Cross-flow filtration during the washing of a simulated radioactive waste stream

PDF Version Also Available for Download.

Description

Bechtel National, Inc. has been contracted by the Department of Energy to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River National Laboratory (SRNL) of the Westinghouse Savannah River Company is working with Bechtel and Washington Group International, to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. To test ... continued below

Physical Description

vp.

Creation Information

MARK R., DUIGNAN March 30, 2005.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Bechtel National, Inc. has been contracted by the Department of Energy to design a Waste Treatment and Immobilization Plant (WTP) to stabilize liquid radioactive waste that is stored at the Hanford Site as part of the River Protection Project (RPP). Because of its experience with radioactive waste stabilization, the Savannah River National Laboratory (SRNL) of the Westinghouse Savannah River Company is working with Bechtel and Washington Group International, to help design and test certain parts of the waste treatment facility. One part of the process is the separation of radioactive solids from the liquid wastes by cross-flow ultrafiltration. To test this process a cross-flow filter was used that was prototypic in porosity, length, and diameter, along with a simulated radioactive waste slurry, made to prototypically represent the chemical and physical characteristics of a Hanford waste in tank 241-AY-102/C-106. To mimic the filtration process the waste slurry undergoes several steps, including dewatering and washing. During dewatering the concentration of undissolved solids (UDS) of the simulated AY102/C106 waste is increased from 12 wt percent to at least 20 wt percent. Once at the higher concentration the waste must be washed to prepare for its eventual receipt in a High Level Radioactive Waste Melter to be vitrified. This paper describes the process of washing and filtering a batch of concentrated simulated waste in two cycles, which each containing 22 washing steps that used approximately 7.7 liters of a solution of 0.01 M NaOH per step. This will be the method used by the full-scale WTP to prepare the waste for vitrification. The first washing cycle started with the simulated waste that had a solids concentration of 20 wt percent UDS. This cycle began with a permeate filter flux of 0.015 gpm/ft2 (3.68 cm/hr) at 19.6 wt percent UDS with a density of 1.33 kg/L, and yield stress of 8.5 Pa. At the end of the 22 washing steps the permeate filter flux increased to 0. 023 gpm/ft2 (5.64 cm/hr) at 20.1 wt percent UDS with a density of 1.17 kg/L, and yield stress of 10.4 Pa. The average permeate filter flux during the 7 hours of Cycle 1 washing was 0.018 gpm/ft2 (4.41 cm/hr). During Cycle 2 the simulated waste started at a permeate filter flux of 0.025 gpm/ft2 (6.13 cm/hr). Note that the starting flux for Cycle 2 was greater than the ending flux for Cycle 1. The period between the cycles was approximately 12 hours. While no filtering occurred during that period either solids dissolution continued and/or the filter cake was dislodged somewhat with the stopping and starting of filter operation. At the end of the second set of 22 washing steps, the permeate filter flux increased to 0.032 gpm/ft2 (7.84 cm/hr) at 20.6 wt percent UDS with a density of 1.16 kg/L, and yield stress of 8.2 Pa. The average permeate filter flux during the 4 hours of Cycle 2 washing was 029 gpm/ft2 (7.11 cm/hr).

Physical Description

vp.

Source

  • 2005 ASME Fluids Engineering Division Summer Conference, Houston, TX (US), 06/19/2005--06/23/2005

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-2004-00910
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 839551
  • Archival Resource Key: ark:/67531/metadc787503

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 30, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • May 5, 2016, 3:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MARK R., DUIGNAN. Cross-flow filtration during the washing of a simulated radioactive waste stream, article, March 30, 2005; South Carolina. (digital.library.unt.edu/ark:/67531/metadc787503/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.