Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science
PDF Version Also Available for Download.
Description
LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam ...
continued below
Publisher Info:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
Place of Publication:
Berkeley, California
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this article.
Follow the links below to find similar items on the Digital Library.
Description
LUX is a design study to develop concepts for future ultrafast x-ray facilities. Presently, LUX is based on an electron beam accelerated to {approx}3-GeV energy in a superconducting, recirculating linac. Included in the design are multiple free-electron laser (FEL) beamlines which use the harmonic cascade approach to produce coherent XUV and soft X-ray emission beginning with a strong input seed at {approx}200-nm wavelength obtained from a ''conventional'' laser. Each cascade module generally operates in the low-gain regime and is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse. For a given cascade, the output photon energy can be selected over a wide range by varying the seed laser wavelength and the field strength in the undulators. We present numerical simulation results, as well as those from analytical models, to examine certain aspects of the predicted FEL performance. We also discuss lattice considerations pertinent to harmonic cascade FELs, some sensitivity studies and requirements on the undulator alignment, and temporal pulse evolution initiated by short input radiation seeds.
This article is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Corlett, John; Fawley, William; Penn, Gregory; Wan, Weishi; Zholents, A.; Reinsch, M. et al.Harmonic cascade FEL designs for LUX, a facility for ultrafast x-ray science,
article,
August 25, 2004;
Berkeley, California.
(digital.library.unt.edu/ark:/67531/metadc788313/:
accessed April 24, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.