Mineral Surface Processes Responsible for the Decreased Retardation (or Enhanced Mobilization) of 137 Cs from HWL Tank Discharges

PDF Version Also Available for Download.

Description

Experimental research will determine how the sorption chemistry of Cs on Hanford vadose zone sediments changes after contact with solutions characteristic of high-level tank wastes (HLW). Our central hypothesis is that the high ionic-strength of tank wastes (i.e., > 5 mol/L NaNO3) will suppress all surface-exchange reactions of Cs, except those to the highly selective frayed edge sites (FES) of the micaceous fraction. We further speculate that the concentrations, ion selectivity, and structural aspects of the FES will change after contact with the harsh chemical conditions of HLW and these changes will be manifest in the macroscopic sorption behavior of ... continued below

Physical Description

vp.

Creation Information

Zachara, John M.; Bertsch, Paul M. & Serne, Jeffrey R. June 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Experimental research will determine how the sorption chemistry of Cs on Hanford vadose zone sediments changes after contact with solutions characteristic of high-level tank wastes (HLW). Our central hypothesis is that the high ionic-strength of tank wastes (i.e., > 5 mol/L NaNO3) will suppress all surface-exchange reactions of Cs, except those to the highly selective frayed edge sites (FES) of the micaceous fraction. We further speculate that the concentrations, ion selectivity, and structural aspects of the FES will change after contact with the harsh chemical conditions of HLW and these changes will be manifest in the macroscopic sorption behavior of Cs. We believe that migration predictions of Cs can be improved substantially if such changes are understood and quantified. The research will integrate studies of ion-exchange thermodynamics on the FES, with high resolution surface microscopies and spectroscopy to probe the structure of FES in Hanford sediments and to describe how the chemical environment of sorbed Cs changes when HLW supernatants promote silica dissolution and aluminum precipitation. Newly available atomic-force microscopies and high-resolution electron-beam microscopies afford previously unavailable opportunities to visualize and characterize FES. Our overall goal is to provide knowledge that will improve transport calculations of Cs in the tank-farm environment. Specifically, the research will: Identify how the macroscopic sorption behavior of Cs on the micaceous fraction of the Hanford sediments changes after contact with simulants of HLW tank supernatants over a range of relevant chemical ([OH], [Na], [Al], [K, NH4]) and temperature conditions (23-80 C). Reconcile observed changes in sorption chemistry with microscopic and molecular changes in adsorption-site distribution, chemistry, mineralogy, and morphology/structure of the micaceous sorbent fraction. Integrate mass-action-solution-exchange measurements with changes in the structure/site distribution of the micaceous-sorbent fraction to yield a multi-component/site-exchange model relevant to high ionic strength and hydroxide concentrations for prediction of environmental Cs sorption.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-60355--1999
  • DOI: 10.2172/829967 | External Link
  • Office of Scientific & Technical Information Report Number: 829967
  • Archival Resource Key: ark:/67531/metadc787551

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 2:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zachara, John M.; Bertsch, Paul M. & Serne, Jeffrey R. Mineral Surface Processes Responsible for the Decreased Retardation (or Enhanced Mobilization) of 137 Cs from HWL Tank Discharges, report, June 1, 1999; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc787551/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.