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Abstract

The diffusive behavior of penetrants in simple polymer melts was

investigated by molecular dynamics simulation. For the case where the

polymer melt consisted of pearl-necklace chains, the diffusive behavior of the

loose pearl penetrants was seen to be qualitatively different than would be

expected in realistic models of polymer melts. In particular, there was little

or no %on-Fickian” region; the variation of the diffusion coefficient with the

penetrant diameter was what one would expect for diffusion through small

mcdecular liquids; and, finally, the long time tail of the velocity auto

correlation displayed a “-3/2” power law form, also as in the small molecular

liquid case.

When the chains’ backbone motion was iirther constrained by the

introduction of a bond angle potential, the qualitative nature of the penetrant

diffusion became more “polymer-like”. A non-Fickian region developed; the

diffusion coefficient varied more rapidly with penetrant diameter; and the

velocity autocorreiation function developed a “-5/2” power law tail as would be

expected for the diffusion of particles with a wide distribution of trapping

times. - .,



1. Introduction

The backbone topology of polymer chains results in the complex self-

diffusion behavior seen in polymer melts. This is well known and is

qualitatively understood through a reptation perspective. The polymer

medium creates a restrictive “tube” about the chain of interest which

forbids all but motion along the tube length. One would expect that the

diffusion of small molecular penetrants through a polymer melt would be

simpler and easier to understand. In particular, since the penetrants

have no chain structure, one would expect their motion to have the same

power law behaviors as seen in the self-difision of small molecular

liquids. This expectation turns out to be overly optimistic.

For simulations of realistic systems, a penetrant in a melt is highly

trapped by the polymer, apparently as highly trapped in all directions as the
r

polymer chain is in directions perpendicular to the tube. This is not a

question of simply reducing the magnitude of the diffusion coefficient;

instead, the qualitative nature of the penetrant’s motion becomes strongly

coupled to the backbone motion of the polymer. Moreover, given the

importance of the polymer medium both to the polymer tube formation and..

to penetrant diffi.lsion, it is possible that penetrant diffusion can be used as

a “probe” for exploring the detailed structure of the tube and, in this

manner, refining our understanding of polymer self-difision.

The more immediate goal of predicting the diffusion coefficient of

simple penetrants through a polymer is of great practical importance in

such areas as membrane separation and polymer aging. Unfortunately,



the highly trapped nature of the particles makes even this more modest

goal virtually unattainable for realistic systems with straightforward

simulation techniques because of the long simulation times needed to

achieve Fickian behavior [lzz, 222]. Consequently, in order to study the

diffision of simple penetrants, indirect approaches have been adopted. For

instance, the activation energy of the difision constant can be found at

high temperatures [322] where diffusion is rapid, and used to extrapolate to

room temperature, and, even less directly, the polymer medium can be

approximated as stochastic in nature [2zz] so that larger time steps may be

taken.

An alternative path to the understanding of the mechanisms of

penetrant diffusion, and one which we have adopted here, is through the

study of simplified polymer models. While such models neglect many

molecular details in the interest of computational speed, it is desirable that

they retain the correct, qualitative behavior of the difiksive behavior. In the

current study, it is demonstrated that simple chain connectivity is not a

sufficient condition for the modeling of penetrant diffusion. In particular,

we have studied systems where tangent site chains serve as a medium

through which s~mple penetrant sites diffilse and have shown that high

chain flexibility results in non-polymeric behavior.

The diffbsion coefficient can be determined in several ways. The

traditional I?ick’s law definition of the diffusion coefficient as the

proportionality constant relating flux to concentration gradient has recently

become more popular [422] with the development of hybrid Monte Carlo/



. *, *)

. .

Molecular Dynamics techniques. More commonly, use is made of the

equivalent, random walk expression of the diffusion coefficient as the

proportionality constant relating the square of the particle’s displacement

to the time [lzz]. Unfortunately, this relationship only holds at long times

and, for polymeric systems, sufficiently long times are often difficult to

reach. On more common simulation timescales, penetrants in polymer

melts exhibit a “non-Fickian” region where the square of the displacement

varies as the square root of time [lzz].

This is similar to the behavior seen in the diffusion of gases through

glassy media that arises from the fractal topology of the network of voids

[5zzI. Wlile only particles in the percolated network contribute to the long

time increase in particle displacement, there are short time contributions

from particles in non-percolated networks. As these trapped particles

discover the limits of their displacement, the (average) square of the

displa~ement develops a square root of time dependence.

An alternative formalism, that of generalized-hydrodynamics,

focuses on the time evolution of the penetrant’s velocity [8zz]. Here we focus

on the velocity autocorrelation function, Z(t), which is proportional to the
.

average of the dot product’ of the particle’s velocities:

z(t)=;(y(o)● y(t)), (1.1)

At t=O, Z(t) is one third the average of the square of the velocity, and, as a

result, this limiting value is dictated by the temperature. At long times Z(t)

decays to zero with the details of its decay being associated with more subtle



I aspects of the diffusant’s motion. Specifically, the diffusion constant, D, is

found as the integral of Z(t),

D = j: Z(t)dt (1.2)

I
and, of more importance, an “equation of motion” for Z(t) exists which

introduces the concept of a memory function.

The qualitative behavior of the velocity autocorrelation function can

be understood by considering two limiting cases. First, when the motion of

the penetrant is dictated by small, impulse forces from the medium (that is,

in the case of pure Brownian motion), the rate of change of Z(t) is

proportional to Z(t) and, consequently, Z(t) is an exponentially decaying

function. Low-density gases display a similar behavior although with a

power law rather than exponential decay of Z(t).

The second case to consider is the completely trapped particle. A ~

particle in a hard walled sphere is the simplest instance (see the appendix).

If the clock is started when the particle has just recoiled born the spherical

shell, the dot product of velocities (if it is assumed that the particle passes

through the center of the sphere) is a step fwction as shown in figure lA.

When the product is averaged over all starting points, a spiked behavior is

seen as in figure lB. Finally, by averaging over the Maxwell-BoItzmann

velocity distribution with the penetrant’s velocity varying the period, a Z(t) is

found which decays rapidly and shows a negative well region. This is

plotted in figure lC along with the Z(t) for Brownian motion. Naturally, the

diffusion coefficient for a completely trapped particle must be zero and, as a

result, the integral of Z(t) for the trapped particle must vanish.



The velocity autocorrelation function for a high-density liquid has

similarities to that of a completely trapped particle. In both cases, the

function rapidly decays to a minimum then approaches zero.

Unfortunately, the velocity autocorrelation function is better at modeling

the trapping of a penetrant than its difision. If, as is often the case, one is

interested in extracting the diffision constant fi-om Z(t), its long time tail

must be known to great accuracy since this is where the non-trapped

nature of the diffusant is most fully manifested.

Not surprisingly, the long time tail of Z(t) has been well studied for a

number of systems. For atomic liquids [8zz], Z(t) adopts a power law form

for long times with an exponent of -3/2 . On the other hand, for locally

trapped particles with a wide distribution of trapping times, Kundu and

Phillips [7zz] suggest a power law exponent of -5/2. The difision of a

penetrant in a polymer melt is not clearly one or the other of these.

the local structure is very like a small molecular liquid (suggesting

While j

a -3/2

power law decay), the highly trapped nature of the particles suggest a -5/2

power law. We explore this aspect of the penetrant’s motion in detail.

Experimentally, neither the velocity autocorrelation fi.mction nor the
.

detailed evolution of the p-article’s displacement can be easily probed.

Consequently, the difision coefficient remains the primary tool for making

contact between theory (or simulation) and experiment. For the simple

bead and spring polymer models we consider here, quantitative agreement

with experimental diffision coefficients is, of course,

however, it is desirable that their qualitative natures

not expected;

be similar. In
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particular, we will insist that the variation of the diffusion constant with

diffisant size be “polymer-like” and not “liquid-like” where “liquid” refers to

a small molecular liquid.

The diffusion of penetrants through non-polymeric liquids is

relatively well understood. The diffusion constant varies inversely with the

penetrant diameter to roughly the 1.8 power as is shown experimentally by

the Wilke-Chang [9zz] equation and, theoretically, by Enskog [1OZZ] theory.

This implies that the frequency of a path opening through the penetrant’s

solvation shell varies roughly as

inference which makes intuitive

the particle’s cross-sectional area; an

sense for a “collision-driven” process

where the penetrant pushes its way through its neighbors and the

neighbors do not show a collective resistance to the penetrant’s hop.

For the polymeric case; however, there is a collective resistance. The

local compression of the polymer which is needed to permit the penetrant to ~

pass becomes rapidly more difficult as the penetrant’s diameter increases.

In keeping with this perspective, the diffusion coefficient is found

experimentally to vary as the diameter to roughly the seventh power [llzz].

Indeed, the polymer is generally considered to be so stiff that the polymer-

penetrant collisions have ‘little effect on the difision rate. Instead, the

penetrant is viewed as waiting until the polymer’s thermal fluctuations

cause a sufficiently large hole to open and then hopping through. ‘hat is,

penetrant diffision is believed to be an activated process. Not surprisingly,

the activation energy is found [12zz] to vary with the penet.rant diameter to a

power between 1 and 2.



In the remainder of the paper, we explore, in more detail, the effect of

chain connectivity and local chain stiftiess upon penetrant diffksion. In

section 2, the system model is described. Our results are reported in section

3 and

2.

chain

conclusions are drawn in section 4.

Model and Simulation Methods

The systems investigated were modifications of the pearl necklace

model which Kremer and Grest [13zz] employed to study polymer

dynamics. Previous studies [14zz] have also used this model to study the

static structure and thermodynamics of polymer melts and blends. The

polymers are modeled as tangent site chains with the bond lengths equal to

the site diameter. The bonds are loose springs which permit large

timesteps to be taken; however, they are not so loose that chains can cut

through each other. The neighboring bonds are encouraged to adopt an
r

angle of 120° by a harmonic potential which is varied in strength from the

freely jointed to the freely rotating limits. Non-bonded interactions are

repulsive, Lennard-Jones cores, and site diameters are varied by simply

shifting the force field to larger (or smaller) separations. In this manner,

the penetrant diameters We varied from 80% to 120% that of the polymer

site. The larger the diameter, the smaller the difision coefficient, and the

rate at which D varies with d permits us to comment on the liquid-like or

polymer-like nature of the penetrant diffusion process.

The degree of polymerization was tixed throughout at 50 sites per

chain, and the

because of the

total number of independent chains, at 16. Of course,

periodic boundary conditions, the number of chains within a
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periodic box varied as the chains laced from one box to the next; however,

the number of polymer sites remained fixed at 800 per box. In order to

mimic experimental systems, the packing fraction was held fixed at 0.465

and the system volume was varied to compensate for the number (5 to 15)

and size of the penetrants in the simulation. Explicitly, this is

(Npd: +Nddj)
v~ox=; (2.1)

~box

where V~OXis the volume of the box; q~OX,the net packing fraction; NP, the

number of polymer sites; N~, the number of difi%sant sites; dP, the hard site

diameter of a polymer site; and N~, the hard site diameter of a diffusant

site. The hard site diameters were calculated through a Barker-Hendersen

mapping [15zz]:

d=J[~-ex@JMld~ (2.2)

where U(r) is the non-bonded interactions discussed below; ~ is l/kT; k is

the Boltzmann constant; and T is the temperature .

Non-bonded polymer sites interacted with each other through a
.

purely repulsive, truncated Lennard-Jones potential,

for r < 21’GCT+A@
(2.3)

U@(r) = O for r 221’Ga+A@
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where the constants a and E define

addition, the reduced temperature,

9

the energy and length scales. In

kT/&, is unity, and, since all lengths are

expressed in terms of C, it may also be treated as being unity. The

penetrant size is varied through the term Aa~, which, in effect, defines the

difference between the polymer and penetrant diameters. Consequently,

Aa~ is O for polymer-polymer (pp) interactions and varies with the size of the

penetrant. The A for po~ymer-penetrant interactions is given by ~* which

is half the penetrant-penetrant AM.

In addition to the above

through the FENE potential,

r

interactions, bond lengths were constrained

-1

U~O~~(r)= -0.5HR~ in 1– ~ for r < RO
R. (2.4)

As in Grest and Kremer’s work [13zz], H=30, and RO=l.5. The combination

of the two above potentials produces a loose spring centered at 1.0 for bonded

polymer sites. Further backbone constraints are included by a harmonic

bond angle constraint

E = K(e-eo)2 (2.5)

where 0 is the bond angle and 00=21r/3 (i.e., 1200). The stiffness parameter,

K, is varied (in units of kT) &om O to 500, which spans the range from freely

jointed to freely rotating backbones. For K=O, a single site can respond to a
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local perturbation, but, as the stiffness is increased, more of the chain

backbone is affected by the motion of a single site. In other words, the

constraints on a polymer site become delocalized along the backbone.

Although the K=O to 500 variation is intended to be smooth, a mild

symmetry breaking results fkom the introduction of the 120° biasing of the

bond angle; a biasing which does not exist for K=O. The properties of

systems with small values of K are little different than K=O systems, and we

conclude that the system properties do, indeed, vary smoothly with K as K

becomes non-zero.

The small molecule diffusants were modeled as free (unattached)

monomers. These interacted with the bonded sites (and each other)

through equation (2.3) where the A is selected for the appropriate site

diameters and ranged from -0.2 to 0.2. If a CHZ group were of unit

diameter, then the van der Waals diameters [16zz] of the permanent gases

would span this same range. The dilute difisant limit is of the most

experimental pertinence; however, in the interest of computational

efficiency, systems of from 5 to 15 diffusants were studied.

The Molecular Dynamics (MD) methodology [17zz] used in this study

was based upon a Verlet algorithm previously implemented for similar

studies [14zz]. Even for runs where little or no non-Fickian behavior was

evident in the migration of the diffusant particles, relatively lengthy runs

were still necessary in order to achieve adequate statistics for the

computation of diffusion coefficients. The simulation time-steps were

0.0046 to 0.006 where the time unit is tO=o (n@~2 and m is the mass of a
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site (all sites were of equal mass). A typical long run consisted of 25X10G

time steps and 7,5X10G time steps for short runs. The first 30,000 time steps

were discarded for equilibration purposes. If the sites were interpreted as

CH2 monomers at, say, 420 K, the length

would be in the 70 nanosecond range.

of one of the long simulations

Both static and dynamic average quantities were calculated

throughout the course of the simulation. First, and most importantly, was

the diffusion constant. The positions of the difisants were periodically

noted, and the average displacement of the particles as a function of time

computed. Of course, this was an average over initial time as well as over

the 5 to 15 penetrants in the system. Typical results are shown in figure 2

for 10 penetrants in K=() and K=500 polymer melts. In the K=500 case, the

small region with a slope approximately one half, spanning between the

short time ballistic region (slope = 2) and the long time Fickian region (slope ,
c

= 1) is the non-Fickian regime. The diffusion constant, D, is found directly

from the the Fickian region through the Einstein relationship[%-v],

(R’) = 6Dt (2.6)

where R is the displacement of a penetrant during a time interval t and <..>
,.

indicates the average over both initial time and penetrant. In order to apply

this for short times which are barely in the Fickian region, it is convenient

to evaluate the diffusion constant with the differential form of the above

equation,

~ ~ d(R2)

‘6 dt
(2.7)
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which is equivalent to equation (2.6) at long times. In the current study, D

is in units of &/tO , which is equivalent to (&&/m)0”5,or (kT&/m)0”5. For the

cases in figure 2, the diffusion constants were found to be O.1O*O.O1 (for K=O)

and O.011*0.001 (for K=500). If the penetrant were CHg, the unit of diffusion

would be 5 X 10-6 cm2/see, and the increase in K fi-om O to 500 would

correspond to a decrease in D horn 5X10-7 to 5 X 10-8 cm2/sec.

When determining the diffusion coefficients there is a question of

what range of times to fit (as it needs to be well past the ballistic and non-

Fickian regimes but not so long that there are too few data points to obtain a

good average). We chose to fit to the region between 60 and 120 reduced time

units. In this region we are looking at displacements in the range of about

half the length of the periodic box, or roughly five site diameters.

Interestingly, on a per particle basis, the linearity of the Fickian

regime degrades rapidly once a particle has traversed further than a box ‘

length. Beyond this point, the particles can be identified as rapid or slow

moving. This behavior is indistinguishable

glassy polymers where molecules diffbsing

from penetrant behavior in

through percolating networks

of voids continue their migration while molecules in non-percolating

networks are limited in their ultimate displacements.

This behavior is potentially problematic during the analysis of

simulation trajectories. If a diffusive pathway has percolated the length of

the periodic box, then, effectively, it is of infinite extent since it can loop back

on itself. Consequently, if,

lived, any particles in such

as is commonly assumed, a pathway is long

a pathway would migrate rapidly in a



. ,. .,
13

physically unreasonable manner. On the other hand, this behavior is also

in keeping with Wilson, Pohorille and Pratts’ [18zz] observation of the effect

on diffisive behavior of spurious phonon modes introduced by the finite

system size. In either case, it follows that conclusions based upon

displacements greater than a box length should be viewed with suspicion.

The idea of a network of latent diffusion paths in a polymer melt is

physically appealing. A number of researchers [6zz] have analyzed

snapshots of melt simulations and find that there is indeed a clustering of

free volume; however, the longevity of these networks has not been

systematically explored. On the other hand, Suter et al. [2zz] have used this

percolating network model of penetrant diffusion in their stochastic

simulation methods to good effect. In addition, the Kundu and Phillips

[7zz] treatment of a wide distribution of trapping strengths is also in

keeping with the observation of a distribution of trapping environments.

As a practical consequence, the apparent trapping of particles by the

polymer matrix causes the evaluation of the diffusion constant to be

difficult. Since the diffusion constant is effectively an average over lightly

and strongly trapped particles, its value is sensitive to the relative

concentration of these pz&icle ty-pes. Since only a few penetrants are used

in a typical simulation, it is usually not clear that phase space is adequately

sampled. Because, in the current study, the displacement trajectories

the penetrants do not diverge until after they are well into the Fickian

of

regime, and because, as shown in figure 2, the subsequent behavior of the
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particle average is in keeping with its earlier behavior, we concluded that

the MD runs were of adequate length to approach ergodicity.

An alternate way to calculate the diffusion constant is through the

velocity autocomelation function,

z“(t)=;(1(0)●y(t))/z(o),

and the Green-Kubo relation [1OZZ]

where Z*(t) is the reduced velocity

kT/m.

3. Results “

autocorrelation

(2.8)

(2.9)

function, and Z(0) is

In figure 3, the velocity autocorrelation functions for both polymer

and penetrant sites are shown for the K=O system shown in figure 2. &

opposed to the simple decay seen in low density systems, these functions

show a great deal of structure. Much of the polymer’s fine structure

results from its bond vibrations. Interestingly, the polymer’s vibrational
.

motion is not evident in the penetrant’s Z(t) which indicates that while the

penetrant maybe strongly trapped by the polymer, it is not “bound” to the

polymer.

In figure 4, the penetrant’s velocity autocorrelation function is

c

integrated for both K=O and 500 cases where the tail has been fit to a power

law form. The diffusion coefficient calculated in this manner is 0.093&0.008



r, ., 15

for K=O and 0.012*0.001 for K=500, both of which are in keeping with their

<R2> based values

For most physical properties, chain connectivity can account for

unusual features peculiar to polymeric materials in a qualitative manner

This, however, does not appear to be the case with the diffusion of

penetrants. Instead, as seen in figure 5, simple pearl necklace chains

provide a diffusive environment similar to that of a low molecular weight

liquid. In both cases, the diffusion constant is seen to vary with the

penetrant diameter to the -1.8 power.

To understand this similarity, it is necessary to consider the

qualitative driving force of diffusion, In low molecular weight liquids,

diffusion is “collision driven” where the opening of a diffusion path is tied to

the collision rate of the penetrant. In other words, the penetrant helps to

punch a hole for itself in the wall of the solvation shell which is attempting ~

to restrict the particle’s movement. The resulting diffusive behavior is

described empirically by the Wilke-Chang equation [922] and theoretically

by Enskog (and associated) [1OZZ] theories. In both cases, approximately a -

1.8 power law is predicted.

That penetrant dif&sion in pearl necklace chains should exhibit

Wilke-Chang behavior is surprising. Apparently, the high, local flexibility

of these tangent site chains permits the chains to be highly responsive to the

thermal collisions of the penetrants. In particular, a single polymer site

can move out of the path of a penetrant, as the result of a collision, without
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perturbing the rest of the chain. The fact that the beads are comected does

not alter the penetrant diffusion in a qualitative way.

By contrast, in a real polymer, the chain backbone motion is a

cooperative process. A single monomer cannot move without also moving

other monomers on the backbone. Consequently, the penetrant can be

viewed as being completely at the whim of the polymer medium.

Cooperative fluctuations of the polymer backbone take place without being

substantially affected by the collisions of the penetrant. When a diiYusion

path, of its own accord, opens beside a penetrant, then a diffusion step may

take place.

In real macromolecules, bond angle constraints and rotational

potentials ensure that the chain backbone motions are non-local and,

consequently, unresponsive to penetrant collisions. This effect can be

captured simply through the introduction of the stiff bond angle potential ;

defined in equation (2.5). As the bond angle force constant, K, is increased,

the chain is transformed born a freely jointed to a freely rotating backbone.

Obviously, the diffusion coefficients of the penetrants are reduced by the

more restricted motion of the chains. More importantly, and less obviously,

the penetrant’s di&neter has a stronger effect on D. When a K of 500 is

reached, the diffusion coefficient varies with a much steeper apparent

power law with an exponent of about -4, and further restrictions on

backbone motions would likely increase this exponent. As can be seen in

figure 6, this is in much more

behavior of polymer melts. In

reasonable agreement with the experimental

Table 1, the diffhsion constants calculated
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from equation (2.7) are reported as a function of both penetrant diameter

and bond angle stiffhess.

Since, based on the above discussion, it seems that a K of 500 is

sufficient to result in penetrant diffision which is “polymer-like”, it is of

interest to explore the variations in the velocity autocomelation fiction as

K is varied &om O to 500. In figure 7, the tail region of Z(t) is shown for K=O

with the full Z(t) in the insert. Clearly, the tail is fit well by a t-m form as

would be the case for small molecular liquids. On the other hand, the

K=500 case shown in figure 8, is very poorly fit by a t-3ntail while a t-w gives

excellent agreement with the simulation. The best fit power law exponent

is given for each bond force constant and penetrant diameter in Table 2. As

a check on our accuracy, we have calculated the diffusion coefficients from

the velocity autocorrelation fuctions using equation (2.9), and these

reported in Table 3. As can be seen in figure 9VV, they are in good

agreement with those calculated from the Einstein relation, equation

In

constant

are

.

(2.7).

principle both methods of obtaining the penetrant difision

are equivalent. Use of the Einstein formula, however, obviously

requires that the simulation be run long enough to reach the Fickian
.

regime. This was possible for the course grained polymer models studied

here, but it is much more difficult to achieve for more realistic models of

polymers. Thus the velocity autocorrelation function method provides a

feasible alternative for realistic polymer models.

In particular, the velocity autocorrelation route is far more amenable

to parallel computation, which can be understood as follows. In order for
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<R*> to yield D, a sufficient number of hops must have occurred for the

random walk nature of the difisive motion to be plain. Since this is

roughly 100 hops, there is an inherent 100~ minimum time scale to the

method where t~ is the time between hops. Even if the trajectories of many

particles are averaged together, simulations of at least 100 ~ must be

performed and the system size must be large enough to contain the 100 ~

trajectories. On the other hand, Z(t) has an inherent time scale of the hop

time, t~. Consequently, much shorter simulations are needed to span the

time range of interest. Naturally, a single run of length z would yield poor

statistics; however, averages over many short runs, or many penetraats,

would dramatically improve the statistics. This suggests an almost trivial

parallel computation, where it is often more efficient to do many

independent, short runs simultaneously on different processors, rather

than one long run of a single system, particularly if the system is of modest

size.

It is possible to treat the velocity autocomelation function using the

formally exact, generalized Langevin formulation of particle dynamics

[1OZZI. Here the rate of change of Z(t), ~(t), which is an acceleration of

sorts, is related to Z(t) in a manner similar to that of the hydrodynamic

deceleration of a classical particle in a liquid with a time dependent fi-iction

factor:

(3.1)
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where the “friction factor”, ~(t), is referred to as the memory function. If

Z(t) decays with a power law, as in both the simple liquid-like K=O case (t-m)

and the freely rotating K=500 case (t-W2),the memory function also decays

with the same power law dependence [19zz]. If, instead, the velocity

autocorrelation function is that of a Brownian particle, the memory

function is a delta fbnction, and equation (3.1) is easily integrated to yield a

simple exponential decay in Z(t).

Less intuitively, the memory function can also be expressed as

@ = w - *J’’MZ(W

where $(t) is the normalized autocorrelation function of the

force on the particle: ‘

(F(t) .go))
~(t) = -m2z(o) ;

F(t) is the instantaneous force and m is the particle’s mass.

(3.2)

instantaneous

(3.3)

Consequently,

for short times, the second term in equation (3.2) is small and the memory

fimction approaches the force autocorrelation finction. The force

autocorrelation function was calculated directly during the MD simulation

fi-om the force on the penetrant, and, in figure 10VV, $(t) is plotted for both

K=O and K=500. The well depth is seen to increase with ~ indicating the

development of a more clearly defined solvation shell.

The memory fimction is often expressed in Laplace space since the

transform of equation (3.1) is amenable to a simple algebraic solution:
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<(P)= *-P
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(3.4)

where the tilde denotes the Laplace transform of Z*(t). In figure Ilw, the

velocity autocorrelation functions for large K’s are seen to develop well

defined maxima in p-space. Qualitatively, this behavior maybe understood

as follows. ‘For a Brownian particle, ~(p) is l/(p+{O) where &O=kT/(mD),

and, as p approaches zero, ~(p) becomes a constant. Since all difisant

particles behave like Brownian particles at long times (i.e., small p), one

would expect Z(p) to approach a constant value as p approaches zero. Of

course, as D becomes smaller with increasing K, p must be smaller in

order for ~(p) to be approximately a constant. Indeed, for the fully trapped

particle of figure 1, the p=O limit of ~(p) would be zero with no “diffision

dominated” region.

penetrant motion is

On the other hand, for short times (i.e., large p), the j

ballistic (with Z(t) - constant or ~(p) -Up) and

insensitive to the chain stiffness which implies that ~(p) is independent of

K at large p. Naturally, the transition between large and small p is

complex.
.

The Laplace transform of the memory function is shown in figure

12w. The penetrants in a K=O polymer have memory functions which

smoothly stitch from small p, diffusive behavior (-p”) to large p behavior

which indicates that short time trapping effects result in Up deviations

&om ballistic motion. In contrast, the penetrants in a K=500 polymer

display a clear intermediate region with a fractional power law behavior.
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This intermediate region becomes more prominent in the completely

trapped limit, and, as a natural consequence of its growth, the memory

fimction diverges at P=O.

4. Conclusions

In general, we have demonstrated that, even though chain

connectivity appears to be a sufficient condition for understanding the self

diffusion of polymer chains, additional constraints on the chain backbones

are necessary for realistic penetrant diffusion to be modeled. We have also

shown that the very signature of penetrant motion, as quantified by the

functions D(d) and Z(t), changes as the chains are varied from the liquid-

like freely jointed chains to the polymer-like freely rotating chains.

Although central to our analysis, neither D nor Z(t) were

straightforward to calculate.

through <R2(t)> and equation

The diffusion coefficient can be found either ;

(2.7), or through Z(t) and the Green-Kubo

relation given in equation (2.9). We have employed both methods and find

good agreement. In pretious studies on simple liquids, the Green-Kubo

method of determining the diffusion coefficient has often been criticized as

being a less accurate and. a more computational intensive path to the

diffusion constant. There is some truth in this for simple liquids, where

the long time tail of the velocity autocorrelation fi.mction is still fairly large

when increasingly poor statistics mask the form of the function’s tail.

Indeed, we find that this is true for the highly flexible chains; however, for

the freely rotating chains, Z(t) decays more rapidly and provides a

convenient path for the calculation of D.
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For highly detailed polymer models, we expect Z(t) to be particularly

appealing. For these systems, the non-Fickian regime persists to long time

making the calculation of D through <R2(t)> impractical. Parallel

processing methods are not of great advantage here since runs must be

performed for long times into the Fickian regime, and multiple short

trajectories cannot be substituted. On the other hand, the timescale of Z(t)

is that of a single hop, and the difficulty is the compilation of sufficient

statistics. Consequently, averaging over many short, independent runs

can, indeed, substitute for a single long run making this an ideal problem

for parallelization.

The velocity autocomelation function itself is worthy of more

attention. The behavior of the velocity autocorrelation in simple liquids has

had extensive theoretical treatment, but the function’s behavior in non-

collision driven systems has received much less attention. The current j

work presents strong evidence of the existence of a -5/2 tail for the diffusion

of penetrants through polymer melts. In retrospect, this feature of the

diffusion is not surprising. The local energy surface created by the polymer
,

melt traps the penetrant for long, highly variable, periods of time.

Consequently, the motion>of the penetrant is much like the diffusion of a

small particle through a lattice with a broad distribution of trapping times;

a system which also yields a Z(t) with a -5/2 tail [722].
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Appendix: Z(t) for a Particle in a Sphere

The stepped, velocity autocorrelation function for a single absolute

velocity as plotted in figure 1A can be described by a sum of cosine terms:

m

Z“(t,v) = ~
X2 x

— Cos(llt * v *)
:2

n=~3,5,...

(Al)

where the reduced speed, v*, is the particle’s speed, v, divided by its ‘most

probable” speed, c*=(2kT/m)U2.

by the period, 7=21/c*; and / is

inherent MD time-step, tO,~ is

The reduced time, t*, is the time, t, divided

the sphere’s diameter. In terms of the

(til’/c)t,.

To account for the distribution of particle speeds, the velocity

autocorrelation

distribution:

function needs to be averaged over the Maxwell-Boltzmann

[1g(v*)=*v*2exp -V*2 , (A.2)

Averaging the velocity autocorrelation function over all possible speeds

gives
.

..

z*(t)=& ~ ~~cos(nt*v*)v*2 exP[-v*2]dv*.
n=~3,5,... o

This can then be integrated to give,

v (nt *)2-
Z“(t). + ~ + 1- 2

n
n=~3,5,.-. [1eq (nt *)2

4

(A.3)

(A.4)
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which converges rapidly with n. Retaining (and normalizing) the first

term approximates Z“ (t) reasonably well as

‘*(t)=[l-wexp[-w(A.5)

As discussed in the body of the paper, the Laplace transform of Z*(t),

.

~(p) = ~Z*(p) exp(-pt) dt
o

is also of interest. The transform of (A.4) yields

Z(P) =$ _:, ...%
n-, ,,

[l_$P*e.P($je~c(:)l

(A.6)

(A.7)

where p is the Laplace index, p* is p times ~; and erfc(x) is the

complimentary error function (i. e., 1 minus the error function). This is

well approximated by the transform of (A.5) which yields:

!Z(p) = 2~p “[1-fip * exp(p *2)erfc(p*)].

Integration of equation (A.6) by parts gives

(A.8)

the asymptotic behavior of

Z(p) = l/p+ O(l/p2). On the other hand, for small p, the exponential in
,.

equation (A.6) can be expanded as l-pt+... . This leads to the small p

expression of

z(p) =2~*[l-fip*]+o(p’). (A.9)

As a rational approximation of equation (A.8), we use
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z(p) = T
(A;;*) 2[1+B(A::*)21

(A.1O)

where A=O.8 and B=l .8. This captures the correct asymptotic behavior as

well as the correct peak location and height (p~==0.8/~ and ~~= =0.488r),

although only approximating the small p behavior. By forcing the large p

behavior to be similar, the period of the trapped particle’s vibration can be

extracted born ~(p) when there is a well defined maximum as there is for

of K=500. In this case ~ is 0.0851 to or about 20 MD moves. Moreover, this

implies that a K=500 penetrant moves only a short distance, /=0.06 C, before

reversing its direction. In other words, the cavity constraining the

penetrant is less than a tenth of a o larger than the particle or about 1.060

in width.

The memory function can be found through equation (3.4). The

approximate expression for

approaches 2A/z for large p

~(p) given in equation (A.9) implies that &

and A2/zp* for small p. In figure 1lw, the long

time behavior of the 2(p) from simulation for K=500 is fitted to the

numerical results of equation (A.7) in the long time tail. In figure 12w, it

can be seen that the K=500 memory function also converges to the ~ of the

fully trapped particle at relatively short p.
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TableI: Diffusion coefficients in unitsof &/t. obtained from <R> analysis.

d= 0.8

0.9

1.0

1.1

1.2

K=O

0.150

0.137

0.100

0.095

0.070

0.5

0.13

0.10

0.085

0.080

0.065

1.0

E

0.075

0.057

0.050

10

0.050

0.030

0.025

0.017

0.015

20

0.035

0.026

0.021

0.015

0.010

100

0.018

0.017

0.011

0.013

0.0065

300

0.029

0.013

0.011

0.0067

0.0046

500

0.018

0.015

0.011

0.0067

0.0041

.
..



TableI: Diffusion coefficients in unitsof &/& obtained from cR~ analysis.

d= 0.8

0.9

1.0

1.1

1.2

K=O

0.150

0.137

0.100

0.095

0:070

0.5

Fir

0.10

0.085

0.080

0.065

1.0

iiEE-

0.085

0.075

0.057

0.050

10

0.050

0.030

0.025

0.017

0.015

20

0.035

0.026

0.021

0.015

0.010

100

0.018

0.017

0.011

0.013

0.0065

300

0.020

0.013

0.011

0.0067

0.0046

500

0.018

0.015

0.011

0.0067

0.0041

,-
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TableII: Power law exponents for the long time tail of Z(t).

i’

K=O 0.5 1.0 10 20 100 300 500

d= 0.8 -1.5 -1.5 -1.9 -2.2 -2.2 -2.1 -2.5 -2.5

0.9 -1.5 -1.7 -1.5 -1.9 -2.3 -2.1 -2.5 -2.5

1.0 -1.5 -1.5 1.5 -2.0 -2.1 -2.3 -2.5 -2.5

1.1 -1.5 -1.3 -1.1 -1.9 -2.0 -2.1 -2.5 -2.5

1.2 -1.5 -1.3 -1.2 -1.8 -1.9 -2.1 -2.5 -2.3

.-



Table III: Diffusion coefficients in unitsof &/t. obtained from Z(t) analysis.

i= 0.8

0.9

1.0

1.1

1.2

K=O

0.14

0.11

0.093

0.088

0.067

0.5

0.11

0.099

0.096

0.069

0.057

1.0

0.107

0.079

0.063

0.057

0.046

10

0.043

0.032

0.024

0.019

0.014

0.034

0.027

0.019

0.014

0.0088

100

0.021

0.016

0.014

0.014

0.0071

300

0.019

0.013

0.013

0.010

0.0064

500

0.017

0.016

0.012

0.0089

0.0065
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Fim.we cautions

1)

2)

3)

4)

5)

6)

The velocity autocorrelation function for a particle in a l-dimensional

box. A)v(t)Ov(0) where t=Oisjust &eraco~sion tithawdl. B) The

average of v(t) ●v(tO) over all starting times. C) The velocity

autocorrelation function of a trapped particle (solid line) which is

obtained by averaging (B) over the Mmnvell-Boltzrnann veloci@

distribution and (dashed line) of a Brownian particle.

The logarithm of the squared displacement of d=l penetrants vs. the

logarithm of the reduced time. The upper curve is the K=O melt and

the lower, the K=500 melt.

The velocity autocorrelation fimctions of penetrant and polymer site.

The d=l penetrant Z*(t) is dashed and the K=O polymer Z*(t) is solid.

Integration of the velocity autocorrelation function of d=l penetrants

in both K=O (solid line) and K=500 (dashed line) polymer melts.

The variation of the diffusion constant with penetrant diameter.

Circles refer to the K=O simulation. Triangles represent diffusion

constants of various acids in toluene, horn Wilke-Chang [9zz]. In both

cases, the fitted slope is –1.8.

The variation of the-diffusion constant with penetrant diameter. The

filled circles represent the K=500 case; the open circles, the K=O case;

and the X’s and +’s represent experimental results for the diffusion of

light gases through high density and low density polyethylene,

respectively [IIzz].



7)

8)

9)

10)

11)

12)

Velocity autocorrelation function for d=l penetrants in a K=O polymer.

The main figure shows the tail of Z*(t) which is fit by a t-w power law.

The full Z*(t) is shown in the insert.

Velocity autocorrelation function for d=l penetrants in a K=500

polymer. The main figure shows the tail of Z(t) which is fit by a t-m

power law. The full Z(t) is shown in the insert.

Cross-plot of the diffusion coefficients calculated by d?’> and Z(t)

routes. The line represents perfect agreement.

Force autocorrelation functions. The solid line is for d=l penetrants in

a K=O polymer; the dashed, in a K=500 polymer.

Velocity autocorrelation functions of d=l penetrants in Laplace space.

The upper solid line is for the K=O polymer; and the lower solid line,

for the K=500 poIymer. The upper dotted line is for Brownian motion

with a large p limit set to the K=O result. The lower dotted line is for

the fully trapped particle with its large p limit set to the K=500 result.

Memory functions of d=l penetrants in Laplace space. The upper solid

line is for the K=500 polymeq and the lower solid line, for the K=O

polymer. The dotted line is for the fully trapped particle.
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