Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry

PDF Version Also Available for Download.

Description

There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two ... continued below

Physical Description

13 pages

Creation Information

Cundari, T. R. March 5, 2004.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two of the most important implications of this research include (a) pseudorotation among five-coordinate intermediates is significant in HyF, and (b) CO insertion is the rate-determining step. The latter is in contrast to experimental deductions, highlighting the need for more accurate modeling. To this end, we undertook studies of (a) experimentally relevant PR{sub 3} co-ligands (PMe{sub 3}, PPh{sub 3}, P(p-PhSO{sub 3{sup -}}){sub 3}, etc.), and (b) HyF of propene. For the propylene research, simulations indicated that the linear: branched aldehyde ratio (linear is more desirable) is determined by thermodynamic discrimination of two distinct pathways. Other projects include a theory-experiment study of C-H activation by early transition metal systems, which establishes that weakly-bound adducts play a key role in activity selectivity. By extension, more selective catalysts for functionalization of methane (major component of natural gas) will require better understanding of these adducts, which are greatly affected by steric interactions with the ligands. In the de novo design of Tc complexes, we constructed (and are now testing) a coupled quantum mechanics-molecular mechanics protocol. Initial research shows it to be capable of accurately predicting structure ''from scratch.'' Challenges include conformational, geometric, coordination, spin, and particularly linkage (e.g., Tc-SCN versus Tc-NCS) isomerism. In general, our protocol can rapidly (<1 day with desktop software/hardware) predict the structure of diverse Tc complexes with an accuracy commensurate to organics. Our de novo strategy is also being used to investigate tris-pyrazolyl borate (Tp) complexes. Data suggests a fundamental difference in methane activation between TpRe and related CpRe complexes. Furthermore, Tp is a more electronically ''flexible'' platform for catalysts modification than Cp.

Physical Description

13 pages

Notes

OSTI as DE00833745

Source

  • Other Information: PBD: 5 Mar 2004

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: None
  • Grant Number: FG02-97ER14811
  • DOI: 10.2172/833745 | External Link
  • Office of Scientific & Technical Information Report Number: 833745
  • Archival Resource Key: ark:/67531/metadc787800

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 5, 2004

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 5, 2016, 3:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cundari, T. R. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry, report, March 5, 2004; United States. (digital.library.unt.edu/ark:/67531/metadc787800/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.