Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

PDF Version Also Available for Download.

Description

The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S&ER and its key supporting references, the Total System ... continued below

Physical Description

16 pages

Creation Information

Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N. et al. February 26, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S&ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S&ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described in the S&ER (1). The primary tool used to evaluate the implications of the three types of supplemental information described in the SSPA (3,4) is the Yucca Mountain integrated TSPA model.

Physical Description

16 pages

Source

  • Waste Management 2002 Symposium, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Grant Number: AC08-01RW12101
  • Office of Scientific & Technical Information Report Number: 829685
  • Archival Resource Key: ark:/67531/metadc787682

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 26, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Sept. 25, 2017, 4:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N. et al. Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain, article, February 26, 2002; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc787682/: accessed October 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.