The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media

PDF Version Also Available for Download.

Description

Dense nonaqueous phase liquids (DNAPLs) are common subsurface contaminants at many Department of Energy (DOE) hazardous waste sites. The migration and entrapment of DNAPLs at these sites is greatly influenced by subsurface heterogeneity, both physical and chemical. Unfortunately, the physics of DNAPL flow in chemically heterogeneous systems is poorly understood and, hence, multiphase flow simulators typically assume that subsurface soils are completely water-wet (chemically homogeneous). The primary objective of this research is to improve our understanding of and ability to simulate the influence of subsurface chemical heterogeneities on DNAPL flow and entrapment in the saturated zone. Laboratory and numerical investigations ... continued below

Physical Description

vp.

Creation Information

Abriola, Linda M.; Demond, Avery H. & Glass, Robert June 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Dense nonaqueous phase liquids (DNAPLs) are common subsurface contaminants at many Department of Energy (DOE) hazardous waste sites. The migration and entrapment of DNAPLs at these sites is greatly influenced by subsurface heterogeneity, both physical and chemical. Unfortunately, the physics of DNAPL flow in chemically heterogeneous systems is poorly understood and, hence, multiphase flow simulators typically assume that subsurface soils are completely water-wet (chemically homogeneous). The primary objective of this research is to improve our understanding of and ability to simulate the influence of subsurface chemical heterogeneities on DNAPL flow and entrapment in the saturated zone. Laboratory and numerical investigations are being conducted for a matrix of organic contaminants and porous media encompassing a range of wettability characteristics. Specific project objectives include: (1) quantification of system wettability and interfacial tensions; (2) determination of hydraulic property relations; (3) investigation of DNAPL infiltration behavior in two-dimensional systems; (4) modification of a continuum based multiphase flow simulator to account for coupled physical and chemical heterogeneity; and (5) exploration of the migration of DNAPLs and the development of innovative remediation schemes under heterogeneous conditions using this model.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-5680--1999
  • Grant Number: FG07-96ER14702
  • DOI: 10.2172/827039 | External Link
  • Office of Scientific & Technical Information Report Number: 827039
  • Archival Resource Key: ark:/67531/metadc787161

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 2:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Abriola, Linda M.; Demond, Avery H. & Glass, Robert. The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media, report, June 1, 1999; Ann Arbor, Michigan. (digital.library.unt.edu/ark:/67531/metadc787161/: accessed August 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.