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Disclaimer 
 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service mark by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency 
thereof. The view and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 
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Abstract 
 

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural 
gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal 
beds, where CO2 is preferentially adsorbed, displacing methane. Black shales may similarly 
desorb methane in the presence of CO2. 

Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were 
sampled to determine CO2 and CH4 adsorption isotherms. Sidewall core samples were acquired 
to investigate CO2 displacement of methane. An elemental capture spectroscopy log was 
acquired to investigate possible correlations between adsorption capacity and mineralogy. 

Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and 
condensate hydrocarbon maturity range). Total organic content determined from acid-washed 
samples ranges from 0.69 to 14 percent. CO2 adsorption capacities at 400 psi range from a low 
of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation 
between measured total organic carbon content and the adsorptive capacity of the shale; CO2 
adsorption capacity increases with increasing organic carbon content. 

Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of 
CO2 in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 
billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the 
black shales of Kentucky prove to be a viable geologic sink for CO2, their extensive occurrence 
in Paleozoic basins across North America would make them an attractive regional target for 
economic CO2 storage and enhanced natural gas production. 
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Executive Summary 
Increased emissions of CO2, especially from the combustion of fossil fuels, are being 

linked to global climate change and are of considerable global concern. These concerns are 
driving initiatives to develop carbon management technologies, including geologic sequestration 
of CO2. One option for sequestration may be Devonian black shales, organic-rich rocks that 
serve as both the source and trap for natural gas. Most of the natural gas is adsorbed on clay 
and kerogen surfaces, very similar to the way methane is stored within coal beds. It has been 
demonstrated in gassy coals that, on average, CO2 is preferentially adsorbed, displacing 
methane at a ratio of two for one. Black shales may similarly desorb methane in the presence of 
adsorbing CO2. If this is the case, black shales may be an excellent sink for CO2 and have the 
added benefit of serving to enhance natural-gas production. A bibliography of Devonian shale 
has been compiled to identify previous work and provide supporting data for continued 
research. 

Because of the volume of material lost during washing the sampling protocol was 
modified to collect cuttings before washing. Unwashed candidate samples have been selected 
and are being prepared for total organic carbon, vitrinite reflectance, and petrographic and CO2 
adsorption analyses to determine the gas-storage potential of the shale and to identify shale 
facies with the most sequestration potential. For the Devonian shale, average total organic 
carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. 

Columbia Natural Resources (CNR) has provided access to a selected drill hole of 
opportunity for collecting sidewall cores and an elemental capture spectroscopy (ECS) logging 
suite for correlation and mineralogical analysis. A shale analysis integrating the standard 
nuclear log suite and ECS log data has been acquired. The data from this log analysis is being 
correlated with the adsorption data. Sidewall cores were submitted for methane and CO2 
adsorption isotherms and methane displacement analyses. The results of the displacement and 
flow through experiments are pending. 

All samples from the CNR well were submitted for TOC and CO2 adsorption analyses 
including samples from the New Albany Shale (Illinois Basin) and the Battelle deep well in 
Mason County, West Virginia (AEP #1). Methane adsorption isotherms are being obtained on all 
most recently submitted samples. X-ray diffraction analyses have been conducted to assist in 
mineral characterization and correlating results from electron capture spectroscopy logging. 

In cooperation with Interstate Natural Gas, Pikeville, Kentucky, another ECS log and 10 
sidewall cores were acquired for a shale well in Martin County. The shale gas analytical model 
developed by Schlumberger was applied to the logs for this well. Five sidewall core samples 
were analyzed for quantitative x-ray diffraction, porosity, and permeability. Mineralogically, 
quantitative x-ray diffraction data from this well average 46% quartz and 39% clay minerals. 
Phyllosilicate minerals (clays and mica) include Illite, Kaolinite, and Chlorite. As received, 
porosity averaged 0.9 percent and permeability averaged 0.0005 millidarcys. CO2 adsorption 
isotherm data using whole rock (not crushed) techniques and data have been received for one 
of 5 sidewall cores. The reported Langmuir volume is 174.75 scf/ton and the Langmuir pressure 
is 993.88 psia. 

Adsorption capacity reported as measured langmuir volumes ranges from 37 to 2,078 
standard cubic feet CO2 per ton of shale (scf/ton) at langmuir pressures ranging from 243 to 
14,284 psia. These values represent the range of values for coefficients of the selected 
langmuir model. At a constant pressure of 400 psia indicate the CO2 adsorption capacity ranges 
from 14 to 136 scf/ton with a median value of 40 scf/ton. Methane adsorption capacity ranges 
from 2 to 38 scf/ton with a median value of 8 scf/ton. At 400 psia, CO2 adsorption exceeds CH4 
adsorption by a factor of 5. These data are being correlated with data from nuclear log suites for 
modeling TOC and CO2 storage capacity for individual wells. 
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Gamma ray and density log data have been digitized for 18 wells in the Big Sandy Gas 
field. These data have been correlated and models are being developed to calculate CO2 
sequestration capacity as adsorbed gas in place from the shale density log data. ASCII text files 
of digital log data for 722 wells throughout Kentucky have been converted to log ASCII standard 
(LAS) format and loaded into mapping software for calculation and spatial analysis of TOC and 
CO2 adsorption capacity. 

Initial estimates at 68 scf/ton indicate a sequestration capacity of 5.3 billion tons CO2 in 
the Lower Huron Member of the Ohio shale in parts of eastern Kentucky. At 500 psia, 
adsorption capacity of the Lower Huron Member of the shale averages 72 scf/ton. Assuming a 
thickness weighted average adsorption capacity of 40 scf/ton (at 400 psia), as much as 28 
billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The 
black shales of Kentucky could be a viable geologic sink for CO2, and their extensive 
occurrence in Paleozoic basins across North America would make them an attractive regional 
target for economic CO2 storage and enhanced natural gas production. 

 
Accomplishments this quarter: 

 
• Convert 722 ASCII text files of digital log data to LAS format 
• Load LAS digital log files to Petra software for analysis and mapping 
• Complete XRD, porosity, and permeability analyses for the Interstate #3 Jude well 
• Complete CO2 adsorption isotherm for 1 sidewall core (whole rock) for the Interstate #3 

Jude well 
• Acquire (Schlumberger) Well Montage Shale Analysis logs for the CNR and Interstate 

wells. Begin analysis and correlation of these data. 
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Technology Transfer Summary 
• NE/SE Combined GSA Section Meeting, April 2-5, 2002, Lexington, KY 
• 2nd National Conference on Carbon Sequestration (NETL), May 5-8, 2003, Alexandria, 

Virginia: (poster session) 
• Kentucky Oil and Gas Association Annual Meeting, June 23-25, 2003, Louisville, Kentucky 
• 2003 GSA Annual Meeting and Exposition, November 2-5, 2003, Seattle, Washington 
• NE/SE Combined GSA Section Meeting, March 25-27, 2004, Washington, DC 
• DOE/NETL Carbon Sequestration Project Review, March 29 to April 1, 2004, Pittsburgh, 

Pennsylvania 
• AAPG Annual Meeting, April 18-21, 2004, Dallas, Texas. 
• 3rd Annual Conference on Carbon Sequestration (NETL), May 2-6, 2004, Alexandria, 

Virginia. 
• 7th International Conference on Greenhouse Gas Control Technologies, September 5-9, 

2004, Vancouver, British Columbia, Canada 
• AAPG Eastern Section, October 3-7, 2004, Columbus, Ohio 
• Regional Carbon Sequestration Partnership Geologic Characterization Working Group 

Workshop, Houston, Texas 
• 2004 GSA Annual Meeting and Exposition, November 7-10, Denver, Colorado 
• 4th Annual Conference on Carbon Sequestration (NETL), May 2-5, 2005, Alexandria, 

Virginia 
• AAPG Annual Meeting, June 19-22, 2005, Calgary, Alberta, Canada 
• AAPG Eastern Section, October 18-20, 2005, Morgantown, West Virginia: (upcoming, 

abstract accepted) 

Introduction 
Carbon dioxide (CO2) is an efficient heat-trapping gas occurring in Earth's atmosphere. 

Over the past decades, there has been a growing concern that anthropogenic emissions of CO2 
are contributing to a systematic warming of Earth's climate; that is, global warming. The majority 
of anthropogenic emissions of CO2 are from fossil fuel combustion. Electric power generation, 
transportation fuels, and industrial applications are highly dependent on coal, crude oil, and 
natural gas. It is estimated that the reliance on fossil fuel combustion will extend well into the 
21st century (EIA, 2000). In Kentucky, 95 percent of the total electric generation capacity relies 
on fossil fuels (EIA, 2002, Table 4), with annual emissions of 87 million metric tonnes of CO2 
(EIA, 2002, Table 7). 

CO2 emissions can be decreased by increasing the efficiency of fossil fuel combustion 
processes, switching to alternate and renewable fuels (biomass, nuclear, solar, wind), and 
capturing and sequestering CO2. Each of these methods will undoubtedly be used to achieve 
goals for addressing global warming and meet increasing energy demands. For sequestering 
CO2, marine and terrestrial options are being researched, but geologic sequestration is the 
focus of this project. Geologic sequestration includes long-term carbon storage in old oil and 
gas fields, coals, saline aquifers, and unconventional reservoirs. 

Usually considered to be the seal for conventional oil and gas reservoirs, gas shales 
warrant study as a possible sequestration option. This research tests the hypothesis that 
organic- and gas-rich black shales can adsorb significant amounts of CO2. In carrying out the 
research, the Devonian black shales of Kentucky are being tested in the laboratory to determine 
their CO2 sorption capacity using powdered drill cuttings and sidewall cores. The ability of 
sorbed CO2 to displace methane is being tested on sidewall cores in order to assess the 
potential for enhanced natural gas production from the shales. 
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Organic matter in the Devonian gas shales has large surface areas similar to that found 
in coal. Coal seams are currently being investigated as potential sequestering sites for CO2, the 
most important greenhouse gas (IEA Coal Research, 1999). Naturally occurring organic matter 
(kerogen) is a microporous material that possesses a very high surface area and hence sorption 
capacity for gas. In the subsurface, coal commonly has economically significant amounts of 
sorbed methane (coalbed methane). Because organic matter has a greater sorption affinity for 
CO2 than methane, injection of CO2 with simultaneous production of methane may be viable 
(see Reznik and others, 1982; Bachu and Gunter, 1998). Currently a pilot CO2 injection project 
is under way in Alberta, led by the Alberta Research Council and a consortium of petroleum 
companies. In the San Juan Basin, New Mexico, Amoco has carried out a pilot investigation of 
CO2 injection, and Burlington Resources is currently evaluating the utility of CO2 injection to 
enhance recovery of methane from coal. Results from these tests have shown that CO2 injection 
and co-production of coalbed methane is technically and economically feasible. Since 1996, 
over 57 million m3 of CO2 has been sequestered in Cretaceous coal of the San Juan Basin, New 
Mexico. The question is: can Devonian gas shales adsorb sufficient amounts of CO2, making 
them significant targets for CO2 sequestration?  

Study Area 
The study area is primarily confined to the major gas-producing area of the Ohio Shale 

in the Big Sandy Gas Field, eastern Kentucky (Figure 1, main concentration of producing 
localities). As key wells and available samples are identified, wells in deep (at least 1,000 feet) 
and thick (at least 50 feet) areas will be included. The Devonian New Albany Shale in two Illinois 
Basin wells in Indiana have been sampled. Battelle has contributed drill cuttings through the 
Devonian Lower Huron Member of the Ohio Shale from their deep AEP CO2 seqestration 
project well in Mason County, W. Va. 

Regional Geology 
Thinly bedded, fissile gray and black (carbonaceous) shales of Early Mississippian and 

Late Devonian age occur in the subsurface of nearly two-thirds of Kentucky. In general, the 
shales are thicker and deeper in eastern and western Kentucky (Figure 1) and are absent in the 
Bluegrass Region of central Kentucky and the Mississippi Embayment Region in the Jackson 
Purchase area of extreme western Kentucky. Along the axis of the Cincinnati Arch in central 
Kentucky, the thickness of the shale is usually 50 feet or less. The shale thickens eastward to 
more than 1,700 feet in Pike County. The shale is exposed in outcrop around the margin of the 
Jessamine Dome (along the perimeter of the Inner and Outer Bluegrass Regions of central 
Kentucky) and along the Cumberland River drainage in south-central Kentucky. A subcrop of 
the shale has been identified beneath the Cretaceous sediments of the Mississippi Embayment 
Region of western Kentucky. Figure 2 shows the elevation of the top of the Devonian shale in 
Kentucky and illustrates the progressive deepening of the shale east and west of the Cincinnati 
Arch area of central Kentucky. 

Stratigraphy 
Figure 3 shows the distribution of the Devonian shales in Kentucky, known variously as 

the New Albany (Illinois Basin), Chattanooga (central Kentucky, Cincinnati Arch area), and Ohio 
(Appalachian Basin) Shales. Reservoir integrity for CO2 sequestration is a concern. Figure 4 
provides a composite general geologic column illustrating more than 3,800 feet of Mississippian 
and Pennsylvanian lithologies, including carbonate, sand, shale, and coal that have proven an 
effective seal for existing shale gas resources. The assumption that sequestration will take 
place in the shale at depths of at least 1,000 feet recognizes the possible limitations of a 
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fractured reservoir to act as an effective seal. Testing the integrity of this seal with respect to 
CO2 is beyond the scope of this project and will be the subject of any subsequent CO2 injection 
demonstration project. 

The Ohio Shale is subdivided into seven recognizable units (Figure 5): Cleveland Shale, 
Three Lick Bed, Upper, Middle, and Lower Huron, Olentangy, and Rhinestreet. In the 
subsurface, these units have been differentiated based on gamma ray and density differences 
that are essentially related to the organic-matter content of the shale. The upper most black, 
carbonaceous shales (Cleveland and Upper Huron) pinch out eastward into gray, more clastic 
sequences correlative to the Three Lick Bed, herein called the Chagrin Shale. The Olentangy 
and Rhinestreet black shales correspond to the Java Formation of West Virginia, and thin and 
pinch out westward. Some authors consider that the Olentangy and Rhinestreet are members of 
the Devonian Ohio Shale. Although they are not everywhere present in the subsurface in the 
study area, the units are included in the analyses where samples are available. 

Production 
The first Devonian shale gas wells were drilled between 1863 and 1865 in Meade 

County, west-central Kentucky, and were used to fuel street lamps and provide heat in 
Louisville. Shale gas was discovered in eastern Kentucky circa 1892 in Floyd County (Hoeing, 
1905). Overall, cumulative Devonian shale gas production in Kentucky probably exceeds 84.9 
billion cubic meters (bm3); gas in place is estimated by various investigators to be between 26 
trillion cubic meters (tm3) and 73 tm3 (Hamilton-Smith, 1993, p. 5). According to production data 
on file at the Kentucky Geological Survey, the giant Big Sandy Gas Field of Floyd, Knott, 
Letcher, Martin, and Pike Counties produced 77 percent of the nearly 2.5 bm3 of natural gas 
produced in Kentucky in 2003. 

Reservoir parameters for the Big Sandy Gas Field were summarized in the "Atlas of 
Major Appalachian Gas Plays" (Boswell, 1996). The average completed interval exceeds 500 
feet in thickness. Average porosity is 4.3 percent, with a maximum of 11 percent. Reservoir 
temperature averages 84°F, with an initial reservoir pressure of 800 psi or more. Current 
reservoir pressure averages 400 psi. Limited permeability data are available, but indicate less 
than 0.1 millidarcy of matrix permeability. Analyses of sidewall core samples acquired for this 
project from the Interstate no. 3 Jude well, Martin County, indicate permeability averages 0.0005 
millidarcys. Fracture permeability may exceed several hundred millidarcys. 

Drilling and completions target organic-rich intervals with abundant natural fractures, 
mostly in the Lower Huron Member of the Ohio Shale (Figure 5) of eastern Kentucky. The 
completion often consists of multiple completions including the Sunbury to Upper Huron interval 
with the Lower Huron completed separately. Completions in the gray, more clastic, shale 
intervals (Three Lick Bed/Chagrin and Middle Huron are typical only where temperature, 
density, and audio anomalies indicate fracturing of the shale. Nitrogen is typically used as the 
carrier fluid in hydraulic fracturing stimulations, which are intended to intersect with and enhance 
any natural fractures. Sand is employed as a proppant to maintain an open fracture system. The 
industry rule of thumb is that a shale well can be expected to produce 300 million cubic feet of 
natural gas (MMcf). Some wells often produce from 500 MMcf to more than 1 billion cubic feet. 
Devonian shale gas production tends to be long-term. This long-term production (with many 
wells exhibiting flat, or inclining production; see Figure 6) and high organic content suggest the 
shale contains a large component of adsorbed methane. 
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Methods 

Drill Cuttings 
Drill cuttings on file at the Kentucky Geological Survey Well Sample and Core Library 

and sidewall cores are the main source of material for analysis. Unwashed sets of recently 
acquired drill cuttings were used to minimize weathering of material and to maximize volume of 
material for analysis. Drill cuttings are commonly collected during drilling in 5- to 10-foot 
intervals and consist of a mix of chipped rock fragments and powder. Distribution and 
stratigraphy of the Devonian shale in eastern Kentucky suggest dividing well cuttings into up to 
three samples for adsorption analysis. The upper part of the shale from the Cleveland Member 
to the Middle Huron is generally less organic-rich, as indicated by the gamma-ray response on 
standard geophysical well logs (Figure 5). Drill cuttings of this sequence generally have a lighter 
gray color and more recognizable quartz material than the darker gray to black samples with 
sparse pyrite that are characteristic of the Lower Huron Member. In some areas of the Big 
Sandy Gas Field, the Olentangy and Rhinestreet Members of the Ohio Shale are present but 
have a somewhat lesser organic content as indicated by gamma-ray logs. Where present, these 
shales were composited as a separate sample. Some wells have an insufficient volume of 
cuttings available to analyze the individual members of the Ohio Shale; in these cases the entire 
shale sequence was composited into a single sample. The rock chip and powder samples were 
divided into two splits: one for TOC, vitrinite reflectance, and X-ray diffraction analyses, and one 
for determination of CO2 isotherms. Each split was then milled and seived to the specifications 
of the respective analytical technique. 
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Figure 7 shows the location of wells sampled to date in eastern Kentucky. 

Total Organic Carbon 
To investigate any relation between organic content and CO2 sorption capacity, total 

organic carbon content (TOC) is being determined. For total organic carbon analyses, samples 
were first crushed to a maximum particle size of 200 microns (–60 mesh). Samples were run in 
duplicate. One split was run “as is.” Another split was treated with 30 percent hydrochloric acid 
(HCl) for 12 to 24 hours to remove any carbonate minerals from the matrix, prior to analysis. 
Although carbonate minerals are typically a rare component of Devonian shales, they present a 
possible bias in the calculation of TOC. Like organic material, carbonate minerals dissociate in 
the combustion chamber and form CO2. The hydrochloric acid was removed by repeated 



Kentucky Geological Survey 07/28/05 

M:\DevShSeq\DOEReports\41442R12.doc Page 8 

washings with distilled water, followed by centrifugation. The samples were then placed in a 
drying oven (50ºC). 

Total organic carbon was measured on a LECO SC-144 DR dual range sulfur and 
carbon analyzer, which is a nondispersive, infrared, digitally controlled instrument designed to 
measure sulfur and carbon in a wide variety of organic and inorganic materials. The unit 
combusts samples in a pure oxygen environment at 1,350ºC. Sulfur compounds are 
immediately oxidized and form sulfur dioxide (SO2); carbon compounds are oxidized to CO2. 
From the combustion system, sample gases pass through two tubes containing magnesium 
perchlorate (MgClO4), which removes moisture, and then are routed to the infrared (IR) 
detection cells. A sulfur IR cell measures the amount of SO2 present in the gas stream, and a 
carbon IR cell does the same for CO2. All molecules, with the exception of bipolar species (e.g., 
N2, H2, O2), absorb energy in the infrared region. As radiant energy is projected through the 
sample material an IR absorption spectrum is produced. Since no two molecules produce the 
same spectrum, the identity and quantity of a compound can be readily, and accurately, 
determined. 

An anomaly was noted in the last group of samples submitted for TOC determination; 
the carbon content after acid washing was consistently higher than the content as received. A 
new TOC standard has been selected and the samples were reanalyzed. It was determined that 
the observed difference in TOC content before and after washing were smaller than instrument 
error. This indicated that very little, if any, inorganic carbon was present in the samples. The 
Montage Well Shale Analysis modeling of both the CNR and Interstate wells indicate 
concentrations of calcite cemented mudstones that may represent the occurrence of flooding 
surfaces as noted in the work by MacQuaker (2005) on the Mancos Shale, Book Cliffs, Utah. 

Vitrinite Reflectance 
Vitrinite reflectance is used as a measure of the maturity of the organic matter in shale 

and that maturity may influence CO2 sorption capacity. Mean random reflectance (R0random) on 
dispersed vitrinite particles in the samples was determined on a Zeiss USMP incident light 
microscope calibrated using glass standards of known reflectance. Depending on the amount of 
vitrinite in the samples, 50 or 100 grains were measured at a magnification of 640x to determine 
mean reflectance. Mean random reflectance was used because it eliminates the need to rotate 
the stage to determine maximum and minimum reflectance values. As the vitrinite particles in 
the analyzed samples were quite small (usually less than 10 microns), stage rotation simply 
wasn’t practical, because it often resulted in the reflectance measuring spot moving off the 
grain. Maximum vitrinite reflectance values (R0max) can be estimated by multiplying the mean 
random measurements by 1.066 (Ting, 1978). 

Adsorption Isotherms 
The classic theory used to describe the type I isotherm for microporous materials with 

small external surface area is based on the Langmuir equation (1916). The type I isotherm 
displays a steep increase in adsorption at low relative pressures due to enhanced adsorption 
caused by the overlapping adsorption potentials between the walls of pores whose diameters 
are commensurate in size with the adsorbate molecule. The type I isotherm then flattens out 
into a plateau region at higher relative pressure, which is believed to be caused by the 
completion of a monolayer of adsorbed gas. The micropore volume is thought to then be filled 
by only a few molecular layers of adsorbate, and further uptake is limited by the dimensions of 
the micropores. 

The Langmuir model assumes that a state of dynamic equilibirum is established 
between the adsorbate vapor and the adsorbent surface and that adsorption is restricted to a 
single monolayer. The adsorbend surface is thought to be composed of a regular array of 
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energetically homogeneous adsorption sites upon which an adsorbed monolayer is assumed to 
form. The rate of condensation is assumed to be equal to the rate of evaporation from the 
adsorbed monolayer at a given relative pressure and constant temperature. The Langmuir 
equation was developed with these assumptions and takes the following form: 
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where P is the equilibrium pressure, V is the volume of gas adsorbed at equilibrium, Vm is the 
volume of adsorbate occupying the monolayer, and B is an empirical constant. A plot of P/V vs. 
relative pressure should yield a straight line whose slope will yield Vm, from which the surface 
area may be obtained. 

The Langmuir isotherm can be written: 
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P = gas pressure 
V(P) = predicted amount of gas adsorbed at P 
VL = Langmuir volume parameter 
PL = Langmuir pressure parameter 

 
The difference between the measured amount of gas adsorbed (V(P)) and that predicted 

using the Langmuir equation (Vi(P)) is a measure of error and is given as: 
 

)()()( PVPVPErr i −=  
 

This error may be positive or negative. The square of the error is always positive and is 
a measure of how well the calculated isotherm matches the data. This error can be calculated 
for each point and summed giving a measure of the overall error: 
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N = number of measured points 
 

The goodness of fit of the isotherm is expressed by calculating the correlation coefficient 
between the measured points and the calculated points. The results generally yield correlations 
that are better than r2 = 0.99, and standard errors of Langmuir volumes of ±2 percent. The 
reported CO2 sorption capacity and corresponding pressure are calculated coefficients of the 
Langmuir model and are used to determine the sorption capacity at reservoir-appropriate 
pressures. 

Adsorption analyses were performed using a high-pressure volumetric adsorption 
technique similar to that described by Mavor and others (1990). Isotherms were measured on a 
custom-made apparatus modeled after a similar module designed and built at CSIRO in Lucas 
Heights, Australia. The apparatus is based on Boyle’s Law. In simple terms, a known volume of 
gas within a reference cell is used to dose a sample cell that contains the sample. The amount 
of gas adsorbed in the sample cell is then determined, based on a change in pressure in the 
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sample cell using the Real Gas Law. Following dosing of the sample cell, the pressure drops 
until equilibrium is reached (i.e., no more gas can be adsorbed by a sample at a particular 
pressure). When equilibrium is reached, the sample is dosed at a higher pressure. Typically, 11 
separate pressure points are selected and measured so that a Langmuir regression curve can 
be accurately generated. The pressures in the reference and sample cells are measured using 
pressure transducers that are interfaced to a computer equipped with special boards and 
software. The computer monitors the transducers and determines when equilibrium is reached; 
it also controls valves and switches for dosing and purging the cells. 

Sidewall Cores for Adsorption and Methane Displacement 
Laboratory investigation of methane displacement in the presence of CO2 is being 

performed on whole rock core samples. In cooperation with Columbia Natural Resources, 
access to a well in Knott County, eastern Kentucky, was obtained for logging and collection of 
sidewall cores. Schlumberger Oilfield Services provided elemental capture spectroscopy logging 
for mineral identification and obtained the sidewall cores. The sidewall core plugs are being 
saturated with methane. To test the potential for enhanced natural gas production, the cores are 
being subjected to simulated injection of CO2, and the amount of methane displaced during 
injection is being measured. Laboratory setup and analyses are similar to the standard 
procedure for obtaining adsorption isotherms. The results from this flow-thru experiment are 
pending. 

Mineralogy: Elemental Capture Spectroscopy and X-Ray Diffraction 
Elemental capture spectroscopy (ECS) is an advanced tool used for lithology and 

mineral determination that uses the same technology employed by NASA on the Mars Rover 
missions. An AmBe neutron source is used to activate a formation. Relative elemental yields are 
derived using fourier transform infrared spectroscopy analysis to identify 23 elements. Primary 
elements measured include: Si, Ca, Fe, S, Ti, Gd, Cl, and H. The relative abundance of these 
elements has been correlated with particular minerals and sedimentary lithologies (Herron and 
Herron, 1997 and Schlumberger, 2000). To supplement the ECS log, x-ray diffraction (XRD) 
data are being acquired. Samples for XRD analysis are pulverized to 200 mesh or smaller and 
side packed. 

Geophysical Logs 
A gamma-ray density (GRD) log suite is typically available for shale wells drilled within 

the past few decades. More recently, the standard open-hole log suite has expanded to include 
temperature, audio, density porosity, and lithology (photoelectric effect) determinations. 
Schmoker (1979, 1993) developed a model for determining TOC of the shale from formation 
density log data. Shale can be considered a mixture of three components: clay minerals, quartz-
feldspar-mica, and organic matter. Schmoker (1979) suggests the organic matter content is the 
main contributing factor to observed variations in shale density. Using Schmoker’s (1993, p. J4) 
method, TOC for intervals can be estimated from density logs using the equation: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−= 1822.55

ρ
ρBTOC  

 
Bρ  = maximum density of gray shale intervals 

(typically 2.67 to 2.72 g/cm3) 
 

ρ  = formation density from log 
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Schlumberger Oilfield Services has developed a shale analysis model that uses a 
standard nuclear log suite (Schlumberger Platform Express service) and an ECS log. This 
model provides detailed continuous lithologic and mineralogic interpretations, TOC, gas content, 
and reserves estimates. 

Sequestration Capacity of the Shale 
ArcView GIS software was used to develop a method to compile an estimate of the 

sequestration capacity of the shale. The method uses a cell-based approach that enables 
combining shale thickness and depth information in the form of continuous grids with shale 
density and spatially variable CO2 adsorption capacity data. Preliminary estimates were 
compiled using a uniform, minimum CO2 adsorption capacity and include data projected into the 
Illinois Basin portion of western Kentucky. 

Results to Date 
Fourty-three samples have been collected from 11 wells, including three cuttings 

samples, 10 sidewall cores from the Columbia Natural Resources No. 24752 Elkhorn Coal 
Corporation well in Knott County (Figure 8), and 10 sidewall cores from the Interstate Natural 
Gas No. 3 John Jude Heirs in Martin County. Data for completed analyses are presented in 
Table 1. In recognition of the regional nature of the potential reservoir, both the Midwest 
Geologic Sequestration Consortium (Illinois Basin, ISGS) and the Midwest Regional Carbon 
Sequestration Partnership (Appalachian Basin, Battelle) were contacted to obtain shale 
samples. Illinois Basin core samples and drill cuttings from the Battelle AEP test well have been 
acquired and were analyzed for CO2 adsorption capacity and TOC. 

R0random values (Table 1) range from a minimum of 0.78 to 1.59 with a median of 1.1 and 
a mean of 1.2. This places the shale in the upper oil to wet gas and condensate maturity range 
as measured by reflectance. In Figure 9. Mean random reflectance (R0 random), axis labels refer 
to the upper (right) end of the graphed class. 

The currently available adsorption isotherms are presented in Figure 10. The Langmuir 
volume and pressure data reported in Table 1 must be compared on a uniform pressure basis 
by formation. These summary data are shown in Table 2 which provides calculated adsorption 
capacities at three pressure values that are expected to be typical of the range of observed 
Devonian shale gas reservoir conditions. To effectively compare capacity data derived from 
adsorption isotherms, three pressure conditions were selected: 200, 400, and 600 psia. These 
comparison data are presented in Figure 12. 

Columbia Natural Resources (CNR, now owned by Triana) drills a number of Devonian 
shale gas wells in eastern Kentucky as a normal part of their resource development program. A 
drill hole of opportunity was identified and sidewall cores and logs were obtained from the well. 
An elemental capture spectroscopy (ECS) log was obtained. The cores have been submitted for 
laboratory analysis by saturation with CH4 and analysis of CH4 displacement efficiency as CO2 
is injected into the core. The CNR well number 24752 Elk Horn Coal Company is located in 
eastern Knott County (Figure 8). 

A second ECS log was acquired by Interstate Natural Gas Company, Pikeville, Kentucky 
for their No. 3 John Jude Heirs well in Martin County. As of this writing, the ECS log and the 
derived Schlumberger well montage shale analysis are being held proprietary. Copies have 
been secured and permission is being sought to include the data in the final report. For this well, 
ten sidewall cores were acquired in closely spaced (less than one vertical foot apart) pairs. One 
core of each pair was subdivided: one sample for quantitative X-ray diffraction analysis and the 
other sample for porosity and permeability analysis. The second core plug of each sample pair 
was submitted for whole rock CO2 adsorption analysis. Available data are provided in Appendix 
D. In summary, quantitative x-ray diffraction data from this well average 46% quartz and 39% 
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clay minerals. Identified phyllosilicate minerals (clays and mica) include Illite, Kaolinite, and 
Chlorite. As received, porosity averaged 0.9 percent and permeability averaged 0.0005 
millidarcys. CO2 adsorption isotherm data using whole rock (not crushed) techniques and data 
have been received for one of 5 sidewall cores. The reported Langmuir volume is 174.75 scf/ton 
and the Langmuir pressure is 993.88 psia. 

An ECS log presents dry weight fractions of major lithologic components including 
silicates (quartz, feldspar, and mica), clay minerals, and carbonates. Figure 13 shows a portion 
of the ECS log through the Lower Huron Member of the Devonian Ohio Shale in the CNR well 
24725 Elk Horn Coal. As measured on the ECS log through the complete Ohio Shale interval, 
the dry weight fraction of clay ranges from a minimum of 25 percent to a maximum of 71 
percent. The mean clay content is 55 percent and the mode is 63 percent.  Figure 14 shows a 
typical whole rock x-ray diffraction trace indicating the presence of Illite, Kaolinite, Pyrite, and 
Quartz. Another clay mineral (indicated by “M” in the figure) is most likely an authigenic 
Smectite (possibly Montmorillonite). Hosterman and Whitlow (1983) reported an Illite-Smectite 
mixed layer clay (consistent with Montmorillonite). 

Ten sidewall cores were recovered from the CNR 24752 Elk Horn Coal well and are 
summarized in Appendix C. Of these cores, 7 were intact and have been submitted for CO2 
adsorption and methane displacement analysis. The three broken cores are being analyzed for 
solvent extraction for chromatographic analysis identify any light hydrocarbons present and for 
petrographic analysis. Appendix C also includes sections of the litho-density and elemental 
capture spectroscopy logs acquired. Adsorption capacity reported as measured langmuir 
volumes ranges from 37 to 2,078 standard cubic feet CO2 per ton of shale (scf/ton) at langmuir 
pressures ranging from 243 to 14,284 psia ( 

Table 2). These values represent the range of values for coefficients of the selected 
langmuir model. At a constant pressure of 400 psia, the indicated CO2 adsorption capacity 
ranges from 14 to 136 scf/ton with a median value of 40 scf/ton. Methane adsorption capacity 
ranges from 2 to 38 scf/ton with a median value of 8 scf/ton (Table 3). At 400 psia, CO2 
adsorption exceeds CH4 adsorption by a factor of 5.3 (Figure 11). 

A direct relationship has been observed between total organic content and the 
adsorption capacity of the shale. Figure 15 shows the relation by formation analyzed. (It should 
be noted that the Indiana Selmeir (New Albany Shale) samples were specifically chosen for 
their high organic content.) It was observed that two samples are enriched with respect to the 
amount of CO2 that can be adsorbed based on organic carbon content. When these outliers are 
included in regression analysis, the correlation coefficient is 0.80 (at the 95 pecent level of 
confidence). Excluding the outliers, the correlation coefficient improves to 0.96 (at the 95 
percent level of confidence). 

Gamma ray and density logs have been digitized for 18 shale wells including all wells for 
which adsorption data were acquired and supplemental wells needed to construct a detailed 
cross section sub-parallel to regional dip through the main part of the Big Sandy Gas Field. The 
cross section, Figure 16, was compiled using the Petra software from GeoPlus Corporation and 
shows the facies transition from predominantly black, carbonaceous shales in the west to 
predominantly clastic-rich gray shales toward the basin center (eastward). Gamma ray versus 
density cross plots have been made for these 18 wells. Two plots of this type are shown in 
Figure 17. With reference to the top plot in the figure, the general pattern of sandstone units, in 
this case the Berea sandstone, data are clustered between densities of 2.4 to 2.8 grams per 
cubic centimeter (g/cm3) with the natural gamma-ray being less than 200 API units. Gray shales 
with little organic matter (the Three Lick Bed, Middle Huron, and Chagrin) cluster between 
densities of 2.55 and 2.82 g/cm3 and a gamma-ray reading generally between 150 and 250 API 
units. The black, organic rich units, however, show a wide variation along a broad, linear trend 
supporting Schmoker’s assumptions. The same pattern holds for individual wells (see bottom 
cross plot in Figure 17). For calculating TOC from the density curve using the method of 
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Schmoker (1993) a bulk density of 2.82 g/cm3 for the maximum density of the gray shale 
sections of the Ohio. To facilitate spatial analysis of TOC and CO2 adsorption capacity of the 
shale, digital log data for the shale interval in 722 wells has been reformatted to be compatible 
with the LAS digital log format. These logs and stratigraphic data have been imported into the 
Petra geologic software program for mapping and contouring. 

Initial estimates of CO2 sequestration capacity have been calculated using selected data. 
An initial estimate of the sequestration volume of the Lower Huron was compiled using areal 
distribution and thickness data from Dillman and Ettensohn (1980). Initial calculations indicate 
that 91 x 1012 cubic feet (2.6 x 1012 cubic meters) of CO2 could be sequestered in the Lower 
Huron using a Langmuir volume of 67.6 scf/ton (2.1 m3/tonne; raw data from sample 107928-2 
(Table 1) and an average thickness of 150 feet over the area of Boyd, Breathitt, Floyd, Johnson, 
Knott, Lawrence, Leslie, Magoffin, Martin, Perry, and Pike Counties combined. Assuming 30 
percent of this theoretical saturation, approximately 1.6 billion tons (1.5 billion metric tonnes) of 
CO2 could be sequestered. Using a 1-kilometer grid, a depth to top of shale of 1,000 feet or 
greater, a shale thickness of 50 feet or more, and a constant adsorption capacity equal to a 
thickness-weighted average of 40 scf/ton (1.2 m3/tonne; raw data from samples 107928-1, 
107928-2, and 107928-3, Table 1), estimated initial CO2 sequestration capacity of the Devonian 
shale in Kentucky is 27.7 billion tons (25.1 billion metric tonnes) (Figure 18). 

Preliminary Conclusions 
Preliminary data indicate that black, organic-rich gas shales can serve as targets for 

sequestration of significant volumes of anthropogenic CO2. TOC data may be used as a proxy 
to estimate adsorptive capacity of the shale. TOC content of the shale can be estimated from 
density log data. At Kentucky's current rate of power plant emissions, the organic-rich, black 
shale in the state could sequester more than 300 years' worth of that carbon. Enhanced 
production of natural gas displaced by the injected CO2 would contribute to a long-term increase 
in the supply of what is considered a "greener" fuel. 

Acknowledgements 
The authors want to thank the University of Kentucky Research Foundation and the 

Office of Sponsored Projects Administration for their assistance and support. Ed Rothman of 
Columbia Natural Resources (Triana) and Jay Terry of Schlumberger were instrumental in 
providing access to a drill hole and obtaining advanced well logs. Henry Francis, Laboratory 
Services Manager, is conducting x-ray diffraction analyses. Dr. Sue Rimmer, Associate 
Professor, Department of Geological Sciences, University of Kentucky, has assisted with 
analysis and interpretation of the x-ray diffraction data. Dr. Frank Ettensohn, Professor, 
Department of Geological Sciences, University of Kentucky, has reviewed and commented on 
stratigraphy and correlation within the Devonian Shale. Bob Cluff, Discovery Group, Denver, 
Colorado, suggested the use of density log interpretation. Joe Meglen, Interstate Natural Gas, 
Pikeville, Kentucky, contributed the ECS log and analysis for their well in Martin County and 
gave us access to obtain additional sidewall cores. Jackie Silvers of the Kentucky Geological 
Survey kept our budget straight and Leah Barth spent many dusty hours sampling well cuttings 
and reformatting digital ASCII log data. 



Kentucky Geological Survey 07/28/05 

M:\DevShSeq\DOEReports\41442R12.doc Page 14 

References Cited 
Bachu, S., and Gunter, W.D., 1998, Storage capacity of CO2 in geological media in sedimentary 

basins with application to the Alberta Basin: 4th International Conference on GHG 
Control Technologies, Interlaken, Switzerland, September 1999. 

Boswell, R., 1996, Play Uds: Upper Devonian black shales, in Roen, J.B. and Walker, B.J., eds., 
Atlas of major appalachian gas plays: West Virginia Geologic and Economic Survey, 
Publication V-25, p. 93–99. 

Dillman, S.B., and Ettensohn, F.R., 1980, Isopach map of the Lower Huron Shale Member (unit 
5) of the Ohio Shale in eastern Kentucky: U.S. Department of Energy, Morgantown 
Energy Technology Center, Eastern Gas Shales Project, METC/EGSP Series 518, scale 
1:370,000. 

Energy Information Administration (EIA), 2000, Annual energy outlook 2001 with projections to 
2020: U.S. Department of Energy, Energy Information Administration DOE/EIA-
0383(2001), 262 p., www.eia.doe.gov/oiaf/aeo/pdf/0383(2001).pdf [visited 11-Nov-2001]. 

Energy Information Administration (EIA), 2002, State Energy Profiles, Kentucky: U.S. 
Department of Energy, Energy Information Administration, 
www.eia.doe.gov/cneaf/electricity/st_profiles/kentucky.pdf [visited 4-Mar-2004]. 

Hamilton-Smith, T., 1993, Gas exploration in the Devonian shales of Kentucky: Kentucky 
Geological Survey, ser. 11, Bulletin 4, 31 p. 

Herron, M. M., and Herron, S. L., 1997, Log Interpretation Parameters Determined from 
Chemistry, Mineralogy and Nuclear Forward Modeling, in International Symposium of 
the Society of Core Analysts, Calgary, Alberta, CA, p. 14. 

Hoeing, J.B., 1905, The oil and gas sands of Kentucky: Kentucky Geological Survey, ser. 3, 
Bulletin 1, 233 p. 

Hosterman, J. W., and Whitlow, S. I., 1983, Clay mineralogy of Devonian Shales in the 
Appalachian Basin: Washington, D.C., United States Geological Survey Professional 
Paper 1298, 31 p. 

IEA Coal Research, 1999, CO2 reduction—Prospects for coal: London, IEA Coal Research, 84 
p. 

Langmuir, I., 1916, The constitution and fundamental properties of solids and liquids: Journal of 
the American Chemical Society, v. 38, p. 2221–2295. 

MacQuaker, J. H. S., Taylor, K. G., and Gawthorpe, R. L., 2005, Spatial Expression of 
Architectural Elements and Packages in a Large-Scale Outcropping Siliclastic Mudstone 
Succession, the Mancos Shale, Book Cliffs, Utah [abs]: American Association of 
Petroleum Geologists 2005 Annual Convention, Abstracts on CD-ROM. 

Mavor, M.J., Owen, L.B., and Pratt, T.J., 1990, Measurement and evaluation of isotherm data: 
Proceedings of the 65th Annual Technical Conference and Exhibition of the Society of 
Petroleum Engineers, SPE 20728, p. 157-170. 

Reznik, A., Singh, P.K., and Foley, W.L., 1982, An analysis of the effect of carbon dioxide 
injection on the recovery of in-situ methane from bituminous coal: An experimental 
simulation: Society of Petroleum Engineers/U.S. Department of Energy 10822. 

Schlumberger, 2000, Elemental Capture Spectroscopy Sonde: Houston, Texas, Schlumberger, 
3 p. 



Kentucky Geological Survey 07/28/05 

M:\DevShSeq\DOEReports\41442R12.doc Page 15 

Schmoker, J. W., 1979, Determination of Organic Content of Appalachian Devonian Shales 
from Formation-Density Logs: American Association of Petroleum Geologists Bulletin, v. 
63, p. 1504-1537. 

Schmoker, J. W., 1993, Use of formation-density logs to determine organic-carbon content in 
Devonian shales of the western Appalachian Basin and an additional example based on 
the Bakken Formation of the Williston Basin, in J. B. Roen, and R. C. Kepferle, eds., 
Petroleum geology of the Devonian and Mississippian black shale of eastern North 
America, U. S. Geological Survey Bulletin 1909, U.S. Government Printing Office, p. J1-
J14.  

Ting, F.T.C., 1978, Petrographic techniques in coal analysis, in Karr, C., Jr., ed, Analytical 
methods for coal and coal products: New York, Academic Press, v. 1, p. 3–26. 



Kentucky Geological Survey 07/28/05 

M:\DevShSeq\DOEReports\41442R12.doc Page 16 

Tables 
Table 1. Gas storage capacity, total carbon (TC), total organic carbon (TOC), and vitrinite 
reflectance data for completed samples. 

Langmuir 
Coefficients 

Langmuir 
Coefficients 

Sample Formation 
CH4 
scf/ton 

CH4 
PSIA 

CO2 
scf/ton 

CO2 
PSIA 

TOC 
(Acid*) R0random Sulfur%

107928-1 Upper Ohio 4.6 377.8 37.5 681.1 0.69 1.55
107928-2 Lower Huron 34.6 443.2 67.6 243.7 2.95 1.48
107928-3 Lower Ohio 4.9 176.2 34.6 253.1 1.60 1.59
121774-1 Ohio Shale 126.5 989.8 3.66 1.1
124789-1 Upper Ohio 740.8 6419.1 3.26 0.78
124789-2 Lower Huron 2077.6 14283.5 4.62 0.81
124789-3 Lower Ohio 116.2 957.9 1.78 0.83
123486-1 Upper Ohio 228.9 2230.4 2.44 0.78
123486-2 Lower Ohio 309.3 2106 4.13 0.82
121162-1 Ohio Shale 164.2 1561.3 2.37 0.85
121464-1 Upper Ohio 52.6 708.9 1.18 1.52
121464-2 Lower Huron 248.7 751.2 3.60 1.52
121464-3 Lower Ohio 

N
ot

 a
na

ly
ze

d 

108 819 2.31 1.51

N
ot

 a
na

ly
ze

d 

IGSID-
107310-1 Selmier Shale 172.6 1428.1 607.3 1390.3 14.7 2.26
IGSID-
107310-2 Blocher Shale 118.7 2097.6 408.5 1456.5 3.69 1.42
IGSID-
119139-1 Selmier Shale 109.5 1148.7 321 781.5 11.79 1.37
IGSID-
119139-2 Blocher Shale 68.4 1513.2 283 1444.1 5.37 1.63
123957-1 Upper Ohio 33.5 2170.8 218.7 1977.5 2.34 2.4
123957-2 Lower Huron 43.7 1126.7 271 1742 4.73 2.5
125651-1 Upper Ohio 36.7 1497.9 90.7 455.4 1.96 2.06
125651-2 Lower Huron 22.7 1445.3 146.1 978.5 3.05 2.4
125651-3 Lower Ohio 4.5 936.4 79.5 493.4 0.73 1.79
AEP#1-1 Lower Huron 26 1566.7 111.7 810 1.54 

P
en

di
ng

 

1.87
128253-C9 Cleveland 

128253-C8 Chagrin 

128253-C5 Upper Huron 

128253-C3 Middle Huron 

Pending 

128253-C2 Lower Huron 

Not Analyzed 

174.75 993.88

Not Analyzed 

* Samples washed in HCl to remove carbonate (inorganic carbon) 
Scf/ton = standard cubic feet per ton 
psia = pressure, pounds per square inch absolute 
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Table 2. Summary of CO2 adsorption capacity in standard cubic feet per ton at selected pressures. 

PSIA Sample ID Formation 
200 400 600

121774-1 Ohio Shale 21.26 36.41 47.74
121162-1 Ohio Shale 18.65 33.49 45.58
121162-1 Ohio Shale 18.65 33.49 45.58
AEP#1-1 Ohio Shale 22.12 36.93 47.53
Average Ohio Shale 20.17 35.08 46.61
107928-1 Upper Ohio 8.51 13.87 17.56
124789-1 Upper Ohio 22.38 43.45 63.32
121464-1 Upper Ohio 11.57 18.97 24.11
123486-1 Upper Ohio 18.84 34.81 48.52
123957-1 Upper Ohio 20.09 36.79 50.91
125651-1 Upper Ohio 27.68 42.41 51.56
Average Upper Ohio 18.18 31.72 42.67
107928-2 Lower Huron 30.47 42.01 48.07
124789-2 Lower Huron 28.69 56.60 83.75
121464-2 Lower Huron 52.29 86.41 110.44
123957-2 Lower Huron 27.91 50.61 69.43
125651-2 Lower Huron 24.79 42.39 55.53
Average Lower Huron 32.83 55.60 73.45
107928-3 Lower Ohio 15.27 21.19 24.33
124789-3 Lower Ohio 20.07 34.23 44.75
121464-3 Lower Ohio 21.20 35.44 45.67
123486-2 Lower Ohio 26.83 49.37 68.58
125651-3 Lower Ohio 22.93 35.59 43.63
Average Lower Ohio 21.26 35.16 45.39
IGSID-107310-2 Blocher Shale 49.32 88.02 119.18
IGSID-119139-2 Blocher Shale 34.43 61.38 83.07
Average Blocher Shale 41.87 74.70 101.13
IGSID-107310-1 Selmier Shale 76.38 135.69 183.08
IGSID-119139-1 Selmier Shale 65.41 108.68 139.41
Average Selmier Shale 70.89 122.18 161.25
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 Table 3. Summary of CH4 adsorption capacity in standard cubic feet per ton at selected pressures 

PSIA Sample ID Formation 
200 400 600

AEP#1-1 Ohio Shale 2.94 5.29 7.20
Average Ohio Shale 2.94 5.29 7.20
107928-1 Upper Ohio 1.59 2.37 2.82
123957-1 Upper Ohio 2.83 5.21 7.25
123957-2 Upper Ohio 6.59 11.45 15.19
125651-1 Upper Ohio 4.32 7.73 10.50
Average Upper Ohio 3.83 6.69 8.94
107928-2 Lower Huron 10.76 16.41 19.90
125651-2 Lower Huron 2.76 4.92 6.66
Average Lower Huron 6.76 10.67 13.28
107928-3 Lower Ohio 2.60 3.40 3.79
125651-3 Lower Ohio 0.79 1.35 1.76
Average Lower Ohio 1.70 2.37 2.77
IGSID-107310-2 Blocher Shale 10.33 19.01 26.40
IGSID-119139-2 Blocher Shale 7.99 14.30 19.42
Average Blocher Shale 9.16 16.66 22.91
IGSID-107310-1 Selmier Shale 21.20 37.77 51.06
IGSID-119139-1 Selmier Shale 16.24 28.28 37.57
Average Selmier Shale 18.72 33.02 44.32
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Figures 
 

 
Figure 1. Distribution of the Devonian shale in Kentucky, showing the occurrence of 
deeper and thicker shale with possibly greater potential for geologic sequestration of 
CO2. 
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Figure 2. General structure of the Devonian shale, showing presence of shale in the 
subsurface (shading). 
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Figure 3. Distribution and nomenclature of Devonian shales of Kentucky (Hamilton-
Smith, 1993, p. 3). 
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Figure 4. General geologic column showing approximately 3,800 feet of overlying 
Mississippian and Pennsylvanian lithologies adequate for ensuring reservoir integrity in 
the Devonian shale. Note: Devonian shale is underlain by Devonian carbonates. 
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Figure 5. Nomenclature of Mississippian and Devonian shales of eastern Kentucky and 
key to names and codes used for intervals sampled. 
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Figure 6. Eastern Kentucky Devonian shale natural-gas production (proprietary data), 
showing long-term increase. Dotted line is exponential best fit of observed rate-time 
data. 
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Figure 7. Location of selected wells in eastern Kentucky. Small dots are existing gas 
wells completed in the shale since 2000. Yellow highlight indicates LAS files. Red 
highlight indicates adsorption data gathered by the project. Blue line is line of cross 
section. 
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Figure 8. Location of the Columbia Natural Resources 24752 Elk Horn Coal Company 
well, permit 94539, Knott County, Ky., Carter coordinate 11-K-81, latitude 37.37019º N, 
longitude 82.76441º W (NAD 1983). 
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Figure 9. Mean random reflectance (R0 random) 
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Figure 10. Summary of adsorption isotherms.  
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Figure 11. Distribution of observed CO2 (green) and CH4 (blue) adsorption capacity.  
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Figure 12. Average calculated adsorption capacities by formation at selected pressures. 
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Figure 13. Section of elemental capture spectroscopy log through the Lower Huron 
section of the Columbia Natural Resources No. 24752 Elk Horn Coal well, Knott County, 
Ky., showing relative abundance of species related to mineral and lithologic 
identification. Asterisks denote depths where sidewall cores were recovered. 
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Figure 14. Typical whole rock X-ray diffraction trace of the Devonian shale (upper part, well id 107928,  
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Devonian Shale Adsorption at 400 PSIA
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Figure 15. Relationship between total organic content and adsorption capacity of shale at 400 psia. 
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Figure 16: West (left) to east (right) cross section of Big Sandy Gas Field color-shaded based on density. Low densities (cooler colors) 
indicate organic-rich zones. 
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Figure 17. Gamma-ray density cross plots showing variation by general lithotype: all 
wells combined (top) and the CNR #24526 Bush (bottom). 
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Figure 18. Preliminary estimated CO2 storage capacity per square kilometer (in million 
tons) in the areas of deeper (>=1,000 feet) and thicker (>=50 feet) Devonian shale. 
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Appendix A: Summary of Adsorption Isotherms 



 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.88 Density g/cc 2.756
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107928-1 3600-4000 ft. Ohio Shale (upper part)
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.97 Density g/cc 2.660
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107928-2 4400-4600 ft. Lower Huron Member
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.98 Density g/cc 2.749
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107928-3 4600-5000 ft. Rhinestreet and 
Olentangy  Members
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.91 Density g/cc 2.550
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121774-1A 3500-3720 ft. Ohio Shale 
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.49 Density g/cc 2.597
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RN124789 1A 2680-2990 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.04 Density g/cc 2.579

2077.6
14283.5

 
 

     (PSIA)

In-Situ Conditions (Equilbrium Moisture)

54.0
69.8
96.9

 

In-Situ Conditions (Equilbrium Moisture)
3.9
6.7

10.4
14.0
17.4
24.4
34.0
44.4

Adsorbed gas (ft 3  /ton)

Langmuir Parameters

Pressure 

29
45
68
94

122
176
240

 
 
 

309
380
496
602

RN124789 S2A 2990-3110 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.77 Density g/cc 2.679
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RN124789 3A 3110-TD
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.66 Density g/cc 2.631
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RN123486 #1 341OHIOU 2600-3700 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.96 Density g/cc 2.573
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RN123486 S2 341OHIOL 3070-3210 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.79 Density g/cc 2.669

164.2
1561.3

 
 

     (PSIA)

In-Situ Conditions (Equilbrium Moisture)

32.6
44.5

 
 

In-Situ Conditions (Equilbrium Moisture)
1.6
4.3
6.6

10.5
11.9
17.0
22.2
28.6

Adsorbed gas (ft 3  /ton)

Langmuir Parameters

Pressure 

14
40
65

111
127
192
247

 
 
 

312
381
498

 

 121162 OHIO UPPER 3410-3810 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.82 Density g/cc 2.694
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121464 OHIO Upper 3200-3300 ft,
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.79 Density g/cc 2.716
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121464 HURNL 4300-4380 ft.
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 Vol. (ft3 /ton)
Pressure (PSIA)

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS
Isotherm Temperature: 86.0 ºF
Goodness of fit of Langmuir regression: 0.93 Density g/cc 2.730
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121464 OHIO Lower 4580-4980 ft. 
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Well: #3 John Jude Heirs
Reservoir: Devonian Ohio Shale

Sample Number: ISO054-1
Sample Type: Sidewall Core # 128253-C2

Drill Depth, feet: 3025.4
Temperature, oF: 86

Average Particle Size, inches: whole Sidewall Core
Experimental Moisture Content, fraction: 0.0000

Experimental Ash Content, fraction: 0.0000
"In-Situ" Moisture Content, fraction: #N/A

"In-Situ" Ash Content, fraction: #N/A
Notes:

Pressure Carbon Dioxide Storage Capacity, scf/ton
psia

Measured Calculated Measured Calculated Measured Calculated
0.00 0.00 0.00 0.00 0.00 0.00 0.00

53.15 10.25 8.87 10.25 8.87 #N/A #N/A
133.54 21.20 20.70 21.20 20.70 #N/A #N/A
214.31 29.80 31.00 29.80 31.00 #N/A #N/A
288.59 36.55 39.32 36.55 39.32 #N/A #N/A
379.90 45.90 48.32 45.90 48.32 #N/A #N/A
462.20 52.25 55.47 52.25 55.47 #N/A #N/A
539.21 60.38 61.46 60.38 61.46 #N/A #N/A
616.01 69.73 66.87 69.73 66.87 #N/A #N/A
693.68 76.44 71.83 76.44 71.83 #N/A #N/A

Parameters Carbon Dioxide Langmuir Parameters (U.S. Units)
As-Received Dry, Ash-Free In-Situ

Slope:
Intercept:
Regression Coefficient (squared):
Intercept Variation, psia*ton/scf:
Slope Variation, ton/scf:
GsL Variation, scf/ton:
PL Variation, psia:
Langmuir Volume, scf/ton:
Langmuir Pressure, psia:
Langmuir Equation:
Pressure (Midpoint), psia:
Storage Capacity, scf/ton: 50.15 50.15 #N/A

2.0673 78.8028

As-Received

1.0459 1.0459 #N/A

Carbon Dioxide Adsorption Isotherm Summary

0.0024 0.0024 #N/A

142.0096 508.1252
174.75 174.75
993.88 993.88 993.88

400.0 400.0 400.0
V=174.7*P/(P+993.9) #N/A

#N/A

#N/A

#N/A

V=174.7*P/(P+993.9)

#N/A

0.0057 0.0057 #N/A

Dry, Ash-Free In-Situ

0.8642 0.8642 0.8642
5.6874 5.6874

As-Received Langmuir Interpretation Graph

y = 0.0057x + 5.6874
R2 = 0.8642
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Appendix B: GIS Analysis of the Distribution and Estimated CO2 
Storage Volume of the Devonian Shale in Kentucky 
 
Note: Grid data sets are indicated in matrix notation using the courier type face, i.e., 

[grid_data] 
 
Geographic information system (GIS) software was used to perform an analysis of the 
thickness and distribution of the Devonian black shale in Kentucky. The initial goal is to 
calculate the number of tons of shale in place by county for those areas with drilling 
depths to the shale of at least 1,000 feet and a shale thickness of at least 50 feet. These 
cutoffs were selected to ensure reservoir integrity (deeper than the expected depth of 
surface fracturing) and gas reservoir potential. With the number of tons of shale being 
determined, a series of factors to calculate the sequestration potential in tons of CO2 
are derived based on measured CO2 storage capacity and shale density. For GIS, 
ESRI's ArcView 3.2 and Spatial Analyst were used. The Kentucky Geological Survey 
uses a server running SQL-2000 for data storage. Data are accessed with tables linked 
to a graphic user interface implemented using Microsoft Access 97. Access queries 
were composed to compile point data sets consisting of the locations and values of 
Devonian shale stratigraphic tops and thickness. The formation tops data were 
maintained as drilling depth to the top of the formation rather than elevations with 
respect to sea level. Open database connectivity (ODBC) services are available from 
ArcView. The Access query results were added to the GIS as tables using the SQL 
Connect facility and then converted to shape files. 
 
 
SELECT dbo_well_identification.record_number AS recno, 
dbo_geographic_location.north_latitude AS lat, 
dbo_geographic_location.west_longitude AS lon, dbo_formation_tops.pick_fm, 
dbo_geographic_location.surface_elevation AS elev, dbo_formation_tops.fm_top, 
dbo_formation_tops.fm_base, [fm_base]-[fm_top] AS thick 
FROM ((dbo_geographic_location INNER JOIN dbo_geographic_region ON 
dbo geographic location.location index = dbo geographic region.location index) 
INNER JOIN dbo_well_identification ON dbo_geographic_location.location index = 
dbo_well_identification.location_index) INNER JOIN dbo_formation_tops ON 
dbo_well_identification.record_number = dbo_formation_tops.record_number 
WHERE (((dbo_formation_tops.pick_fm)="341OHIO" Or 
(dbo_formation_tops.pick_fm)="341CHAT" Or 
(dbo_formation_tops.pick_fm)="341NALB") AND ((dbo_formation_tops.fm_top) Is 
Not Null) AND ((dbo_formation_tops.fm_base) Is Not Null) AND (([fm_base]-
[fm_top])>0) AND ((dbo_formation_tops.type_of_top)="s") AND 
((dbo_geographic_location.ns_feet)>0) AND ((dbo_geographic location.n or s) Is 
Not Null) AND ((dbo_geographic_location.ew_feet)>0) AND 
((dbo_geographic_location.e_or_w) Is Not Null) AND 
((dbo_geographic_location.carter_section)>0) AND 
((dbo_geographic_location.carter_letter)>=" A") AND 
((dbo_geographic_location.carter_number) Is Not Null)); 
 
Sample SQL query composed with the Access GUI for compiling Devonian shale 
stratigraphic and location point data. 
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Existing polygon shape files of the Kentucky counties, faults, and the subsurface 
distribution of the Devonian shale in Kentucky ([Subsurf]) were employed in the 
analysis. The shape file of the subsurface distribution of the shale was converted to a 
grid for use in the spatial analysis. Each cell of this grid contained a value of 1 (true) if 
the shale existed in the subsurface over the area of the cell. All other cells were set to 
null, the no data value. All grids were computed with 1,000-meter (1 kilometer) cell 
dimensions. Analyses were performed using the North American Datum of 1927 
(NAD27) with the projection set to UTM zone 16. 
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Subsurface distribution of the Devonian shale (blue, shaded) with stratigraphic data 
points. 
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Subsurface distribution of the Devonian shale (blue, shaded) with stratigraphic data 
points for the Lower Huron Member of the shale. 
 
For deriving drilling depth and thickness maps, grids were interpolated from point data 
using the inverse distance weighted (IDW) nearest neighbor method. The interpolated 
data were processed to establish which grid cells fit the selection criteria of 1,000 feet or 
deeper drilling depths and a shale thickness of at least 50 feet. 
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Interpolate grid, [Depth], using drilling depth from point file 
Interpolate grid, [Iso], using thickness data from point file 
Map Query [Depth]>=1000 = [Deep] 
Map Query [Iso]>=50 = [Thick] 
Calculate [Deep]*[Thick] = [Temp01] 
Calculate [Temp01]*[Subsurf] = [Temp02] 
([Temp02] = 0.AsGrid).SetNull([Temp02]) = [DeepThick] 
 
Method for deriving a grid dataset indicating the distribution of shale at least 50 feet 
thick and 1,000 feet deep. 
 
To restrict the volume calculations to the limits of the distribution of thicker and deeper 
shale, the [Iso] and [DeepThick] grid data sets were multiplied together to produce 
a new grid, [Target]. 
 
To limit the number of calculation steps required to derive volume and sequestration 
potential estimates, conversion factors were derived to convert the thickness (isopach in 
feet) data in [Target] to million tons of shale and then directly to CO2 tons. Tons of 
shale in place is a function of shale volume and density, thus: 
 

densityvolumeTonsshale *=  
 

and 
 

1000000
** densityareathicknessMMTonsshale =  

 
Assuming thickness in feet, a1 kilometer cell size, a density in g/cc million tons of shale 
in place can be calculated: 
 

( )

1000000

102.1**1000*3048.0* 2 densitym
ft

mthickness
MMTons shale =  Eq. 1. 

 
 
where:  thickness  = thickness of shale in feet 
  1000  = cell size in meters 

density  = bulk density from compensated density log 
1.102  = density conversion factor to convert from grams per 

       cubic centimeter to tons per cubic meter 
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For a specified density, the constants in equation 1 can be combined to obtain a direct 
conversion factor that is a function only of shale thickness. Substituting different shale 
densities, a factor, CfMMTons, would be one of: 
 
 2.5 g/cc (log estimated density for Lower Huron)   = 0.840 
 2.6 g/cc (log estimated density for upper part of shale)  = 0.873 
 2.65 g/cc (log handbook typical shale density)   = 0.890 
 
To calculate million tons of shale per cell, the ArcView grid calculation would be: 
 

[Target]*CfMMTons.AsGrid = [MMTons] 
 
Different conversion factors could be derived for standard reservoir analysis (as 
opposed to assuming adsorbed gas). Distributions of porosity, water or oil saturation 
data, and others could be gridded and used to derive oil or gas in place estimates. 
 
Converting tons of shale in place to estimated tons of CO2 sequestered requires an 
additional factor based on the gas content per ton of shale from CO2 adsorption data. 
Using a gas content of 1 standard cubic foot of CO2 per ton and 17.251 thousand cubic 
feet (Mcf) CO2 per ton of CO2, there will be 57.97 tons of CO2 per million tons of shale. 
 

97.57
25.17

*
1000

*1000000* 2

2

2

3

3

2 ==
Mcf

ton
ft

Mcf
ton

ft
TonsCO CO

COshale

CO  Eq. 2 

 
The sequestration volume in tons of CO2 can now be considered a function of 
thickness, shale density, and adsorbed gas content, or: 
 

gascontentthicknessCfMMTonsTonsCO ***97.572 =  
 
Multiplying the 57.97 and CfMMTons provides a single factor that varies only with 
density: 
 
Factor = 48.69 at density equals 2.5 g/cc 
Factor = 50.61 at density equals 2.6 g/cc 
Factor = 51.59 at density equals 2.65 g/cc 
 
In lieu of gridding gas content data, multiplying a measured gas content by one of these 
factors yields a final selection of factors for use in converting shale thickness data 
directly to tons of CO2 sequestered. For example, using a gas content of 40 scf/ton, a 
shale density of 2.6 g/cc, and a 1000-meter cell size, the tons of CO2 per cell is 2024.3 
per foot of shale thickness, thus: 
 

[Target] * (2024.3).AsGrid = [CO2Tons] 

                                                           
1 17.25 Mcf CO2 per ton CO2 is the conversion factor used by the U.S. EPA. Conversion 
is derived from gas laws and is valid for 60°F and 1 atmosphere pressure. 
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As additional gas content data are acquired, examining the distribution and gridding the 
data as appropriate will be used to refine the sequestration volume calculations. 
 
The values calculated for each cell require summation for specific regions to obtain 
totals. With the county polygon theme active, the ArcView Summarize Zones procedure 
(available from the Analysis menu command) was used to summarize the data by 
county. The field defining the zones was the county name and the [CO2Tons] grid 
theme was selected for summarizing. A table of summary statistics was computed that 
could be joined to the original county table for mapping and additional analysis. 
 

Shale in Subsurface
True (1)
No Data

Million Tons CO2
0.1 - 0.5
0.5 - 0.9
0.9 - 1.3
1.3 - 1.7
1.7 - 2
2 - 2.4
2.4 - 2.8
2.8 - 3.2
3.2 - 3.6
No Data

Surface faults
County boundaries

CO2 storage capacity per square kilometer in million tons. 
 
Summary by county of potential sequestration totals (gas content 40 scf/ton, shale 
density 2.6 g/cc, cell size 1,000 meters): 
 

Name Basin Count Min Max Mean MMTonsCO2 
BELL 160 949 0.24 1.52 0.51 486.8
BOYD 160 420 1.03 1.70 1.39 583.9
BREATHITT 160 1293 0.38 1.05 0.60 775.2
CARTER 160 329 0.34 1.26 1.05 346.6
CLAY 160 1236 0.24 0.48 0.35 433.2
ELLIOTT 160 292 0.29 1.14 0.92 267.2
FLOYD 160 1040 0.27 1.79 1.42 1,474.4
GREENUP 160 339 0.99 1.38 1.24 421.7
HARLAN 160 1211 0.31 1.17 0.76 918.6
JACKSON 160 275 0.21 0.34 0.25 69.4
JOHNSON 160 657 0.86 1.67 1.28 839.8
KNOTT 160 918 0.78 1.42 1.06 969.9
KNOX 160 1017 0.20 0.47 0.31 318.5
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Name Basin Count Min Max Mean MMTonsCO2 
LAUREL 160 1146 0.16 0.38 0.22 255.7
LAWRENCE 160 1089 0.20 1.85 1.37 1,490.6
LEE 160 232 0.22 0.50 0.35 81.6
LESLIE 160 1066 0.38 0.79 0.55 590.8
LETCHER 160 894 0.21 1.70 1.13 1,012.2
MAGOFFIN 160 793 0.63 1.20 0.92 730.8
MARTIN 160 631 1.23 2.32 1.76 1,113.1
MCCREARY 160 703 0.10 0.24 0.15 107.8
MENIFEE 160 16 0.37 0.42 0.39 6.2
MORGAN 160 710 0.25 1.19 0.70 496.8
OWSLEY 160 497 0.13 0.44 0.34 168.0
PERRY 160 892 0.37 1.04 0.71 630.4
PIKE 160 2056 0.82 3.60 2.17 4,467.3
POWELL 160 7 0.31 0.34 0.32 2.2
ROCKCASTLE 160 4 0.19 0.21 0.20 0.8
ROWAN 160 2 0.54 0.54 0.54 1.1
WHITLEY 160 1161 0.16 0.70 0.22 261.1
WOLFE 160 525 0.20 0.81 0.45 237.1
Appalachian 160 Total 19,558.9
MARSHALL 250 29 0.39 0.56 0.48 13.9
Jackson Purchase 250 Total 13.9
EDMONSON 300 670 0.12 0.40 0.24 157.5
HARDIN 300 220 0.13 0.18 0.16 35.3
HART 300 178 0.11 0.20 0.15 26.4
MEADE 300 106 0.18 0.22 0.20 21.6
PULASKI 300 58 0.14 0.18 0.16 9.3
WARREN 300 424 0.12 0.38 0.20 84.0
Cincinnati Arch 300 Total 334.2
BRECKINRIDGE 315 1426 0.10 0.26 0.19 274.8
BUTLER 315 1130 0.11 0.41 0.28 320.3
CALDWELL 315 898 0.27 0.67 0.48 430.0
CHRISTIAN 315 1870 0.11 0.58 0.25 470.0
CRITTENDEN 315 968 0.31 0.90 0.66 634.1
DAVIESS 315 1255 0.12 0.46 0.32 404.1
GRAYSON 315 1277 0.12 0.49 0.27 343.6
HANCOCK 315 516 0.15 0.54 0.29 150.5
HENDERSON 315 1233 0.11 0.64 0.45 560.8
HOPKINS 315 1464 0.14 0.64 0.41 595.7
LIVINGSTON 315 696 0.42 0.67 0.60 415.6
LOGAN 315 966 0.12 0.25 0.19 183.1
LYON 315 620 0.28 0.59 0.46 284.8
MCLEAN 315 671 0.14 0.56 0.39 259.9
MUHLENBERG 315 1266 0.12 0.59 0.34 425.4
OHIO 315 1549 0.16 1.09 0.37 573.4
TODD 315 879 0.10 0.31 0.18 156.9
TRIGG 315 848 0.16 0.34 0.24 200.6
UNION 315 953 0.57 0.81 0.69 657.7
WEBSTER 315 878 0.17 0.68 0.51 445.1
Illinois Basin 315 Total 7,786.5

 Grand Total 27,693.5
Years sequestration available at 80,000,000 tons CO2 per year 346.2
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The values shown in this table are provided to illustrate an application of the estimation 
method described in this appendix. The numbers are subject to revision and do not 
represent final conclusions of this project. Additional CO2 adsorption capacity data will 
be acquired to refine the estimates. Consideration will be given to other adjustments to 
the total that might include evaluating areas likely to have little or no sequestration 
potential even though they are mathematically included in the area of deep and thick 
shale. These areas will be excluded. For example, based on experience in oil and gas 
field exploration and development, Marshall, Pulaski, and Rockcastle counties are areas 
of marginal potential that have a relatively small likely-hood of being developed for 
carbon sequestration. 
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Appendix C: CNR 24752 Elk Horn Coal 
 

Recno: 125651
Permit: 94539
Name: Columbia Natural Resources 24752 Elk Horn Coal Corp
Loc: Knott County, KY, 1250 FSL 620 FWL 11-K-81
Lat: 37.3701 N (NAD27)
Lon: -82.764533 W

TD: 3004 feet

Log measured from KB @ 1011'

Era Formation Code Top (feet) Condition Fluoresce Comments Shipped
Mssp Little Lime 332LTLM 1698

Pencil Cave 332PCCV 1735
Big Lime 332BIGL 1739
Borden 337BRDN 1954
Sunbury 339SNBR 2249
Berea 339BREA 2283

Devonian Ohio Shale 341OHIO 2346
Cleveland Sh Mbr 341CLVD 2346

Core 10 341CLVD 2370 Intact No dry, faint odor Yes
Three Lick Bed 341TLBD 2452

Core 9 341TLBD 2455 Intact No light gray Yes
Core 8 341TLBD 2465 Intact No odor, dark oily black, 

slick, sticky feel, but 
not wet

Yes

Upper Huron Mbr 341HURNU 2488
Core 7 341HURNU 2530 Intact No slight odor, dark oily 

black as in core 8
Yes

Middle Huron Mbr 341HURNM 2543
Core 6 341HURNM 2630 Broken No slight odor, waxy feel, 

but not wet
No

Lower Huron Mbr 341HURNL 2726
Core 5 341HURNL 2730 Intact No dry, somewhat mottled Yes

Core 4 341HURNL 2760 Intact No dry, somewhat mottled Yes

Core 3 341HURNL 2780 Intact No dry, approx. 0.5cm 
pyrite clast, possible 
faint odor

Yes

Core 2 341HURNL 2835 Broken No oily, strong odor No
Olentangy 341OLNG 2838

Core1 341OLNG 2900 Broken No oily, strong odor No

Core samples are identified by their respective measured depth from KB (i.e., Top value in bold)
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Sidewall core number 3 (0.25-inch grid).. This sample included a pyrite clast but is otherwise 
typical of the intact cores as submitted for analysis. 

 
Sidewall core number 2 (0.25-inch grid). This sample exhibits an oily sheen characteristic of cores 
collected that were saturated with light hydrocarbons. This core is typical of the broken samples. 
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Annotated section of the litho-density log for the CNR 24752 Elk Horn Coal well, Knott County. 
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