Interaction of fast waves with ions

PDF Version Also Available for Download.

Description

To fully utilize the available power sources in DIII-D (FW, NBI, ECH), understanding of the synergism between the heating mechanisms is important. In this paper the ion distribution, under simultaneous application of NBI and FW, is calculated from Fokker-Planck code CQL3D coupled to ray-tracing code CURRAY. It is found that interaction between energetic ions and FW can be minimized or maximized by adjusting various parameters such as magnetic field, density, beam energy, and FW frequency. Specifically, in DIII-D, the authors find negligible interactions above 1.8 T and above 80 MHz, while the interaction increases at lower fields and frequencies. The ... continued below

Physical Description

4 p.

Creation Information

Chiu, S.C.; deGrassie, J.S. & Harvey, R.W. June 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • General Atomic Company
    Publisher Info: General Atomics, San Diego, CA (United States)
    Place of Publication: San Diego, California

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To fully utilize the available power sources in DIII-D (FW, NBI, ECH), understanding of the synergism between the heating mechanisms is important. In this paper the ion distribution, under simultaneous application of NBI and FW, is calculated from Fokker-Planck code CQL3D coupled to ray-tracing code CURRAY. It is found that interaction between energetic ions and FW can be minimized or maximized by adjusting various parameters such as magnetic field, density, beam energy, and FW frequency. Specifically, in DIII-D, the authors find negligible interactions above 1.8 T and above 80 MHz, while the interaction increases at lower fields and frequencies. The results are compared with experiments in DIII-D including the calculated neutron rate. Energetic ion orbit losses may play an important role in the ion distribution, and this effect is being investigated.

Physical Description

4 p.

Notes

INIS; OSTI as DE95014669

Source

  • 11. topical conference on radio frequency in plasmas, Palm Springs, CA (United States), 17-19 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95014669
  • Report No.: GA-A--22062
  • Report No.: CONF-9505105--1
  • Grant Number: AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 83789
  • Archival Resource Key: ark:/67531/metadc787299

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1995

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 18, 2016, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chiu, S.C.; deGrassie, J.S. & Harvey, R.W. Interaction of fast waves with ions, article, June 1, 1995; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc787299/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.