Real-Time Broad Spectrum Characterization of Hazardous Mixed Waste by Membrane Introduction Mass Spectrometry

PDF Version Also Available for Download.

Description

The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the ... continued below

Physical Description

vp.

Creation Information

Wilkerson Jr., Charles W. December 31, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Los Alamos National Laboratory
    Publisher Info: Los Alamos National Lab., Los Alamos, NM (United States)
    Place of Publication: Los Alamos, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the mass spectrometer. Transport of the analyte through the membrane occurs by the process of pervaporation. This process is described by adsorption to the outer surface of the membrane, diffusion through the membrane, and desorption from the inner membrane surface into a helium gas flow or into vacuum. The driving force for this work is the need for a rapid, sensitive, and broadly applicable tool for characterizing organic and metal-containing contaminants in a variety of DOE (and other) waste streams. In all characterization scenarios, a balance must be struck between evaluation of the hazards and their extent at a waste site, and the resources available for the overall mitigation of that risk. In the case of chemically, physically, and geometrically homogeneous waste, the situation is aided by the ability to reasonably assume that any sample collected is representative of the overall site constituents. However, few real environmental challenges are homogeneous. As a result, detailed sampling plans must be prepared, and chemical analyses must be performed on a number of samples in order to identify areas of contamination and assess further options. For many years, the chemical analysis part of this process has been accomplished by delivering the samples to a (typically) physically remote laboratory, where very detailed, and concomitantly expensive (both in time and money), procedures have been applied to the samples to determine their content; Environmental Protection Agency (EPA) methods for analyzing wastes for hazardous chemicals are 3 time-tested and very reliable. However, in many cases both time and resources may be conserved by being able to make survey analyses at the waste site to determine if any or all samples need to be exhaustively characterized by laboratory-based EPA analytical methods. A variety of groups worldwide are working on MIMS as a rapid screening tool for a variety of I applications; please see our review paper for a detailed overview of these efforts. Our primary innovations, developed during this project, have been the optimization of the ion source for environmental analyses and the study of chemically tailored pervaporation membranes for enhanced selectivity and sensitivity.

Physical Description

vp.

Source

  • Other Information: PBD: 31 Dec 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 31, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Wilkerson Jr., Charles W. Real-Time Broad Spectrum Characterization of Hazardous Mixed Waste by Membrane Introduction Mass Spectrometry, report, December 31, 2000; Los Alamos, New Mexico. (digital.library.unt.edu/ark:/67531/metadc788506/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.