluation of the detectability of a random lesion in MAP reconstruction
using ROC analysis.21 However, clinical tasks often involve the search for lesion location, which is not modeled
in ROC analysis. A better approach to the evaluation of lesion detection may be to use the localization ROC
(LROC) curve,22 which studies both detection and localization by separating the “true-positive” images into two
mutually exclusive subsets at each rating criterion depending on whether or not the observer correctly identifies
the lesion location. An LROC curve plots the joint proportion of true positive images with correctly located
lesions as a function of false positive rate. Assuming the evaluation at a non-target location is unaffected by the
presence or absence of a lesion, Swensson22 has derived a point-to-point relation between the ROC curve and the
LROC curve. However, when the possible lesion locations are close to each other, this assumption is not valid.

Most researchers rely on Monte Carlo reconstruction samples to obtain LROC curves, which can be very
time-consuming for iterative algorithms. In this paper we develop a fast approach to obtain LROC curves that
does not require Monte Carlo reconstructions. We use a channelized Hotelling observer (CHO)20 to search for
lesions. The CHO is applied to all possible locations within a certain distance from the true target location. A
lesion is correctly detected if the test statistic of the CHO achieves the maximum at the true target location (or
within a certain preselected range) and exceeds the detection threshold. We analyzed the mean and covariance
of the observer test statistics using theoretical approach that we have previously developed. Assuming the
observer test statistics are multivariate Gaussian random variables, an LROC curve can be directly generated
by integrating the conditional probability density functions. We calculate the high-dimensional integrals using
a Monte Carlo sampling method. Since no iterative reconstruction is involved, the proposed method is very fast
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compared with the traditional LROC approach. The results can be extended to other numerical observers, such
as the channelized non-prewhitening observer used by Gifford and coworkers.23

This paper is different from a recent work presented by Khurd and Gindi,24 where similar numerical tech-
niques were use to compute LROC curves. For fast computation, Khurd and Gindi24 assume not only that the
evaluation at non-target locations is unaffected by the presence of a target, but also that the evaluations at
different locations are independent. Therefore, their results do not work well when the noise correlation is too
broad or possible lesion locations are too close. In comparison, we make no assumption of independence. We
model the possible correlations between non-target locations, as well as the effect on the evaluation of non-target
locations by the presence of the lesion. Hence the results presented here are more useful when possible lesion
locations are close.

This paper is organized as follows. In Section 2 we review the theory of MAP reconstruction and numerical
observers. Then we present the fast approach to calculate LROC curves in Section 3. Some derivations in our
previous work15, 21 are repeated here for completeness. In Section 4 we conduct computer-based Monte Carlo
simulations to validate the theoretical results. The conclusions are drawn in Section 5.

2. BACKGROUND

2.1. Data Model and MAP Reconstruction

We model emission data as a collection of independent Poisson random variables with the (conditional) expec-
tation, ȳ ∈ IRM×1, related to the unknown tracer distribution, x ∈ IRN×1, through an affine transform

ȳ ≡ E[y|x] = Px + r, (1)

where E[·|·] denotes conditional expectation, P ∈ IRM×N is the detection probability matrix with the (i, j)th
element equal to the probability of detecting an event from the jth voxel at the ith measurement with consid-
eration of photon attenuation and detector efficiency, and r ∈ IRM×1 accounts for the presence of scattered and
random events in the data.

The Poisson likelihood function is

P(y|x) =
∏

i

e−ȳi ȳyi

i

yi!
, (2)

and the log likelihood function is given by

L(y|x) =
∑

i

(yi log ȳi − ȳi − log yi!) , (3)

where y ∈ IRM×1 are the measured sinogram data. For PET data that are precorrected for random events, a
shifted-Poisson model25 can be used.

An ML estimate can be found by maximizing (3). A popular ML algorithm for PET reconstruction is the
EM algorithm.26–28 However, ML solutions are very noisy because emission tomography is an ill-posed problem.
Thus, some form of regularization (or prior function) is needed to reconstruct a reasonable image.

Bayesian methods regularize the image through the use of a prior distribution on the unknown image. Most
image priors have a Gibbs distribution of the form

P(x) =
1
Z

e−βU(x), (4)

where U(x) is the energy function, β is the smoothing parameter that controls the resolution of the reconstructed
image, and Z is a normalization constant. For log-quadratic priors that are studied here, the energy function
can be expressed as

U(x) =
1
2

x′Rx, (5)



where R is a positive definite (or semidefinite) matrix and ′ denotes transpose. The commonly used pair-wise
quadratic priors and thin plate priors29, 30 are just special cases of (5).

Combining the likelihood function and the image prior, the MAP reconstruction is found as

x̂(y) = arg max
x≥0

[L(y|x) − βU(x)] . (6)

2.2. Numerical Observers for LROC Analysis

In an LROC study, observers are required to specify the most suspicious lesion location and a confidence rating
for each image. To model this process, we march a numerical observer over each given image x̂. At each possible
location r, the numerical observer computes a test statistic, η(x̂, r), by

η(x̂, r) = t′x̂, (7)

where t(r) is the observer template that depends on r and ′ denotes transpose. The most suspicious location
r∗(x̂) and the rating η∗(x̂) are then obtained from

r∗(x̂) = arg max
r∈Ω

η(x̂, r) (8)

η∗(x̂) = η(x̂, r∗), (9)

where Ω is the search region of the observer. This “maximum” detector is commonly used in detection tasks
with location uncertainty.22–24

A decision whether there is a lesion present is made by comparing η∗(x̂) to a preselected threshold τ . If
η∗(x̂) ≥ τ , x̂ is determined to have a lesion; otherwise, it is not. Among the true positive cases, there are only
a portion of images of which r∗(x̂) is the correct lesion lesion, or more precisely, r∗(x̂) is within a preselected
tolerance region around the lesion. An LROC curve is obtained by plotting the joint fraction of the true positive
images with correct localization vs. false positive fraction as we vary τ . Compared to the conventional ROC
curve, which always starts from (0,0) and ends at (1,1), an LROC curve starts from (0,0), but ends at (1,PCL).
PCL, representing the probability of correct localization, is less than 1 in most cases, due to the localization error
even with 100% false positive rate. As in ROC studies, the area under the LROC curve (ALROC) is often used
as a figure of merit.

We choose the channelized Hotelling observer19, 31 because it is the most popular numerical observers used in
ROC studies. Examples of other numerical observers in LROC studies can also be found in the literature.23, 24

The test statistic of CHO at location r is

η(x̂, r) = z′U ′K−1Ux̂, (10)

where U ∈ IRL×M represents L frequency-selective channels that mimic the human visual system, z ≡ E[x̂|H1]−
E[x̂|H0], and K ∈ IRL×L is the covariance of the channel outputs, i.e.,

K =
1
2
U(Σx̂|H1

+ Σx̂|H0
)U ′. (11)

H0 denotes lesion absent, H1 denotes lesion present at location r , Σx̂|H1
and Σx̂|H0

are the covariance matrices of
x̂ under hypotheses of H1 and H0, respectively. Without loss of generality, here we assume that the probabilities
of the two hypotheses are equal.

Note that z(r), U(r) and K(r) are all vector functions of r. If the resolution and noise variance are
stationary, the test statistics of the CHO for the whole image can be computed as a convolution. However, MAP
reconstruction has spatially variant resolution and noise properties, so the observer template is spatially variant.
Fortunately, empirical results have shown that the image properties of MAP reconstruction can be approximated
to be locally stationary,14, 15, 18, 32 so convolution can still be used in a local region.



3. FAST APPROACH TO COMPUTE THE LROC CURVE

3.1. Mean and Variance of the Test Statistics

Since the test statistics η(x̂, r) are results of a weighted sum of a number of random variables, we can assume
that they follow a multivariate normal distribution.24 To generate the LROC curve, we need to the know the
mean and variance of the test statistics, which can be written as

E[η(x̂, r)|Hk] = z′U ′K−1UE[x̂|Hk], (12)
Ση|Hk

= T ′Σx̂|Hk
T , (13)

where the jth column of T is the observer template at the jth voxel, and k = 0, 1.

The central parts of the calculation are the expressions of z and covariance matrices Σx̂|Hk
. Simplified

expressions for fast computation of these quantities have been derived in our previous work.15, 21 Here we briefly
review the derivation. We focus on small lesions and low noise situations, so we use the first-order Taylor series
expansion to approximate x̂(y) around the point ȳ ≡ PE[x|H0] + r, i.e.,

x̂(y) ≈ x̂(ȳ) + ∇yx̂(y)
∣∣y=ȳ(y − ȳ). (14)

The (j, l)th element of ∇yx̂(y) is ∂x̂j(y)/∂yl. The expression of ∇yx̂(y) was derived by Fessler12, 13 using the
fixed-point condition

0 =
∂

∂xj
[L(y|x) − βU(x)]

∣∣∣x=x̂(y), j = 1, . . . , M. (15)

Differentiating (15) with respect to yi by applying the chain rule and solving the resulting equation, we get

∇yx̂(ȳ) ≈ [F + βR]−1P ′ diag
[

1
ȳi

]
, (16)

where F = P ′ diag
[

1
ȳi

]
P is the Fisher information matrix, and diag[yi] denotes a diagonal matrix with the

(i, i)th element equal to yi.

Using the above first-order Taylor series approximation, we can approximate z as

z ≈ ∇yx̂(ȳ)P f̄ l ≈ [F + βR]−1F f̄ l, (17)

where f̄ l ≡ E[x|H1] − E[x|H0] is the expectation of the lesion profile. Similarly, the covariance of MAP
reconstruction can be approximated by

Σx̂|Hk
≈ [F + βR]−1P ′diag

[
1
ȳi

]
Σy|Hk

diag
[

1
ȳi

]
P [F + βR]−1. (18)

where Σy|Hk
is the covariance matrix of the measurement y under Hk, k = 0, 1.

Given x, y consists of independent Poisson random variables, of which the covariance is Σy|x = diag[ȳi] with
ȳ = Px + r. When considering object variation, the overall covariance of the measurements is

Σy|Hk
= E{Σy|x|Hk} + PΣx|Hk

P ′, (19)

where Σx|Hk
is the covariance of the object variation under Hk.

For small lesions, we can assume that the presence of a lesion has almost no effect on the Poisson noise in
the data, i.e., E{Σy|x|Hk} ≈ diag[ȳi], k = 0, 1. Therefore, we have

Σx̂|Hk
≈ [F + βR]−1[F + FΣx|Hk

F ][F + βR]−1. (20)



Direct computation of (17) and (20) is very time-consuming due to the inverse of a large matrix F + βR.
Assuming the image properties are locally stationary, we have obtained the following simplified expressions for
fast computation15, 21

z ≈ Q′diag
[

λi

λi + βµi

]
Qf̄ l (21)

Σx̂|Hk
el ≈ Q′diag

[
λi

(λi + βµi)2

]
Qel + Q′diag

[
λi

λi + βµi

]
QΣx|Hk

Q′diag
[

λi

λi + βµi

]
Qel, (22)

where {λi, i = 1, . . . , N} and {µi, i = 1, . . . , N} are the Fourier coefficients of the column vectors corresponding
to the lesion location of F and R, respectively, el is a unit vector with 1 at the lesion location and zero elsewhere,
and Q represents the two-dimensional (or three dimensional) Kronecker form of the Fourier transform. Details
on the computation of λ and µ can be found in our previous work.15 Note that λi and µi change as we change
the lesion location and the use of el indicates the approximation is on a column-by-column basis.

For further reduce the computational cost, we assume that λi and µi are fixed within a local region, so the
channel covariance can be approximated by

K ≈ Ũdiag
[

λi

(λi + βµi)2

]
Ũ

′
+

1
2

(
Q′diag

[
λi

λi + βµi

]
Ũ

′
)′

U(Σx|H1 +Σx|H0)
(

Q′diag
[

λi

λi + βµi

]
Ũ

′
)

, (23)

where Ũ = UQ′ are the Fourier coefficients of the channel functions. Substituting (21) and (23) into (10), we
get the expression of the observer template

tCHO ≈ U ′K−1Ũdiag
[

λi

λi + βµi

]
Qf̄ l. (24)

Within the local region, we can use convolution to compute η(x̂, r) as

η(x̂, r) ≈ tCHO ∗ x̂, (25)

where ∗ denotes two- (or three-) dimensional convolution although we write images as vectors.

In most cases, we are looking for a possible lesion in an otherwise uniform background, at least within a local
region. We can approximate E[η|H0] ≈ 0 because humans do not use DC information to make the decision. This
is equivalent to the subtraction of the background used by others.23, 24 As a result,

E[η(x̂, r)|H1] ≈ tCHO ∗ z. (26)

Thus the mean and covariance of the test statistics can be readily computed using the Fourier transform.

3.2. The LROC Curve
Once we have the mean and covariance of η(x̂, r), we can directly generate Monte Carlo samples of η(x̂, r),
from which we can plot LROC curves. The advantage of this approach is that it does not require Monte Carlo
reconstructions, so it dramatically reduces the computational time for LROC studies. A Monte Carlo sample is
generated by filtering a white noise field (zero mean and unit variance) in the frequency domain and adding an
appropriate mean. The maximum and the corresponding location are found in each Monte Carlo sample. They
are compared to a threshold and the true lesion location to calculate the true positive rate and false positive
rate. As we vary the threshold, the true positive rate and false positive rate will change. An LROC curve is then
obtained by plotting the joint fraction of the true positive images with correct localization vs. the false positive
rate.

As we mentioned before, a correct localization is determined by comparing distance between the most sus-
picious location and the true lesion site with a preselected tolerant range. Obviously the probability of correct
localization depends on the tolerance range. As we increase the tolerance, the probability of correct localization
increases. At the limit when the tolerance region covers the whole search region Ω, the LROC curve overlaps
with the ROC curve. Clearly Swensson’s model, where there is a point-to-point relation between the ROC curve
and the LROC curve, is not valid in this situation. The reason is because the possible lesion sites are very close
and hence the independence assumption does not hold.
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Figure 1. The background phantom image and the location of the simulated lesion.
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Figure 2. Reconstructed images of a noisy data set with a lesion. Top row, from left to right, β = 1, 3, 10; bottom row,
from left to right, β = 30, 100, 300.

4. MONTE CARLO SIMULATIONS

We conducted computer simulations to validate the proposed method. We simulated an ECAT HR+ whole-body
PET scanner (CTI PET Systems, Knoxville, TN) operating in 2D mode. The sinogram data have 288 angles of
view and 288 lines of response in each view. The background phantom image is shown in Figure 1. The lesion
is 8-mm in diameter. All images are represented by 128×128 4-mm square pixels.

For the traditional LROC study, we reconstructed 500 pair images (with and without a lesion) using a precon-
ditioned conjugated gradient MAP algorithm33 with different smoothing parameters. The data were generated
by forward projecting the phantom image with and without a lesion. Photon attenuation was modeled. Poisson
noise was added to the sinogram data after scaling the expected total number of events to 200k. Examples
of the reconstructed images are shown in Figure 2. We applied the CHO to the reconstructed images to ob-
tain the observer test statistics. Two sets of channel functions were studied: (i) five rotationally symmetric,
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Figure 3. The area under the LROC curve as a function of the tolerance distance for correct localization. (a) DOG
channels; (b) SQR channels. For all the points, the search radius is 10 pixels and β = 10.
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Figure 4. The area under the LROC curve as a function of the radius of the search region. (a) DOG channels; (b) SQR
channels. For all the points, the tolerance distance is 5 pixels and β = 100.

non-overlapping square channels (SQR); and (ii) three difference-of-Gaussian channels (DOG). These channel
functions are similar to that used in others.31, 34 For the proposed method, the observer test statistics were
obtained by sampling the conditional probability density function directly. From the observer test statistics,
LROC curves were generated by plotting the correctly identified lesion fraction versus the false positive fraction.
The area under the LROC curve was integrated numerically.

Comparisons of ALROC computed by the two methods are shown in Figures 3-5. The error bars were computed
using a bootstrap method. Figure 3 plots ALROC as a function of the tolerance distance for correct localization.
As we expected, ALROC increases as the tolerance distance increases. Figure 4 shows ALROC decreases as we
increase the search radius. This is expected because increasing the search radius will reduce the probability of
correct localization in the true positive cases. Figure 5 plots ALROC as a function of the prior parameter β. In
most cases, the results of the propose method match those of the traditional LROC method reasonably well.
However, we did find that the accuracy of the proposed method deteriorates as we increase the search radius or
β. This is the limitation of the locally stationary assumption that is used in the fast computation.
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Figure 5. The area under the LROC curve as a function of the prior parameter β. (a) DOG channels; (b) SQR channels.
For all the points, the tolerance distance is 5 pixels and the search radius is 10 pixels.

The advantage of the proposed method is that it does not require Monte Carlo reconstructions. The time
to generate one LROC curve using the proposed method is about 82 seconds (using a Matlab code) with λi

and µi precomputed, while Monte Carlo reconstructions (using a c-code) used in the traditional LROC method
(500 pairs for each smoothing parameter) took about 20 days on a Sun Ultra 60 workstation with 450-MHz
CPU. Therefore, the proposed method will allow fast evaluation of MAP reconstruction for a large number of
parameters, heretofore, impractical with traditional methods.

5. CONCLUSION

We have developed a fast approach to evaluate image quality of MAP reconstruction for LROC studies. The
method does not require Monte Carlo reconstruction samples and hence greatly reduces the computation time.
Computer simulation results show that the accuracy of the proposed method is comparable to that of the
traditional LROC method. The method currently is limited to a local region around the lesion. In future work
we will develop techniques to eliminate this limitation.
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