Gas-Liquid Flow in Pipelines

PDF Version Also Available for Download.

Description

A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such as ... continued below

Physical Description

89 KB pages

Creation Information

Hanratty, Thomas J. February 25, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such as frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.

Physical Description

89 KB pages

Notes

OSTI as DE00837116

Source

  • Other Information: PBD: 25 Feb 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: DOE/ER/13556-1
  • Grant Number: FG02-86ER13556
  • DOI: 10.2172/837116 | External Link
  • Office of Scientific & Technical Information Report Number: 837116
  • Archival Resource Key: ark:/67531/metadc787644

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 25, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 3, 2017, 12:33 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hanratty, Thomas J. Gas-Liquid Flow in Pipelines, report, February 25, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc787644/: accessed October 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.