A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL

PDF Version Also Available for Download.

Description

Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed ... continued below

Physical Description

98 pages

Creation Information

Turk, B.S.; Gupta, R.P. & Gangwal, S.K. June 30, 2003.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 46 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry slowed progress of the demonstration unit, negotiations with potential partners are proceeding for commercialization of this process.

Physical Description

98 pages

Notes

OSTI as DE00823164

Source

  • Other Information: PBD: 30 Jun 2003

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FC26-01BC15282
  • DOI: 10.2172/823164 | External Link
  • Office of Scientific & Technical Information Report Number: 823164
  • Archival Resource Key: ark:/67531/metadc787535

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 30, 2003

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Jan. 4, 2017, 2:01 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 46

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Turk, B.S.; Gupta, R.P. & Gangwal, S.K. A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL, report, June 30, 2003; United States. (digital.library.unt.edu/ark:/67531/metadc787535/: accessed December 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.