Waste Volume Reduction Using Surface Characterization and Decontamination By Laser Ablation

PDF Version Also Available for Download.

Description

The U.S. Department of Energy's nuclear complex, a nation-wide system of facilities for research and production of nuclear materials and weapons, contains large amounts of radioactively contaminated concrete[1]. This material must be disposed of prior to the decommissioning of the various sites. Often the radioactive contaminants in concrete occupy only the surface and near-surface ({approx}3-6 mm deep) regions of the material. Since many of the structures such as walls and floors are 30 cm or more thick, it makes environmental and economic sense to try to remove and store only the thin contaminated layer rather than to treat the entire ... continued below

Physical Description

vp.

Creation Information

Pellin, Michael J.; Savina, Michael R.; Reed, Claude B.; Zhiyue, Xu & Yong, Wang October 1, 2000.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Argonne National Laboratory
    Publisher Info: Argonne National Lab., Argonne, IL (United States)
    Place of Publication: Argonne, Illinois

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The U.S. Department of Energy's nuclear complex, a nation-wide system of facilities for research and production of nuclear materials and weapons, contains large amounts of radioactively contaminated concrete[1]. This material must be disposed of prior to the decommissioning of the various sites. Often the radioactive contaminants in concrete occupy only the surface and near-surface ({approx}3-6 mm deep) regions of the material. Since many of the structures such as walls and floors are 30 cm or more thick, it makes environmental and economic sense to try to remove and store only the thin contaminated layer rather than to treat the entire structure as waste. Current mechanical removal methods, known as scabbling, are slow and labor intensive, suffer from dust control problems, and expose workers to radiation fields. Improved removal methods are thus in demand[2-5]. Prior to decontamination, the surface must be characterized to determine the types and amounts of contaminants present i n order to decide on an appropriate cleaning strategy. Contamination occurs via exposure to air and water-borne radionuclides and by neutron activation. The radionuclides of greatest concern are (in order of abundance) [1]: 137Cs & 134Cs, 238U, 60Co, and 90Sr, followed by 3H, radioactive iodine, and a variety of Eu isotopes and transuranics. A system capable of on- line analysis is valuable since operators can determine the type of contaminants in real time and make more efficient use of costly sampling and characterization techniques. Likewise, the removed waste itself must be analyzed to insure that proper storage and monitoring techniques are used. The chemical speciation of radionuclides in concrete is largely unknown. Concrete is a complex material comprising many distinct chemical and physical phases on a variety of size scales[6-8]. Most studies of radionuclides in cements and concrete are for the most part restricted to phenomenological treatments of diffusion of ion s, particularly Cs, in and out of model waste forms and engineered barriers[9-21]. Few studies exist on the chemical speciation of the contaminants themselves in concrete [22-25]. For example, the extent to which various contaminants react with the cement and various aggregate particles is currently unknown, as is the role of the high pH of the cement pore water on ion partitioning and chemical speciation. DOE has designated understanding the chemical nature of the contaminants as important in the rational design of characterization, decontamination, and waste handling strategies[26, 27]. We have investigated laser ablation as a means of concrete surface removal[28-31]. Lasers are attractive since the power can be delivered remotely via articulated mirrors or fiber optic cables and the ablation head can be manipulated by robots, thus avoiding exposing workers and the laser system to the radiation field. In addition, lasers can be instrumented with spectrometers or effluent sampling devices to provide for on-line analysis. In contrast to mechanical scabbling systems, laser beams can penetrate cracks or follow very rough or irregularly shaped surfaces. Finally, a laser ablation system produces the smallest possible waste stream since no cleaning agents such as detergents or grit (from grit blasting systems) are mixed with the effluent.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Oct 2000

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 2000

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 7:18 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pellin, Michael J.; Savina, Michael R.; Reed, Claude B.; Zhiyue, Xu & Yong, Wang. Waste Volume Reduction Using Surface Characterization and Decontamination By Laser Ablation, report, October 1, 2000; Argonne, Illinois. (digital.library.unt.edu/ark:/67531/metadc787365/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.