Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

PDF Version Also Available for Download.

Description

Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained ... continued below

Creation Information

Fubiani, Gwenael J. September 1, 2005.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 mu m, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: LBNL--57514
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 860349
  • Archival Resource Key: ark:/67531/metadc788505

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • September 1, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:56 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fubiani, Gwenael J. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates, thesis or dissertation, September 1, 2005; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc788505/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.