Analysis of a signal transduction pathway involved in leaf epidermis differentiation.

PDF Version Also Available for Download.

Description

The major objective of this study was to identify and analyze signal transduction factors that function with the CR4 receptor kinase. We pursued this analysis in Arabidopsis. Analysis of other members of the ACR4 related receptor (CRR) family produced biochemical evidence consistent with some of them functioning in ACR4 signal transduction. Yeast 2-hybrid identified six proteins that interact with the cytoplasmic domain of ACR4, representing putative downstream signal transduction components. The interactions for all 6 proteins were verified by in vitro pull down assays. Five of the interacting proteins were phosphorylated by ACR4. We also identified candidate interactors with the ... continued below

Creation Information

Becraft, Philip W. May 23, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The major objective of this study was to identify and analyze signal transduction factors that function with the CR4 receptor kinase. We pursued this analysis in Arabidopsis. Analysis of other members of the ACR4 related receptor (CRR) family produced biochemical evidence consistent with some of them functioning in ACR4 signal transduction. Yeast 2-hybrid identified six proteins that interact with the cytoplasmic domain of ACR4, representing putative downstream signal transduction components. The interactions for all 6 proteins were verified by in vitro pull down assays. Five of the interacting proteins were phosphorylated by ACR4. We also identified candidate interactors with the extracellular TNFR domain. We hypothesize this may be the ligand binding domain for ACR4. In one approach, yeast 2-hybrid was again used and five candidate proteins identified. Nine additional candidates were identified in a genome wide scan of Arabidopsis amino acid sequences that threaded onto the TNF structure.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: FG02-98ER20303
  • DOI: 10.2172/840253 | External Link
  • Office of Scientific & Technical Information Report Number: 840253
  • Archival Resource Key: ark:/67531/metadc787263

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 23, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Aug. 5, 2016, 3:54 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Becraft, Philip W. Analysis of a signal transduction pathway involved in leaf epidermis differentiation., report, May 23, 2005; United States. (digital.library.unt.edu/ark:/67531/metadc787263/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.