PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED HLW

PDF Version Also Available for Download.

Description

Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and take part in cation exchange reactions. Zeolites are relatively easy to synthesize from a wide range of natural and man-made materials. One such combination is a mixture of metakaolinite and concentrated sodium hydroxide solution. Once mixed and cured at elevated temperatures, these ingredients react to form a hard, dense, ceramic-like material that contains significant amounts of crystalline tectosilicates (zeolites and feldspathoids) imbedded in an X-ray amorphous sodium aluminosilicate hydrate matrix. This rather unique composite material has been termed a ''hydroceramic.'' The crystalline ... continued below

Physical Description

vp.

Creation Information

Grutzeck, Michael W. & Kwan, Stephen June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Natural and synthetic zeolites are extremely versatile materials. They can adsorb a variety of liquids and gases, and take part in cation exchange reactions. Zeolites are relatively easy to synthesize from a wide range of natural and man-made materials. One such combination is a mixture of metakaolinite and concentrated sodium hydroxide solution. Once mixed and cured at elevated temperatures, these ingredients react to form a hard, dense, ceramic-like material that contains significant amounts of crystalline tectosilicates (zeolites and feldspathoids) imbedded in an X-ray amorphous sodium aluminosilicate hydrate matrix. This rather unique composite material has been termed a ''hydroceramic.'' The crystalline phases in the hydroceramic have the ability to sequester alkali, alkaline earth and a variety of higher valance cations in lattice positions or within networks of channels and voids. The matrix plays host to the crystallites and to residual amounts of insoluble hydroxide phases. Due to its gel-like character, the matrix also provides considerable strength. A previous publication has established the fact that a mixture of a calcined equivalent ICPP waste (sodium aluminate/hydroxide solution containing {approx}3:1 Na:Al) and fly ash and/or metakaolinite could be cured at various temperatures to produce a monolith containing Zeolite A (80 C) or Na-P1 plus hydroxy sodalite (130 C) dispersed in the alkali aluminosilicate hydrate matrix. Dissolution tests (PCT type) have shown these materials have superior retention of alkali, alkaline earth and heavy metal ions. The zeolitization process is a simple one. Metakaolinite is mixed with a calcined sodium-bearing waste and enough water to make a thick paste. The paste is transferred to a metal canister and ''soaked'' for a few hours at 90 C prior to conventional oven heating or steam autoclaving at -200 C for varying periods of time. Hydroceramics could well be a viable alternative for fixation of low activity sodium-bearing waste (SBW) calcines. The objective of the current study is to adapt this technology for use on site remediation and clean up of caustic waste solutions now in storage in tanks at Hanford and Savannah River. The proposed work is meant to develop a clearer understanding of the advantages and limitations of producing a zeolite-containing hydroceramic from treated low activity SBW, i.e. the effect of processing variables, reaction kinetics, crystal and phase chemistry, and microstructure on the performance of the waste form.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-65366--2001
  • Grant Number: FG07-98ER45726
  • DOI: 10.2172/833240 | External Link
  • Office of Scientific & Technical Information Report Number: 833240
  • Archival Resource Key: ark:/67531/metadc788471

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 3:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Grutzeck, Michael W. & Kwan, Stephen. PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED HLW, report, June 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc788471/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.