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Abstract

I. Excluded Volume Effects in Ising Cluster Distributions and Nuclear
Multifragmentation

IT. Multiple-Chance Effects in a-Particle Evaporation
by

Dimitry Eugene Breus

Doctor of Philosophy in Engineering-Nuclear Engineering
University of California at Berkeley

Professor Stenley G. Prussin, Chair

In Part I, geometric clusters of the Ising model are studied as possible model
clusters for nuclear multifragmentation. These clusters may not be considered as
non-interacting (ideal gas) due to excluded volume effect which predominantly is
the artifact of the cluster’s finite size. Interaction significantly complicates the use
of clusters in the analysis of thermodynamic systems. Stillinger’s theory is used as
a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-
spheres approximation produces a prediction for cluster concentrations well obeyed
by geometric clusters of the Ising model. If thermodynamic condition of phase coex-

istence is met, these concentrations can be incorporated into a differential equation



procedure of moderate complexity to elucidate the liquid-vapor phase diagram of
the system with cluster interaction included. The drawback of increased complex-
ity is outweighted by the reward of greater accuracy of the phase diagram, as it is
demonstrated by the Ising model.

A novel nuclear-cluster analysis procedure is developed by modifying Fisher’s
model to contain cluster interaction and employing the differential equation proce-
dure to obtain thermodynamic variables. With this procedure applied to geometric
clusters, the guidelines are developed to look for excluded volume effect in nuclear
multifragmentation.

In Part 11, an explanation is offered for the recently observed oscillations in the en-
ergy spectra of a-particles emitted from hot compound nuclei. Contrary to what was
previously expected, the oscillations are assumed to be caused by the multiple-chance
nature of a-evaporation. In a semi-empirical fashion this assumption is successfully
confirmed by a technique of two-spectra decomposition which treats experimental
a-spectra as having contributions from at least two independent emitters.

Building upon the success of the multiple-chance explanation of the oscillations,
Moretto’s single-chance evaporation theory is augmented to include multiple-chance

emission and tested on experimental data to yield positive results.

Professor Stenley G. Prussin
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Historical Background of the Research

Initiated by the Becquerel’s discovery of radioactivity in 1896, the first quarter
of the twentieth century featured a series of important findings that showed the
existence of the atomic nucleus and its complex structure and behavior. In 1911
Rutherford demonstrated in his famous a-particle scattering experiment that the
atom (he used gold) has a small massive dense charged nucleus, that contained the
major part of the atomic mass. In 1913 Bohr confirmed these experimental findings,
introducing his quantized planetary atomic model, which accurately described the
electronic levels in the hydrogen atom. Moseley determined the nuclear charge in
1914, and the same year Rutherford suggested that the nucleus of hydrogen was

the fundamental positively charged particle, which he called proton. Later in 1917



Rutherford proved the existence of protons in the nucleus by bombarding nitrogen
with a-particles and observing the protons coming out. This was also the first
observation of a nuclear reaction. Around the same time Rutherford conjectured
the existence of a neutral particle in the nucleus, which was similar to the proton.
However, it was not until the 1932 discovery of the neutron by Chadwick that the
proton-neutron nuclear model was developed by Heisenberg. Still it was not clear
how protons and neutrons (collectively called nucleons) were bound together in the
nucleus. Accurate measurements of the proton mass as well as the masses of many
nuclei using the methods of mass spectrometry provided the clue. Since the neutron
and proton masses were known, it was possible to determine the difference between
the mass of the bound nucleus and the total mass of the individual nucleons that
formed the nucleus. First of all, it was found that the mass difference (also called
the mass defect) was relatively large, almost 1% of the nuclear mass. According to
Einstein’s mass-energy relation such a mass difference corresponds to a large amount
of energy needed to break the nucleus apart into individual nucleons. Secondly, it
was also found that the nuclear binding energy divided by the number of nucleons
in the nucleus (also called the binding energy per nucleon) did not change much
from nucleus to nucleus, and fluctuated around the constant value of 8 MeV. This
observation was equivalent to the nuclear binding energies varying approximately
linearly with the number of nucleons in the nucleus (the nuclear mass number), and

revealed the short-range nature of the nuclear interaction.



Another experimental confirmation of the short-range nature of the nuclear forces
came through the measurement of nuclear radii. By 1934 it was already understood
that the change of the nuclear radius r with the nuclear size obeyed the cubic root

dependence

r=roA'/?, (1.1)

where rqg = 1.2 x 107 c¢m was a constant. This dependence was indicative of the
constant nuclear density calculated as the ratio of the nuclear mass number A and
the volume 4/37r3.

These two properties of constant density and constant binding energy per particle
are the manifestation of saturating of nuclear forces, characteristic of ordinary liquids,
whose molecules also exhibit a short-range interaction.

The short-range force causes a particle in a system to experience interaction only
with its nearest neighbors, the number of which is limited by the geometry of close
packing. When a particle is completely surrounded by its nearest neighbors, its
interaction is said to be saturated, since the second nearest neighbors are already
blocked from approaching the particle close enough to interact. Therefore the total
binding in the bulk of the liquid B, grows linearly with the amount of the liquid,

and so it is proportional to the volume v of the liquid:
B, x v. (1.2)

A finite amount of liquid, like a drop, possesses an outer boundary or a surface.

The surface molecules are not completely surrounded by nearest neighbors, and do



not experience complete binding. As a result, the total binding energy in the drop
is less than expected on the basis of bulk binding energy. The reduction in binding
energy B, is proportional to the number of molecules in the surface layer, which in

turn is proportional to the surface area s of the drop:
B, x s. (1.3)

It a drop of liquid is charged, its binding energy decreases even more since the
charges repel each other and destabilize the drop. This reduction in binding energy
B¢, goes quadratically with the total charge Z on the drop and is inversely propor-
tional to the radius of the drop rp. The exact calculation for a uniformly charged

sphere yields
3 7%

Be = .
¢ 5TD

(1.4)

Thus a nucleus may be thought of as a drop of charged liquid obeying the re-
quirements of binding in classical charged fluids. This idea was formally employed
by Weizsacker in 1935, when he introduced a semi-empirical formula for the nuclear

binding energy B using the analogy with a spherical drop of charged liquid:

7 (A—22)

_ 2/3
B=a,A—aA —acW—asym I

+6, (1.5)

where A?/? follows from the relation of the surface of a sphere to its volume, A'/?
follows from the relation of the radius of a sphere to its volume, and a,, a,, ac,

asym are proportionality coefficients to be determined experimentally. In addition to
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Figure 1.1: Success of the liquid drop model. The solid circles are the experimental
data for the stable isotopes. The solid line is the liquid drop model fit. Binding
energies are per nucleon.

the classical terms the formula contains two more quantum terms for symmetry and
pairing energies. The symmetry term reflects the tendency of nuclei to have equal
number of neutrons and protons, and the pairing energy ¢ arises as a result of like
nucleons of opposite spin assuming a lower energy state if they combine to form a
pair.

The liquid drop formula, apart from the quantum terms, is a general characteristic

feature displayed by finite condensed systems with short-range interaction. Such



systems are called leptodermous (thin-skinned) due to the presence of a thin outer
layer whose properties alter the properties of the whole system in comparison with
the infinite bulk behavior. Fach geometric attribute of the finiteness, like volume,
surface or curvature, individually contributes to a system’s extensive property. For
example, the binding energy of the particles in the system can be presented as an

expansion in powers of A~1/3:
B = A(Cl —|—CQA_1/3—|—03[A_1/3]2 + ), (16)

where A is the system’s size (or mass number, which is proportional to the volume
of the system), and ¢1, ¢z, ... are energy coefficients. This series is generally referred
to as the liquid drop expansion. As seen from Equation 1.6, finite size effects in
leptodermous systems become small as A tends to infinity, and the binding becomes
proportional to the size A.

The nuclear liquid drop model turned out to be very successful in describing
binding energies of atomic nuclei (see Figure 1.1). The average deviation for all the
known isotopes is only about 1%. Still there are fluctuations, especially in the region
of small masses and for special numbers (magic) of neutrons and protons. These
fluctuations are the manifestation of the shell effects in the nucleus, which arise due
to quantization of nucleon energies, and their degeneracies. Inside each group (shell)
nucleons have similar energies, whereas the energy gaps between the shells are of the
order of the shell thickness (difference between the maximum and minimum energies

in the shell). As a result, binding energies are also affected by these peculiarities



causing fluctuations depicted in Figure 1.1.

Nevertheless, the fluctuations are small, and the nuclei exhibit an almost 99%-
smooth liquid-like behavior. This important conclusion means that the study of
nuclei may be greatly simplified by considering them as drops of uniform liquid-like
matter. In this approach the individual behavior of nucleons in the nucleus becomes

irrelevant. What matters are their collective properties in the nucleus as a whole.

1.2 Nuclear Thermodynamics and Phase Transi-
tion

The description of the ground-state nuclei in terms of a liquid drop led to several
important conclusions. First of all, it became clear that the Equation 1.5 describes
finite charged drops of some bulk nuclear matter. The volume term a, A of the liquid
drop expansion, if taken alone, gives the bulk binding energy of the infinite matter,
uncharged and symmetric in the sense that the masses of protons and neutrons are
equal. This matter possesses some global properties that manifest the nature of the
“pure” nuclear binding, undisturbed by Coulomb and quantum effects. Since the
matter is infinite, one is naturally led to study its properties thermodynamically
using such macroscopic variables as pressure and temperature.

Secondly, a thermodynamic study of infinite nuclear matter is a way to condense

the knowledge of its physics into a concise description. Then all the variety of nuclei



and nuclear processes may be understood by extrapolation of the properties of the
infinite system to the properties of finite charged drops, like individual nuclei. This
point can be illustrated using a simple example. Suppose we can only observe tiny
charged droplets of water. The properties of water in the droplets depend on the
size and charge of the droplets. However, if we know the general properties of the
bulk infinite water, we can always predict the properties of each of the small drops
using the liquid drop expansion.

Thirdly, nuclear matter may have phases. Depending on the temperature and
pressure, thermodynamic systems generally can form different phases. A phase of a
system is a homogeneous part of the system that is separated from other parts by
a distinct boundary. Phases can transform into each other depending on the state
of the system. This transformation is called phase transition. Since nuclei display a
liquid-like behavior in their ground state, corresponding to zero temperature, there
is the expectation of a nuclear vapor phase at higher temperatures.

The simplest model of liquids in classical thermodynamics is represented by the
Van der Waals theory, which describes the properties of fluids encompassing liquid
and gas phases. According to this theory, these fluids are composed of particles hav-
ing a non-zero size and a pairwise attractive force which quickly drops to a negligible
value as the interparticle separation increases. It was proposed by Van der Waals in
1873 as a modification to the ideal gas law. This theory describes the behavior of

real fluids. In particular, it exhibits a first-order phase transition between a liquid



10

phase and a gas phase, as well as criticality.

First-order phase transitions occur at pressure, temperature and chemical po-
tential common to the two phases involved in the transition. Only the amounts of
the phases change, causing the specific volume (volume per unit mass) of the sys-
tem to undergo a modification, which occurs primarily due to the formation of gas.
If the specific volume of the system is intermediate between those of pure phases,
the phases are said to be in coexistence. Since thermodynamic states of individual
phases are not affected by each other’s presence, phase coexistence does not require
the contact of the phases.

Van der Waals theory also predicts criticality as a characteristic property of the
equilibrium liquid-gas systems. Above a certain temperature, called critical temper-
ature, the Van der Waals fluid cannot exist in the form of a liquid irrespective of the
applied pressure. Therefore, liquid and gas cannot coexist above this temperature,
and only gas is present in the system. The transformation from the mixed-phase re-
gion to the gas-only region, that happens at the critical point, is called second-order
phase transition.

The order of the transition has to do with a discontinuity in a derivative of the
fluid’s free energy with respect to an intensive thermodynamic variable that controls
the transition (like temperature). In the liquid-vapor transition the first derivative
is discontinuous, at the critical point discontinuity appears in the second derivative.

Nuclear matter is expected to manifest the properties of a Van der Waals fluid.
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A nuclear gas phase has been conjectured in the evaporation-like process of decay of
excited nuclei, which may be thought of as a hot liquid. Excitation can be imparted
to a ground-state nucleus, for example, by colliding it with a nucleon. If the nucleon
or another projectile nucleus used for collision unites with the target nucleus, and
the collision energy gets evenly distributed over all the internal degrees of freedom
(thermalization), a compound nucleus is formed. Irrespective of the way energy
gets transferred to a nucleus, the resulting hot nucleus emits protons, neutrons and
composite fragments. Protons and light composites, like deuterons, tritons and a-
particles, are called light charged particles (LCP). The composites of larger mass,
like the isotopes of lithium and heavier fragments, are collectively called intermediate
mass fragments (IMFs). The emission of single nucleons, LCPs and IMF's from a hot
nucleus suggests the occurrence of the nuclear liquid-vapor phase coexistence, which
is identified following the analogy of nuclear and Van der Waals fluids.

However, the thermodynamic condition of phase equilibriumis not clear in nuclear
evaporation. First of all, it is not guaranteed that thermalization occurs before
fragment emission. Secondly, the nuclear vapor phase does not stay around the

nucleus, leading to time dependent cooling of the drop.

1.3 Nuclear Kinetics and Phase Transition

Kinetic considerations are useful in clarifying the equilibrium condition of nuclear

evaporation. The rate of drop evaporation is the number of particles (or fragments)
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per unit volume dn lost by the drop on the average per unit time d¢. It is controlled
by the liquid drop’s average bulk binding energy B and the temperature T" of the
liquid. If the drop is thermalized, evaporation rates at different temperatures follow

the Arrhenius law:

dn B
Rate = i C(T)exp <_ﬁ> , (1.7)

where C'(T') is a preexponential, which may depend on the temperature, and R is the
gas constant. A typical Arrhenius plot looks like a straight line in the In(Rate)-1/T
coordinates.

With a fully thermalized liquid drop, the phase equilibrium can always be defined
by the initial rate of emission from the drop just after it is allowed to evaporate. This
interesting fact circumvents the problem of the missing vapor phase in nuclear evap-
oration. The first vapor particle emitted out of the drop (nucleus) after evaporation
begins defines the rate of emission at an equilibrium state of the liquid at some initial
temperature. Since at equilibrium there has to be an equal flow of particles from the
gas back into the liquid, it is always possible to define a corresponding equilibrium

state of the gas around the drop with the relation

d
Rate = d_? =n(T)vo, (1.8)

where here n(T') is the particle (or fragment) concentration in the gas, v is the
particle’s (or fragment’s) average velocity, and o is the inverse cross section, charac-
terizing the emission of a particle (or a fragment) from the nuclear interface. Since

the condition of phase coexistence does not require the phases to be in contact, the
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vapor phase does not have to be present, and can be referred to as a “virtual va-
por” [More 04]. Of course, the particles coming second can no longer characterize
the same equilibrium state, since the temperature of the liquid changes. Therefore,
only the first nucleons or fragments emitted from the excited nucleus after its forma-
tion, called the first chance emission, can uniquely characterize nuclear equilibrium
liquid-vapor coexistence. If these nucleons and fragments are found to obey the Ar-
rhenius law, with proper analysis techniques coexistence thermodynamics may be

experimentally extracted and summarized in a phase diagram.

1.4 Phase Diagrams

The nuclear liquid-vapor phase diagram defines the regions of pure phases in the
thermodynamic P-v-T-space, and is a goal of experimental nuclear thermodynamics,
quite within the reach of modern detector technology and skillful analysis techniques.
In fact, the construction of a first nuclear liquid-vapor phase diagram has already
been reported by one research group [Elli 02, Elli 03]. When finally accomplished,
the experimental phase diagram will provide a reliable check for the much more
involved nuclear equation-of-state studies.

Usually a phase diagram is displayed using its projections onto the coordinate
planes, like the T-v and P-T projections of water phase diagram shown in Figure
1.2.

In the T' — v projection the heavy-bell-shaped curve envelopes the two-phase
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Figure 1.2: Various projections of a phase diagram of water.

liquid-vapor region. To the left of this zone is the compressed-liquid single-phase
region, and to the right of the envelope is the superheated vapor region. The left-
hand and the right-hand boundaries of the two-state envelope correspond to the
states of the saturated liquid and the saturated vapor, respectively. The maximum
of the envelope is the critical point, beyond which there is no distinction between
liquid and vapor. Several isobars are also shown in the figure.

The P —T projection appears simpler than the T'—v diagram since the two-phase
envelope is looked at on edge, and so is collapsed onto a curved line. The line labeled
L/V gives the temperature dependence of the vapor pressure of the liquid at the
liquid-vapor coexistence.

Direct macroscopic measurements of nuclear pressure and specific volume to build

diagrams, like those in Figure 1.2, is not a feasible task, since nuclear matter is not
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available in large bulk quantities. Nevertheless, experimental determination of the
nuclear liquid-vapor phase diagram is possible indirectly with a method that employs

vapor clusters.

1.5 The Cluster Method in Nuclear Thermody-

namics

Vapor clusters are groups of individual vapor atoms or molecules bound together
by the short-range attraction. They express the tendency of a non-ideal gas to con-
dense and form liquid. In fact, clusters may be thought of as tiny drops of liquid,
that preform in vapor prior to condensation. Far from condensation the formation
of clusters is inhibited due to higher vapor pressure of the drops in comparison with
the pressure of gas. Any cluster that occasionally forms quickly evaporates. On the
opposite, reverse conditions favor the formation of clusters when the gas pressure be-
comes comparable to the vapor pressure of little clusters. In this case, larger clusters
actually have lower vapor pressure, that promotes their further growth. Therefore,
every state of a gas is characterized by a temperature and density dependent distribu-
tion of clusters according to the number of particles in them, also called cluster size.
Away from condensation in the thermodynamic P-v-T space of a gas the distribution
is largely dominated by monomers, whereas at condensation clusters of macroscopic

size become more probable. The onset of condensation is marked by an intermediate
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distribution still dominated by monomers, but having significant fraction of other
clusters as well.

Clusters may be defined in a variety of ways depending on the distribution of
energy over the internal degrees of freedom of a group of particles. Different cluster
definitions produce different size distributions for the same state of vapor. Therefore,
cluster definition is necessary to determine the state of the system that produced the
observed distribution. Since it is a difficult task to distinguish clusters by internal
degrees of freedom, usually the internal degrees of freedom are not considered in a
hope that they do not contribute very much. Instead, clusters of simple definitions
are used, taking into account but a few degrees of freedom, like the aforementioned
cluster size and the number of particles that face the outside of the cluster (remi-
niscent of cluster surface). Such restriction leads to the introduction of the so-called
configurational clusters. Once a definition of a cluster is settled upon, the analysis of
a thermodynamic system can be carried through with the construction of a cluster
theory expressing a formal link between the local properties of vapor, reflected in
clusters, and the global properties of vapor, like the pressure P and density p (the
inverse specific volume 1/v). Different cluster definitions generally require differ-
ent cluster theories, though for a particular cluster definition a cluster theory may
be developed exactly. The main problem of a cluster theory, however, is matching
theoretical cluster distributions with those experimentally observed.

In nuclear physics clusters can be observed directly and counted. They are the
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nuclear fragments, including single nucleons as a particular case, that are emitted
from the hot nucleus. Therefore, a thermodynamic state of nuclear matter may be
determined from the experimental cluster size distribution using the mediatory role
of a cluster theory. The problem of cluster definition, however, introduces an element

of uncertainty in any calculation of this sort.

1.6 Clusters and Cluster Theories

Cluster theories are developed using the machinery of statistical mechanics to
calculate the partition function of a fluid [Path 86, Huan 87].

A Van der Waals fluid can be thought of as composed of N structureless particles
of mass m, interacting through a short-range two-body potential u(r;;), where r;; is
the distance between particles ¢ and j. The Hamiltonian of the fluid is the sum of
kinetic and interaction energies of the particles:

N 2
A} pd) = D0 o D ulry). (L9)
i=1 i<j
where r; and p; are the position and momentum coordinates of the ith particle,
rij = |r; — r;|, and the second sum is over all the particle pairs. In the canonical
ensemble, for a given volume V and temperature T', the partition function of the

fluid is given by

1

Qn(T,V) = NN / exp(—=p7({r:},{p:}))dr1...drydpy ... dpn, (1.10)

{ri}.{pi}
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where = 1/T, h is Planck’s constant, and the integration runs over the coordinate
and momentum space of every particle within V. Integrations over the momentum

coordinates can be carried out analytically to yield

1
QN(Tv V) = WZN(Tv V)v (111)
where
A= L (1.12)
27mT

is the thermal wavelength of a particle, that expresses the reciprocal of the particle’s

kinetic contribution to the fluid’s partition function, and

Zn(T,V) = [ T exp(—Bu(ri))dry ... dry (1.13)

Vo<

is the configurational integral of the partition function due to the pair potential
interaction. If the fluid in V is free to exchange particles with an outside reservoir
at a given chemical potential u per particle, the relative probability of having N
particles in V is QnzV, where 2 = exp(3pu) is a particle’s fugacity. The grand

partition function for such a system is

L(zTV) =Y NQn(T.V) (1.14)

N>0

From the grand partition function, the thermodynamics of the fluid can be computed

in a standard way with the following relations:
1
P = Vlni”(z,T, V)

1 0 1
p=— = alnzvlnf(z,T,V), (1.15)
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from which the equation of state may be derived.
Clusters can be introduced into the description of the fluid by rewriting the fluid’s
grand partition function in terms of individual cluster partition functions. This can

be done assuming various degrees of approximation.

1.6.1 Non-interacting Clusters

The simplest approximate way to express the partition function of a fluid through
clusters is to assume their independence. Clusters of given size a (number of parti-
cles) are characterized by the cluster partition function ¢,(7, V'), that reflects all the
cluster’s internal properties, and by a chemical potential p, = ap, that shows the
change in the system’s free energy due to the introduction of the cluster. The parti-

tion function of the fluid is then factorizable in terms of cluster partition functions

[Sato 03]:

o0

ZL(z,T,V) =[] exp(aa(T,V)2") (1.16)

a=1

This assumption is called the ideal-cluster-gas approximation, in which clusters are
assumed to behave like an ideal gas. It can be demonstrated [Sato 03] that within
the ideal-cluster-gas approximation the pressure P, the density p, and the cluster

concentration n, of the system of the volume V' are given by

1 - a
ﬂP = V;Qazv

1 - a
p - V;a%lzv
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1

na(f,2) = " (1.17)

Eliminating z between the pressure and density equations leads to the equation of
state of the system, which is completely defined by the ¢, values. An important
consequence of the theory is that the equation of state of a system can be expressed

through sums over the cluster concentrations n,:

ﬂP = ina
a=1

p = i ang (1.18)
a=1

This result is valuable from the standpoint of nuclear physics as it completely by-
passes the problem of cluster definition. Experimental cluster distributions n, can

directly yield the thermodynamics within the ideal-cluster-gas approximation.
Since the definition of a cluster as a drop of liquid, also called physical cluster,
can mean many things and is not precise, it is not possible to calculate the partition
function ¢, without specifying the definition of a physical cluster. Such specification
leads to ideal-cluster-gas models, that can yield analytic results. The most prominent

of them are due to Bijl [Bijl 38], Band [Band 39|, Frenkel [Fren 39] (BBF) (who, in

fact, introduced the notion of the physical cluster) and Fisher [Fish 67].

1.6.1.1 BBF Model

In 1938-1939 Bijl, Band and Frenkel independently introduced physical clusters,

in which they disregarded the internal degrees of freedom of a cluster. In addition
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to that, the clusters were assumed to be compact, characterized by their size a and
surface s. Therefore, the potential energy of the cluster was written as the sum of

the bulk and the surface terms:

B, = —eqa + e;a??, (1.19)

where the term with /3

follows from the relation of the surface of the sphere to its
volume, and e, and e are the bulk and surface energy coefficients, respectively.
Since the clusters were assumed to be compact with a shape closest to the spher-
ical (not exactly spherical since they were made up of spherical particles), no surface
entropy of the clusters was taken into account. The partition function was derived

by integrating the position and momentum coordinates of the center of mass of the

cluster over the phase space of the system:

(o = Fa3/2 exp(fBleqa — esa2/3]), (1.20)

where A/\/a is the thermal wavelength of a cluster of size a. The concentration of
clusters of size @ follows from the partition function according to Equations 1.17:

G2t a’? a3/? "

_ _ v . 2/3 R S
ne = = 3 exp(fleqa — esa™’”])z SERARE (1.21)

where y = zexp(fe,) and © = exp(—[Fes).
The function y depends on the temperature and density (through z). The function
x is independent of the density and is always less than unity. For a given temperature

T, x is fixed, and the cluster size distribution n, depends on density only through y.
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When y < 1, n, decreases exponentially with increasing a: there is no macroscopic
cluster, which corresponds to the gas phase. For y > 1, n, increases exponentially
with increasing cluster size: a macroscopic cluster appears, indicating the formation
of the liquid phase. At the moment when condensation sets in (coexistence) y =
Yeond = 1 so that pre,ng = —ey, where cond stands for condensation. Therefore, at
coexistence the energy of the cluster formation depends only on the cluster surface,
and

3/2

a
nSoer = = exp(—ﬂesaz/S) (1.22)

The BBF model was the first phenomenological model that introduced a clear
and intuitive interpretation of condensation with physical clusters and gave analytic
results, since the sums in Equation 1.17 can be evaluated at any g and T'. However,
this model did not allow one to locate the critical point, and was bound to fail at high
densities, since the real clusters cannot be regarded as point particles in close-packing

configurations of the system.

1.6.1.2 Fisher’s Droplet Model

Another very successful cluster model was introduced by Fisher in 1967. As the
BBF model, Fisher’s droplet model is based on the ideal gas of clusters approxima-
tion. However, Fisher writes the partition function of the clusters of size a with the
help of additional features. He allows for the entropy of the clusters. Clusters are not

assumed to be compact. A drop may deviate from the spherical shape and deform.
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Deformation is associated with the cluster’s surface entropy due to the fact that a
drop of the same volume may possess many possible shapes.
The mean energy and entropy of a Fisher’s droplet of size a, with a mean surface

s, are written as a sum of the surface and bulk terms:

E, = —eqja-+e,s

Sq = sha+s.s, (1.23)

where e, and s/ are the volume energy and entropy coefficients, respectively, and e,
and s’ are the surface energy and entropy coefficients.
Since the clusters are not compact, Fisher introduces the parameter o to relate

the surface and volume of a cluster:

s = aga’, (1.24)

where ag is a constant. For a perfect sphere o = 2/3, for a string o = 1, for an
average cluster surface o should be somewhere in between.
Instead of the cluster potential energy, like in BBF model, Fisher writes the free

energy of the cluster of size a as

BF,=—p(es+ s, T)a+ Bagles — s,T)a” + 7lna — In gV, (1.25)

in which he introduces an additional correction to the cluster free energy:

BAF, =7lna—IngV (1.26)
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The term 7lna comes from the topological considerations of surfaces that close
on themselves with 7 being a characteristic constant. The term proportional to
In V' is the result of the integration over the position of the cluster’s center of mass
(translational motion), in which ¢o is a constant, so that the thermal wavelengths
are assumed weakly dependent on the temperature and buried in ¢q.

The cluster partition function is

qo = exp(—fFy) = @oVa " exp(f(e, + s T)a — Bag(es — s.T)a”), (1.27)

from which the pressure, density and cluster concentrations can be inferred using
Equations 1.17 if T', 1, and the model-specific constants are known.

In the spirit of BBF model, the cluster concentration can be written as
ne = qoa”y'z®, (1.28)

where y = zexp(fe, + 5. T]) and « = exp(—fagles — s.T]). The condensation begins
with the appearance of a macroscopic cluster. According to the value of x, two cases
are possible. If # < 1, as in BBF model, the condensation point (coexistence) is given
by Yeona = 1, so that fieona = —[eq + s, T]. On the other hand, if # > 1 the cluster
size distribution n, exponentially increases when y > 1 leading to divergence of the
pressure and density series in Equations 1.17. Therefore, condensation only happens
when © < 1, that is for T" < T. = e;/s’. This upper limit on the condensation
temperature is interpreted as the critical temperature, and Fisher’s model is not

valid above T...
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Like in BBF model, at coexistence formation of Fisher’s droplets is controlled by

their surface energy only. As a result the cluster concentrations simplity:
n, = qoa” " exp(—Rag(es — s, T)a”) = qoa™ " exp(—Peoea’), (1.29)

where ¢g = ages, and € = 1 —T'/T. is a convenient measure of how far away from the
critical temperature the system is located.

Fisher’s model is a remarkable model. Being simple, it captures all the properties
of a Van der Waals vapor. The unknown parameters can be readily determined from
a thermodynamic experiment with a real vapor. As a result, a complete description
of a system can be obtained using Equations 1.17. In spite of many approximations
that enter the model, it possesses much flexibility to hide inconsistencies in the
parameters without loss of the general physical-cluster picture. Nevertheless, the
complete disregarding of cluster interaction may render the model inaccurate when
evaluating thermodynamic variables at high fluid densities, especially in the vicinity

of the critical point.

1.6.2 Interacting Clusters

All the ideal-cluster-gas models are fundamentally lawed. Notwithstanding the
simplicity, usefulness and clear physical intuition that these models display, they are
bound to be imprecise or even wrong under certain conditions, like at the critical
point or other high density regimes. The ideal-cluster-gas theory appeals to unreal-

istic approximations, like the non-interaction of clusters and their point-particle-like
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behavior, that is never true at close packing. For example, at condensation macro-
scopic clusters may appear. In the words of Stillinger [Stil 63], since “such large
aggregates use up much of the available vessel volume, leaving considerably less for
others, it is clear that only by taking cluster noninterpenetration into account can
a proper theory of phase transitions be constructed”. Unlike the weak attraction
that the particles in a Van der Waals fluid exert on each other, the repulsion due
to finite volume is very strong. The need to account for the effects of repulsion and
attraction between clusters led to the developing of interacting cluster theory in the
1950s. Until then only Band attempted to introduce finite volume effects into his
model [Band 39].

It clusters are assumed interacting, their precise definition is important before a
theory can be built. In the theories presented below clusters are defined as groups of
particles obeying certain geometric rules. Only configurational clusters were studied
this way, ¢.e. no internal degrees of freedom of clusters were taken into consideration,
thereby restricting the cluster interaction to the effects of noninterpenetration and
weak attraction tails of the pair potentials.

Two major cluster theories emerged as a result of this approach: the theory by
Lee, Barker and Abraham (LBA) [LBA 73], and Stillinger’s theory [Stil 63, Stil 67]
with follow-ups [Gill 77]. Their development was inspired by the pioneer work of
Reiss, Frisch and Lebowitz (RFL) [RFL 59, RFHL 60, Helf 61, Lebo 65] on the fluid

of spheres, who first attempted to systematically address the issues of finite particle
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volume in thermodynamic systems.

1.6.2.1 RFL Theory

RFL developed their theory without the direct reference to the concept of clusters
and methods of statistical mechanics. They considered a mixture of spheres of various
diameters numbered from 1 to m with number densities (concentrations) ny ...ny,,
characterized by the temperature T'. The spheres do not exhibit any attraction and
interact only through mutual volume exclusion. Since the spheres in the mixture
have finite volume, putting in a new sphere requires some work in order to make
enough space for it, which is due to the change in the configurational part of the
system’s free energy (entropic term). In other words, when a new sphere is inserted,
it has to push other spheres aside creating a cavity and causing a change in the
free energy of the fluid. RFL calculate the cavity work W (D,nq...n,, Dy ... D) of
inserting the sphere of diameter D into the m-component mixture by assuming that

for all values D > 0 the work can be approximated by a cubic polynomial:

1 W
D+
o 20D

ow
=TAS = —
w S =Wy + 5D

D*+ Zpp, (1.30)
D=0 6

where Wy is the work of inserting a point (volumeless) sphere, P is the pressure, and
AS is the change in the fluid’s entropy. This approximation was prompted by the
cavity formation work in the two extreme cases of inserting a no volume and a large
volume spheres. If a point sphere with D = 0 is put in, counter to our intuition,

the change in the fluid’s free energy is not zero. Even though no cavity is formed,
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the point sphere restricts the available space for other spheres, since their centers
cannot approach the point sphere closer than their radii. In other words, the point
sphere cannot exist inside of other spheres in the mixture. Using integral-equation

techniques, RFL formally calculate that

m

=1

Wy =—T1n , D=0 (1.31)

Since n; are number densities, i.e numbers per unit volume, and 7 /6D? are sphere
volumes, the sum represents the total fractional volume which is occupied and is not
available to the point sphere. A Boltzmann factor of Wy, namely exp(—/3Wj), yields
the reduction in probability to observe a point sphere in the container due to finite
volume of other spheres.

On the other hand, inserting a very large sphere in the mixture requires the
work PAV, where AV is just the volume of the sphere 7 /6D?. Therefore, the cubic
polynomial in Equation 1.30 represents the asymptotic cases plus contributions at
intermediate diameters due to the surface and curvature of the sphere expressed as
a Taylor expansion up to the second order.

RFL were able to derive all the coefficients in Equation 1.30 and to build the
equation of state of the fluid of spheres. They demonstrated the magnitude of the

finite volume effects in fluids and introduced ! the notion of cavity formation, that

!The basic principles of cavity formation have been known for a long time. They come from
general statistical mechanical considerations that if W is the reversible work required for the creation
of a cavity of an arbitrary shape, then the probability of observing a fluctuation in which such a
cavity forms is given by the Boltzmann factor exp(—FW) [Tolm 38]. However, RFL were the first
to apply this notion to account for the excluded volume effects in fluids.
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is central to the understanding of the cluster interaction.

1.6.2.2 Stillinger’s Theory

Stillinger was the first to rigorously apply the idea of cavity-formation in fluid to
physical clusters within the framework of statistical mechanics. Inspired by the work
of RFL, he considered BBF clusters as a starting point of his theory neglecting the
internal degrees of freedom of the clusters. However, unlike BBF clusters, Stillinger’s
clusters were exactly defined as configurational groups of particles separated by dis-
tances not exceeding a characteristic distance D, defined as a minimum of the pair
potential u(r), where r is the interparticle distance (see the left panel of Figure 1.3).
If a sphere of radius D is drawn around each particle in a snapshot of the system
(see the right panel of Figure 1.3), then only particles with intersecting spheres may
form clusters. Otherwise single particles remain unclustered. Such configurational
cluster definition allowed Stillinger to improve upon BBF' definition eliminating the
condition of compactness. Clusters of any shape and surface could form, effectively
introducing the surface entropy.

Cavity formation in Stillinger’s theory plays the central role. Like for RFL
spheres, the appearance of a cluster in the midst of other clusters requires mak-
ing a space for it, which costs an extra amount of free energy. This free energy is
due to the change in the configurational part of the fluid’s free energy. Thus forming

a cluster in the fluid requires some free energy to put the particles together plus an
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Figure 1.3: Left panel: a schematic of the interparticle pair potential. Right panel:
definition of Stillinger’s clusters. The large circle visualizes the concept of the cavity.

extra free energy to insert the new cluster in the medium of other clusters pushing
them aside. For this reason, clusters interact primarily due to their geometry. The
exact mechanics of the interaction, which Stillinger dubbed “geometrical interfer-
ence”, may be viewed loosely as a requirement that two clusters, say of size s and
t, not approach too near lest they be counted erroneously as a single cluster of size
s +t. Therefore every cluster has to have a “protective” shell or cavity around it in
order to avoid loosing its identity. See how this idea is illustrated in Figure 1.3). The
large circle separates the area around the cluster of size four, which is not accessible
by the single particles, unless the cluster of size five is formed. This cavity restricts
the configurational space of other clusters in the system, damping their abundances
and effectively repelling the particles.

The same cavity can also attract particles due to the tails of pair potentials, a
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much weaker effect then repulsion.

To describe cluster interference quantitatively, Stillinger rigorously introduced
the notion of the cavity formation free energy. A system, like in Figure 1.3, can
be characterized by a grand partition function exp(—/3€2), where the negative grand
potential —() can be identified as the pressure of the system P times its volume V:
—Q = PV. If now a cluster of size a and some fixed shape is placed in a fixed position
in the container (like the cluster of size four in Figure 1.3), it creates an impenetrable
cavity around it that is not accessible by other particles in the volume. The grand
partition function of particles in the container excluding the cavity with the fixed
cluster is exp(—/€,[r]), where Q,[r] again is the grand potential of the system with
the excluded cavity, and r stands for radius-vectors of the particles in the cluster
which determine the exact location and shape of the cluster. Stillinger introduced
the quantity p,[r] to be equal to the probability that the a particles of the same
cluster (serially numbered and regarded as distinguishable) simultaneously occupy
the fixed cavity volume (cluster formation probability). He rigorously demonstrated
that this cluster formation probability can be expressed in terms of the partition

functions exp(—3Q) and exp(—/3Q,[r]) as follows:

palr] = p; exp(—B[Qu[r] — Q)), (1.32)

where p? is the probability of forming the cluster in an empty container that does
not have any other particles except those forming the cluster (ideal cluster gas), and

the difference Q,[r] — Q = W,[r] is the reversible isothermal work required to create
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the cavity around the cluster of size a.
Owing to the probability character of p,[r], this function may be integrated over
all positions inside the container volume V to give N,(z), the average number of

clusters of size a:

V(o) = [ maleldr = )27 (1.33)

where the cluster partition function ¢/ (z) is now fugacity dependent due to the

fugacity dependence of W, [r], which can be rewritten as W,[r, z]:

() = g [ exp(=Wifr. ])dr (1.34)
1%
Then the density is
=7 Zaqa Zana (1.35)
a=1

where n,(z) is the concentration of clusters of size a. The pressure P of the whole
system may be obtained integrating Equation 1.35 with respect to z at constant j3:

BP = /p(z)dlnz, (1.36)

z

which requires explicit knowledge of W, [r, z]. Altogether, the pressure and density
equations can be written similarly to Equations 1.17 of the ideal-cluster-gas approx-

imation:
p = Vzaqa /eXp —BW,[r, z])dr

gp = an / ~ / Lexp(—fAW,[r, 2'])dz'dr



33

1
ng = anza/exp(—ﬂWa[r,z])dr, (1.37)

v

from which the equation of state could be found by eliminating z, if it were possible.
Unlike the ideal-cluster-gas approximation, additional complex position and fugacity
dependent manipulations appear due to cluster interaction.

Stillinger derived a Mayer cluster expansion ? for the quantities W,[r, z] and
explicitly demonstrated their dependence on the global thermodynamic variables of

pressure and density. Schematically this expression can be written as follows:

pWalr,z] = BPv, + flr, p] (1.38)

where v, is the volume of a cavity around the cluster of size a, and f is a position and
cluster size dependent function of density p. Equation 1.38 demonstrates that the
pressure and density contributions to W,[r, z] are always separable, and that only
the density contribution is position dependent. Since W, [r, z] depends on the global
system properties, equilibrium cluster abundances in fluid are not independent, like
in the ideal cluster gas. The pressure and density can no longer be found through
simple summations in Equations 1.17, but rather require a search for a self-consistent

solution of Equations 1.37.

ZMayer’s clusters and expansions employing them were first introduced by Mayer in 1937
[Maye 40]. These clusters have nothing to do with physical clusters in fluids, and should rather be
called graphs that constitute a convenient mathematical abstraction that allows expression of the
fluid’s partition function as an infinite sum of independent components. Mayer’s N-particle graphs
are exactly defined as collections of N distinct circles numbered 1,2,3,..., N, with any number of
lines joining the same number of distinct pairs of circles. Thus every circle in a graph is attached
to at least one line, and every circle is joined directly or indirectly to all other circles in the graph.
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1.6.2.3 LBA Theory

LBA presented a formal theory of physical clusters which accounted for both
intercluster forces and geometrical interference. Their formal theory is exact for any
reasonable definition of configurational physical cluster, like Stillinger’s cluster. As
an example in their work they adopted a definition of physical cluster, introduced by
Reiss, Katz, and Cohen [Reis 68, Reis 70], which requires that each member molecule
lie within a spherical volume of prescribed radius R, whose center is the center of
mass of the group of a particles.

LBA used their theory only for Monte Carlo studies of individual clusters. They
did not attempt to calculate the equation of state of the fluid, as Stillinger did.
Therefore, LBA theory is not fitting as a tool for thermodynamic analysis of a system
through clusters. Rather it explores properties of individual clusters as they change
with temperature and definition.

The main reason for mentioning LBA theory here is due to the important conclu-
sion that they arrived at studying various configurational cluster definitions. They
found that a cluster’s free energy is almost independent of its definition provided that
the definition is reasonable and the temperature is sufficiently low. Using this conclu-
sion, LBA stressed that Stillinger’s theory, being a complete theory for a particular
type of physical clusters, would be approximately valid for any cluster definition.

This conclusion is very important for the research presented in this thesis, since

nuclear clusters are not exactly defined. On the basis of LBA work, one may hope
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that nuclear cluster distributions possess signatures of geometric interference which

can be identified within the scope of Stillinger’s theory.

1.7 Building a Nuclear Phase Diagram Using Clus-

ters

In macroscopic systems, like water or argon, the use of cluster theories as a
means to build a phase diagram is not of primary importance, since other more
direct techniques can be used. Cluster models, like Fisher’s model, are rather of
theoretical value and are employed to explore and identify the formation of clusters
in real fluids using thermodynamic data obtained elsewhere.

In nuclear physics the situation is reversed, since clusters can be readily detected,
but no direct measurement of nuclear vapor pressure is feasible. Here cluster mod-
els become handy as mediators providing recipes to analyze experimental nuclear
fragment abundances and to draw conclusions about the state of the system that
produced these fragments.

It has been found experimentally that the first-chance emission yields of nuclear
fragments obey the Arrhenius law [More 97, Elli 02]. First-chance fragment yields are
obtained event by event from hot nuclei in nuclear evaporation experiments. Yields
are rates multiplied by the characteristic time of emission, and are proportional

to concentrations through Equation 1.8. Figure 1.4 demonstrates an example of



36

o |

I A |
0.1 0.15 0.2 0.25
/T (MeV ™)

Figure 1.4: Experimental yields of nuclear fragments from the reaction of 8 GeV/c
7 on gold. Lines represent fits with Fisher’s model.

yields per nucleon of the parent nucleus Y4 for several nuclear fragments at various
temperatures using the In Yy-1/T-coordinates [Elli 02]. Clearly, the plots are very
linear. On the basis of the initial rate picture, linearity of the first-chance nuclear
Arrhenius plots experimentally validates the thermodynamic approach to the analysis
of nuclear evaporation. First-chance nuclear fragment yields bear direct experimental
information about the equilibrium liquid-vapor coexistence of nuclear matter.

The simplest way to build a liquid-vapor phase diagram from clusters is to use the
ideal-gas-of-clusters approximation at coexistence. This approximation disregards
the problem of detailed cluster definition, and can be applied to nuclear clusters

directly if they are assumed not to interact. Looking at Equations 1.18, it becomes
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clear that the pressure and density can easily be obtained by summing the concen-
trations and size-weighted concentrations of clusters, respectively. However, in the
case of nuclear clusters there are complications that require additional manipulations
to disentangle relevant and non-relevant contributions to the cluster yields.

Nuclear cluster distributions suffer from the effects of Coulomb interaction. When
a compound nucleus readies itself to emit a fragment, the formation free energy of
the fragment is not only due to its surface but also to the Coulomb interaction be-
tween the fragment and the residual nucleus, as well as to the Coulomb self-energy
of the fragments. In fact, Coulomb interaction is ruinous to the whole picture of
equilibrium phase transition. More detailed discussion on this subject will be pre-
sented later in this chapter. For now it is important to realize that the goal of nuclear
thermodynamics is the study of uncharged matter, undisturbed by Coulomb effects.
To this end, complete removal of Coulomb interaction from the picture can remedy
the problem and lead to the achievement of the goal. Therefore, nuclear cluster
distributions need to be adjusted accordingly by dividing out the part of the free
energy which is due to the Coulomb interaction. Since the behavior of the Coulomb
force is well known analytically, this procedure presents no fundamental difficulty.
“Filtered” cluster distributions can be summed up using appropriate relations for P
and p to obtain the phase diagram [More 03].

The ideal-cluster-gas-based phase diagram could have been obtained just using

Equations 1.18, if it were not for the fact that experimental fragment distributions
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are incomplete. They are incomplete in terms of the cluster size and in terms of the
temperature. Insufficiency of temperature points is not a fundamental problem. It
can be solved by improving upon the experimental techniques. The insufficiency of
cluster sizes in a data set, however, presents an insurmountable restriction. The rate
picture, described earlier in the text, cannot be applied to single nucleons and light
charged particles for the reason of multiple chance emission. Unlike heavy fragments,
nucleons and LCPs have a high probability to be emitted from the residual nucleus
after the emission of the primary fragment, as well as from the primary fragment itself
before it reaches a detector. As a result, nucleon and LCP distributions represent
a mixture of the system’s states, among which only one state is equilibrium (first-
chance) at the initial temperature, while others are due to lower temperatures. Heavy
fragments, on the other hand, are mostly emitted first-chance. Their multiple-chance
probabilities are extremely low, so that their effects on the fragment’s distributions
are less then statistical error of the experiment itself. Therefore, use of Equations
1.18 is frustrated owing to the loss of the most important contribution from the light
fragments.

To overcome the insufficiency of data, missing light-fragment distributions have
to be reconstructed. To achieve this reconstruction, however, detailed knowledge of
the fragment’s free energy is a must. Such knowledge can be obtained from a model.
Fisher’s droplet model has been recognized as the most elaborate and elegant among

cluster models. It also allows simple estimation of the critical temperature. To
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Figure 1.5: Application of Fisher’s model to nuclear fragment distributions.

employ Fisher’s model, experimental fragment distributions must be fitted with the
coexistence expression using Equation 1.29 to determine unknown model parameters
for the system. In addition corrections should be included to filter out the Coulomb
effects. Uniqueness of the Fisher’s parameters for the whole system can be achieved
by fitting all the available distributions simultaneously [Elli 05]. Therefore, the over-

all technique should consist of using the expression

ne = qoa” " exp(—pcoea’) exp(—LAFeou) (1.39)

to find the best set of Fisher’s parameters, which simultaneously minimize the resid-
ual sum of all the available experimental distributions. The Coulomb free energy

correction AFe,y can be estimated analytically:

_ Res Frag Frag.—Res. Comp
AFOOUZ - FOoul.—Self + FOoul.—Self + FOoul - FCoul.—Self7 (140)
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Comp . s Res :
where F; 0" s ¢ is the initial compound-nucleus Coulomb self-energy, FET8 g, ; is

the final residual-nucleus Coulomb self-energy, F, CF e ¢ is the fragment Coulomb

self-energy, and F/ %97 is the fragment-residual Coulomb interaction energy.
The self-energy contributions can be estimated assuming sphericity. To calculate
the interaction energy contribution the touching-spheres approximation can be used
[More 03].

If the system obeys the conditions of the Fisher’s model (short-range interaction,
thermal emission, fragment independence, distinctiveness of the liquid and vapor
phases), the minimization converges, and the scaled fragment distributions should
collapse on the same line, as shown in Figure 1.5 for the fragment yields in three
different experiments [Elli 03]. This collapse of the scaled distributions is the char-
acteristic feature of the model’s applicability.

The liquid-vapor phase diagram is obtained using Equations 1.18 with Fisher’s

expressions for the concentrations:

P = Zqoa_Texp(—ﬂcoeag)
a=1

p = Zaqoa_Texp(—ﬂcoeag), (1.41)
a=1

where the model parameters are those extracted from the fit. It should be noticed,
however, that the Coulomb correction has been removed from consideration when
calculating the coexistence thermodynamic variables thereby guaranteeing the valid-

ity of the obtained phase diagram for the uncharged nuclear matter.
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Figure 1.6: (Left panel): The reduced pressure-temperature phase diagram: the thick
line shows the calculated co-existence line, the points show selected calculated errors,
and the thin line shows a fit to the Clausius-Clapeyron equation. (Right panel): The
reduced temperature-density phase diagram: the thick line is the calculated low
density branch of the co-existence curve, the points are selected calculated errors,
and the thin lines are a fit to and reflection of Guggenheim’s equation.

The procedure outlined above has been used by Elliott et al. [Elli 02] to construct
the first estimation of the nuclear liquid-vapor phase diagram. They used nuclear
fragment distributions from the Indiana Silicone Sphere (ISiS) experiment to yield
the results shown in Figure 1.6. The projections are presented in reduced form, so
that the pressure, density and temperature are divided by their critical values. Only
the gas part of the phase diagram is directly extractable from the experiment. The
P — T projection does not suffer from this restriction, since the vapor and liquid
branches coincide. Using the integral form of Clapeyron-Clausius equation for an

ideal gas

£ = % 1 g (1.42)
P exp T T , .
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nuclear heat of vaporization AH,,, has been evaluated from this projection.
The bell-like T'— p projection can only be completed using additional information
about the liquid branch. Such additional information comes from Guggenheim’s

equation [Gugg 45, Gugg 93]

8
Pliq.,vap. T T
———=14b(1l—=Eb|l—-= 1.43
Pe o ( TC> ’ ( TC> ( )

where b; and b, are empirical parameters, and 3 here represents a parameter, which

within Fisher’s model can be calculated as

i (1.44)

g

Using the Guggenheim equation to fit the vapor branch of the phase diagram, the
liquid branch has been obtained by changing sign in front of b, as shown in Figure
1.6.

More complex cluster techniques involving interacting-cluster theories have never
been employed to build a nuclear phase diagram. Therefore, it remains to be seen if
such techniques can effectively be used to augment the existing Fisher’s formalism.
This thesis will make an attempt to shed some light on the issue and to introduce
a technique that accounts for cluster interference according to Stillinger’s and RFL

methodology with some modifications specific to coexistence.
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1.8 Applicability of Equilibrium Thermodynam-

ics to Nuclear Evaporation

There are several criticisms of the attempt to use equilibrium thermodynamics
as a tool in nuclear physics.

First of all, there is a doubt that a hot-nucleus liquid has enough time to reach
thermal equilibrium before it emits the first gas fragment. If liquid itself is not
in the state of thermal equilibrium, the first vapor fragment does not point to the
equilibrated liquid-vapor coexistence, and the whole thermodynamic picture is lost.
Formation of a hot nucleus happens in a dynamic process of collision between the
nucleus and a projectile particle. The collision may be strong enough that prompt
nucleons are knocked out. Clearly, dynamics should play an important part in this
process, hardly leaving any place for static equilibrium.

There is no absolute answer to this criticism at the present time. The important
clue comes from the timing of the emission. Prompt fragments, which come out
shortly after the moment of collision and are mostly single nucleons and LCPs, are
not taken into consideration. On the other hand, IMFs are very rare to appear as
prompt. They are mostly emitted later after the process of thermalization when
the initial energy of collision is equally distributed over all the internal degrees of
freedom. There is no absolute guarantee that IMFs are emitted from a completely

thermalized nucleus. However, there is much experimental evidence that this is so
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Figure 1.7: (Left column): The probability P(n) for emitting n IMFs is shown as a
function of E; for '??Xe-induced reaction on different targets: "**Cu, #Y and '**Ho.
Transverse energy F; = aT? is a measure of temperature, where @ is a constant. The
solid curves are binomial calculations of P(n). (Right column):The reciprocal of the
single fragment emission probability 1/p is shown as function of 1/v/FE; for different
targets ("**Cu, Y, '%Ho, '*"Au). The line is a linear fit to the data.
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[More 97]. The thermal scaling of fragment distributions (their change with the
temperature) is such that it is characteristic of thermalized systems (Arrhenius law).
In addition to that, reducibility of fragment number distributions presents another
proof of thermalization. Reducibility is the property of the IMF number distribution
P(n), with n being a number of IMFs, to be a function of the elementary probability
p of emitting one fragment according to a statistical law, like binomial or Poissonian.
Figure 1.7 demonstrates how knowledge of p can account for all observed fragment
number distributions. Such reducibility is only possible if the fragments are formed
completely independent of each other. Fragment independence is indicative of the
lack of dynamical effects and confirms setting in of thermal equilibrium. In addition
to that, the thermal scaling of the elementary probability p points to the barrier-
controlled statistical emission.

As an aside it is important to mention that independence of fragment emission
also validates the use of Fisher’s model, which requires that the clusters lack inter-
action.

Secondly, there is a complication with the presence of the Coulomb force between
the nucleons in the nucleus. The Coulomb force is long-range and hurts the equilib-
rium emission picture. This issue has already been touched upon in the discussion
of the methodology of filtering the Coulomb effects from the data. Here, however, a
justification for the methodology will be presented in more detail [More 03].

For an excited thermalized nucleus (a hot droplet), there may be two possible
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Figure 1.8: A schematic representation of the Coulomb correction when the emitted
fragment is bound (left panels) and unbound (right panels).

scenarios of emitting a fragment (vapor): the fragment may be bound (Q-value
is negative) or unbound (Q-value is positive). If the fragment is bound and has
zero charge (neutron), a step is observed at the droplet radius equal to the fragment
binding energy. For non-zero charges, a maximum B¢ is observed at the approximate
distance of the droplet and fragment in contact. From there the potential decreases
according to the Coulomb law and settles down at infinity to a value equal to the
binding energy of the fragment, as depicted in the left panel of Figure 1.8. In this case
there is no difficulty in defining a gas phase in equilibrium with the liquid droplet.
The Coulomb barrier Be does not alter the equilibrium. Only kinetically it may

slow down its achievement. The standard cluster techniques of the previous section
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can be used to obtain the phase diagram of the uncharged matter, filtering out the
Coulomb effects simply as an unnecessary information.

A more problematic situation is shown in the right panel of Figure 1.8 that arises
if the emitted fragment is unbound due to the Coulomb interaction. In this case the
droplet is metastable, and the ground state of the system consists of two or more
pieces of the original drop at infinity. Thus it is not possible to speak properly of this
drop in statistical equilibrium with its vapor. For a nucleus such as gold the ground
state consists of three fragments of charge about 30 and is more than a hundred
MeV below the mass of the gold nucleus. Therefore, in equilibrium of a gold-like
drop with its vapor, the most probable configuration for the liquid would be the
three fragments of the true ground state, and not the metastable configuration of
the whole gold nucleus. This situation is prohibitive to define phase coexistence for
droplets larger than A & 30. However, there is a way to avoid this difficulty from
the experimental point of view. The phase coexistence can be defined approximately.
Again the solution comes from the consideration of the timing. On a sufficiently short
time scale the fact that the droplet has unbound channels does not play a significant
role. The fragment still has to jump over a barrier (combined surface and Coulomb)
to leave the nucleus. If so, the first-chance emission rates from the metastable state
still qualify as equilibrium as long as the droplet is thermalized. The rates then can
be corrected for the Coulomb effects, leading to the rates of decay of an uncharged

drop, for which all channels are bound: a situation identical to the case of filtering
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out Coulomb interaction in low-mass nuclei that do not have unbound channels.

Thus the technique of Coulomb filtering is universally applicable to any experi-
mental cluster data without violating the condition of phase equilibrium in uncharged
nuclear matter.

Thirdly, the nuclear droplets are of finite size as compared to the infinite nuclear
matter. Therefore, the nuclear cluster distributions have the finite-droplet-size effects
buried in them, which may lead to recovering the unwanted pressure of a finite
system. For example, simple classical considerations show that the vapor pressure
of a finite-size liquid drop is higher than that of a bulk liquid [More 02]. It follows

from the liquid drop expansion of the molar evaporation enthalpy:

A2/3

H, = H
e

(1.45)

where H? is the molar evaporation enthalpy of the infinite system, A is the size of
the drop, and ¢ is a coefficient proportional to the surface tension. The Clapeyron-

Clausius equation for an ideal gas then gives:

P =P exp < (1.46)

L)
AVBT )
where P, is the vapor pressure of the infinitely large amount of liquid. Unless these
effects are accounted for, the resulting phase diagram is bound to represent the finite
matter.

An answer to this criticism has been worked out by Moretto using the complement

method [More 05]. It consists of evaluating the change in free energy occurring when
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a cluster is moved from one phase to another. In the case of a finite liquid drop in
equilibrium with its vapor, this is done by transferring a cluster of any given size
from the liquid drop to its vapor and by evaluating the energy and entropy changes
associated with both the vapor cluster and the residual liquid drop (complement).
This accounting can be generalized to incorporate other energy terms, as it has
already been shown for Coulomb energy. Fisher’s formula in Equation 1.29 has to

be modified in the following way:

alag — a)

aq

— [ } exp(—Beocla” + (ea—a) —ag)),  (147)

where a4 is the size of the residual complement drop. Then, nuclear cluster distribu-
tions are analyzed with the complement included, whereas the phase diagram of the
infinite matter is constructed with the finite-size effects taken out. Therefore, the

finite-size “filtering” is accomplished in the same spirit as Coulomb filtering.
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1.9 Simple Models to Test Cluster Techniques

The successful use of cluster techniques to recover the thermodynamics of the
nuclear phase transition is impossible without the assurance that these techniques
are at least valid for simple test models that mimic phase coexistence. If a certain
cluster analysis technique produces an accurate liquid-vapor phase diagram for a
model, there is a hope it might work for the nuclear data as well. Reliance on a test
model is an inescapable weakness of the cluster method in nuclear physics, since it
is hardly possible to have an exact nuclear cluster definition uniquely corresponding
to the experimental distributions. If it were possible, an exact theory could be built
to analyze the distributions, and the assurance would be presented by the theory
itself. Since such theory does not exist, different cluster definitions must be tested
on a simulated thermodynamic system with a known equation of state to come up

with a definition that best reproduces the system’s thermodynamics.

1.9.1 The Lattice Gas Model

Among such test models the lattice gas model is the simplest and most illustrative
[Path 86, Huan 87]. It is a model of a simple fluid, in which atoms of the fluid are
assumed to take on only discrete positions in space. These discrete positions form a
lattice of given geometry with a fixed number ~ of nearest neighbors to each lattice
site. Fach lattice site can be occupied by at most one atom. Figure 1.9 illustrates

a configuration of a two-dimensional lattice gas in which the atoms are represented
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Figure 1.9: A sample realization of the lattice gas.

by solid circles. The kinetic energy of an atom is neglected, and it is assumed that
only nearest neighbors interact with a constant interaction energy —.Jy of a pair.
The lattice is usually assumed to be periodic to avoid the effects of the boundary, so
that particles in one row or a column (a two-dimensional case) on the opposite sides
of the lattice are considered nearest neighbors. The potential energy of the system
is equivalent to that of a fluid in which atoms are located only on lattice sites and

interact through a two-body potential v which can assume three possible values:

00 if atoms are in the same site
V=19 —Jo if atoms are in nearest-neighbor sites (1.48)
0 otherwise.

Suppose a lattice gas container has N sites (49 in the example), and the number
of atoms in the system is N, (14 in the example). Also let N,, be the total number

of nearest-neighbor pairs (6 in the example). The total energy of the lattice gas is

ELG - _JONaa7 (149)
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and the partition function

Qra(Na, T Z exp(3JoNaa), (1.50)

Na? {a}
where T'is the temperature in energy units (no Boltzmann constant k), 8 = 1/T, and
the summation extends over all ways {a} of distributing NN, distinguishable atoms

over N lattice sites. The grand partition function of the gas on NV sites (acts like the

total volume V' if one site is equated to a unit volume) is

Ns=N
Lra(z, N T) = Y 2%Qua(N,, T), (1.51)
Ng=0
where the fugacity is
1

with g being the chemical potential per atom. Notice how the kinetic motion is
inserted into the grand partition function of the lattice gas by making thermal wave-
lengths a part of the fugacity. The equation of state can be inferred from the grand

partition function in a standard way:

1
ﬂPLG = ﬁlnng(Z,N,T)
= L ge N T (1.53)
pLG = Nzazn 16z, .

The lattice gas model is non-trivial, and qualitatively reproduces all the prop-
erties of a fluid. It displays the first-order phase transition and criticality. The

thermodynamics of the lattice gas at coexistence in two dimensions have been found
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Figure 1.10: P-v-diagram for a two-dimensional lattice gas. The solid curve is the
exact boundary of the two-phase region.

exactly, thus making the model an excellent tool to study liquid-vapor phase dia-
grams. Figure 1.10 demonstrates as an example a P-v-projection (v stands for the
specific volume) of the lattice gas phase diagram in which the transition region is

completely mapped out.



o4

@ 62 @ |-[T]

Figure 1.11: Equivalence of the lattice gas and the Ising model.

1.9.2 The Ising Model

The lattice gas model has an equivalent model coming from a different realm
of physics. It is the Ising model, which was introduced in 1925 by Ernst Ising
[Isin 25, Path 86, Huan 87] to study ferromagnetism, or the ability of some metals,
like Fe and Ni, to sustain a macroscopic magnetic field as a result of spontaneous
spin polarization of some atoms. In the model the system considered is a periodic
lattice of N sites, like is shown in the right panel of Figure 1.11. Associated with each
lattice site is a spin variable s; ( = 1 ... N) which is a number that is either +1 or -1.
If s; = +1, the 2th site is said to have spin up, and if s; = —1, it is said to have spin
down. A given set of numbers {s;} specifies a configuration of the whole system with
N, spins up and N_ spins down. Figure 1.11 shows how the equivalence between the

lattice gas and the Ising model can readily be illustrated. The two identical lattices
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simply use different lattice variables to represent interaction. While the Ising lattice
spin variables are 41, the lattice gas uses the “atomic” variables 0 and 1.

The energy of the Ising system in the configuration specified by {s;} is defined

to be
N
E[{SZ'} =—J Z $;8; — HZSZ', (154)
<35> =1

where the first sum runs over all the spin pairs < zj > in the configuration, of which
there are yN/2 with 4 being the number of nearest neighbors of any given site. The
interaction energy J and the external magnetic field H are given constants. The

partition function is

Qi(H,T) =" exp(=BEi{s}), (1.55)
{s:}

where the sum runs over all 2" possible lattice spin configurations. The thermody-

namic functions are obtained in a standard manner from the Helmholtz free energy:
Fr(H,T)=-TIhQ;H,T) (1.56)
An important function to mention is magnetization:
COHN\T

M (H,T) = 0 (FI> (1.57)

If H =0 the quantity M;(0,7) is called the spontaneous magnetization.
In two dimensions at zero magnetic field the Ising model was solved exactly
by Onsager [Onsa 44, Newe 53] for an infinite system, and then extended to finite

systems by Kaufman [Kauf 49]. Yang found the exact expression for the spontaneous
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Figure 1.12: Some of the quantities in the lattice gas and their equivalents in the
[sing model.

magnetization [Yang 52] °.

The equivalence of the lattice gas and the Ising models means that the thermody-
namics of the two models are equivalent, and exact ties can be found [YLee 52]. For
example, the magnetic field variable is equivalent to the chemical potential variable
in the lattice gas, the magnetization is equivalent to the density, and the sum of
the free energy and the field strength (in proper units) is equivalent to the pressure.
It can be shown that the zero field Ising model is equivalent to the lattice gas in
the transition region below the critical temperature [YLee 52, Path 86], so that the
Onsager solution can be used to characterize the phase boundary curve on the phase

diagram of the lattice gas. The equivalence of the two models is summarized in Table

1.12.

3Historically it was Onsager who first found this expression in 1948 and demonstrated it during
a conference on phase transitions as a challenge to the audience to find the derivation. However,
he never published the derivation himself. Later Yang took the challenge and found the derivation
in 1952. See [Brus 67]. This historical review has many useful references on the subject.
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1.10 Model Clusters

The lattice gas and Ising models naturally allow clusters as groups of particles or
spins. For example, in Figure 1.11 the lattice gas configuration of particles creates
five clusters of size one, one cluster of size two, one cluster of size three, and one
cluster of size four. The equivalent Ising configuration has the same clusters, which
are formed by the spins of the same orientation.

These clusters are the simplest that can be created on the lattice, and are called
geometric clusters. The only requirement necessary to define a geometric cluster is
the requirement of proximity of particles in space. Any two particles are considered
to belong to the same cluster if they are located next to each other, or there is an
uninterrupted chain of nearest-neighbor particles in between them. Single particles
are also considered as geometric clusters in which the only particle has no neighbors.

Geometric clusters can be characterized by their size and outer surface. The size
is the number of lattice sites that fit inside a cluster, and the surface is the number
of links a cluster has with neighboring empty sites (the lattice gas) or with spins of
opposite direction (the Ising model).

In regard to their shape on the lattice geometric clusters are exactly equivalent
to self-avoiding polygons or polyhedra (SAP) (also called polyominoes) depending
on dimensionality [Gutt 00, Jens 00, Gutt 01], which can be punctured and non-
punctured. For example, if a cluster in the two-dimensional Ising model is equivalent

to a non-punctured polygon, it is possible to draw a curve around a group of like
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Figure 1.13: Equivalence of a geometric cluster of the two-dimensional Ising model
to a non-punctured self-avoiding polygons (SAP).
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Figure 1.14: Equivalence of a geometric cluster of the two-dimensional Ising model
to a punctured self-avoiding polygons.
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spins in such a way that it passes along the border separating sites of opposite spins,
and the resulting contour forms a polygon whose facets do not intersect (Figure 1.13).
Punctured polygons by definition have internal voids in the shape of non-punctured
polygons and correspond to those clusters that embed spins of opposite direction
inside their bulk. These spins are like “holes” in the body of the cluster that create
additional surface. Thus in addition to the outer contour, the equivalence is enabled
by drawing internal non-intersecting contours around the holes of the cluster (Figure
1.14).

SAP are also characterized by their size and outer surface (including holes). The
size is the number of unit volumes that fit inside SAP’s volume, and the surface is
the number of sides. Within each SAP size a the surfaces s vary from a minimum,
corresponding to a compact non-punctured shape, to a maximum, which represents
a string. The minimum perimeters do not have a clear dependence on the polygon
size. For example, in two dimensions they roughly follow the square-root dependence
Smin = 4y/a, which is exact only for the square SAP of size « = 1,4,9,16,25, .... The
maximum surfaces are always exactly determined as linear functions of the SAP size:
in two dimensions s,,,, = 2a + 2 and in three dimensions s,,,, = 4a¢ + 2. Between
the minimum and the maximum the surfaces vary as even numbers.

The equivalence of geometric clusters to SAP is very useful. It allows the exact
counting of geometric clusters by size and surface to obtain the numbers gsap(a, s).

Knowledge of these numbers is very important for testing cluster analysis techniques.
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Obtaining gsap(a,s) analytically is an unsolved combinatorial problem which is be-
ing worked on by several research groups [Brak 90, Lin 91, Bous 96]. In the mean
time numbers of SAPs can be obtained numerically [Jens 03] up to the size ¢ = 50
in two dimensions and up to the size a = 17 (only gsap(a) and non-punctured)
[Flam 03] in three dimensions. It should be emphasized, however, that the subclass
of punctured polygons is relatively small compared to the class of non-punctured
shapes. For instance, polygons of size a = 20 are only about 1% punctured. As the
cluster size grows, the relative number of the punctured clusters increases to reach
about 50% at a = 50. Lattice configurations containing large clusters do not signif-
icantly contribute to the overall behavior of the Ising model. As a result, accurate
representation of geometric clusters can be accomplished by considering them to be
equivalent to the non-punctured polygons only, disregarding the effects of punctures.

Geometric clusters are of primary attention in this work due to their simplicity

and a clear physical picture of cluster formation, which they portray.

1.11 Computer Simulations

The use of the lattice gas model as a test ground for the cluster techniques
is accomplished through simulating it on a computer with Monte Carlo methods.
Many configurations, like in Figure 1.9, should be stepped through in a random order
simulating the behavior of the gas. Of course, only a limited number of most probable

configurations can be realized this way, since their total number even for a relatively
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small system is astronomically large. Clusters in the reproduced configurations can
be identified and counted to build the distributions, which then can be used to
reconstruct thermodynamics of the model and compared to the accurately known
values. However, numerical implementation of the lattice gas in a state on the phase
boundary, or in other locations of the phase diagram requires the control over the
chemical potential. Technically, it is much easier to deal with the Ising lattice, and
change the magnetic field to simulate a particular state of the lattice gas. Therefore,
numerical simulations of the lattice gas are usually done using the Ising model, and
calculations for the phase boundary region are accomplished with the Ising model at
zero magnetic field.

Numerical Monte Carlo (MC) simulation of the Ising lattice at a fixed tempera-
ture is accomplished using clustering algorithms. Clustering algorithms are rigorous
instructions, programmable on a computer, of updating lattice realizations in an un-
biased random order. Clusters here are portions of the lattice that are subject to
change from realization to realization, and are not to be mixed with the model clus-
ters. The larger the difference between successive configurations, the more stable the
algorithm is in the vicinity of the critical temperature with respect to critical slowing
down. Critical slowing down is the time necessary to achieve thermal equilibrium
(lattice energy on the average does not change in time) on the lattice starting with
an initial non-equilibrated state, say all spins up. Three major clustering algorithms

have been developed to date [Land 00].
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1.11.1 Metropolis Algorithm

This procedure was invented by Metropolis et al. in 1953 for sampling an ar-
bitrary probability distribution. In the Metropolis algorithm, new configurations of
the system are found by moving through all the lattice sites and updating the spin
variables. A new configuration is generated by updating a single variable in the old
configuration and calculating the change in energy of the lattice AE. If AE <0, the
change is accepted. Otherwise, the change is accepted with probability exp(—SAF).
This represents a complete Metropolis MC cycle. Therefore, the Metropolis algo-
rithm is considered a local method for reasons that it does not involve multispin
clusters. As a result it is found to be very inefficient around the critical point due to

critical slowing down.

1.11.2 Swendsen-Wang Algorithm

Swendsen-Wang is a true cluster algorithm, where clusters are identified by estab-
lishing bonds between pairs of neighboring spins. Building the appropriate cluster
configurations and updating whole multispin clusters at a time, this algorithm ap-
pears to be much less sensitive to critical slowing down as compared to the Metropolis
algorithm.

The steps of the Swendsen-Wang algorithm are the following:

1. Initialize the lattice to the first realization.
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2. Examine every pair of neighboring spins in the system. If they are not parallel,
do nothing. Otherwise, establish a bond between the two spins with probability
p=1—-exp(—28.J). In this way a bond configuration is obtained. Two spins
belong to the same cluster if they are connected through a sequence of bonds.

It a spin has no bond with any of its neighbors, it forms a cluster by itself.

3. Identify all clusters in the system. For each cluster. flip all its spins with

probability 1/2. In this way a new configuration is obtained.

4. Repeat steps 2 and 3 (complete Swendsen-Wang MC cycle) until the desired

number of configurations have been obtained.

1.11.3 Wolff Algorithm

The Wolff algorithm is similar to the Swendsen-Wang algorithm. The major
difference is that the Wolff algorithm flips the spins of one particular cluster with
probability 1 in every Wolft MC cycle, as compared to flipping all clusters with the
probability 1/2 in the Swendsen-Wang algorithm.

The steps of the Wolff algorithm are:
1. Initialize the lattice to the first realization.

2. Chose a spin at random to be the seed of a cluster. Examine all its neighbors,

and add the parallel ones to a list called a perimeter list.
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3. Remove a spin from the perimeter list. For each of the neighbors that already
belong to the cluster, a bond is established between the perimeter spin and the
neighbor (effectively adding the perimeter spin to the cluster) with a probability
p=1—exp(=24J). If within the same Wolff MC cycle an earlier attempt was
made to establish a bond between the perimeter spin and a neighbor, the

neighbor is skipped in this step.

4. It the perimeter spin is not added to the cluster, repeat step 3. Otherwise,
inspect its neighbors with parallel spins. If a parallel neighboring spin is neither
in the cluster nor in the perimeter list, add it to the perimeter list. If it is

already in the perimeter list or in the cluster, do nothing.

5. Repeat steps 3 and 4 until no spin remains in the perimeter list, then flip all

the spins in the cluster.

6. Repeat steps 3 through 5 until the desired number of configurations have been

obtained.

The Wolff algorithm eliminates the problem of critical slowing down completely,

which makes it the most preferred method to implement Ising MC simulations.

1.11.4 Accumulation of Cluster Concentrations

Clusters are accumulated after the system is allowed to equilibrate. Cluster iden-

tification on the lattice realizations can be done with various methods, like the stan-
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dard Hoshen-Kopelman technique found in textbooks [Land 00]. As a computer steps
through lattice realizations, clusters are identified, sorted by their size and surface,
and counted. After a desired number of lattice realizations have been reached, clus-
ter numbers in every size and surface bin are divided by the total number of lattice
realizations and the total lattice size N to get the concentrations. This way repeat-
ing the MC Ising simulation at various temperatures (the magnetic field is zero),
cluster concentrations n(a, s, T'), which correspond to the phase boundary region of

the lattice gas, can be found and used for testing purposes.

1.12 Goals of Project

When modeling physical cluster behavior on the lattice, the obvious question
arises regarding the choice of a model cluster that best reflects the properties of a
physical cluster in a Van der Waals fluid. In this study geometric clusters are chosen
as model clusters in an attempt to demonstrate their elegance, simplicity and direct
analogy to Stillinger’s clusters. Therefore, this thesis deals with one model cluster
definition and sets as one of its goals to show applicability of Stillinger’s theory to
geometric clusters using MC Ising simulations at zero magnetic field. In contrast,
inadequacy of the ideal-cluster-gas approximation to describe geometric clusters is
clearly shown.

In no way claims are being made that Stillinger’s clusters are the only “good”

clusters to study nuclear fluid. They are configurational clusters with no internal
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degrees of freedom that cannot fully reflect properties of nuclear liquid droplets.
These properties have to be fully known in order to completely understand observed
nuclear cluster distributions. However, Stillinger’s clusters point to an opportunity
of developing a new analysis technique on the basis of interacting-cluster gas. This
opportunity can be justified referring to the work of LBA, who found little effect
of precise physical cluster definition on the free energy of a cluster. Therefore, the
second goal of this study is to develop a cluster analysis technique using Stillinger’s
theory in hopes that it may better describe nuclear clusters and account for their
interference primarily due to the excluded volume. To gain more confidence in the
technique, its testing is planned with SAP combinatorics, which is equivalent to
the combinatorics of geometric clusters. In addition, systematic failure of the ideal-
cluster-gas approximation is presented to contrast the results of the new method.

Analysis of incomplete nuclear cluster distributions is impossible without a cluster
model, like Fisher’s, that analytically parameterizes the distributions. Therefore,
the new interacting-cluster technique should also be merged with Fisher’s model,
introducing a modified version of it. Design of a computer code that implements a
least-squares fitting procedure for the analysis of cluster distributions using modified
Fisher’s model is the third goal of this work.

By itself the new cluster analysis technique cannot manifest any improvement.
It has to be compared with the results of the ideal-cluster-gas analysis. Using geo-

metric clusters, it is possible to observe certain specific signatures distinguishing the
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two analyses. On the other hand, it is possible to generate mockup distributions of
geometric clusters using SAP combinatorics as if they were not interacting. Charac-
teristic signatures can also be observed in this case. Overall, the hope is to find these
signatures in the future analysis of nuclear cluster distributions. Therefore, the forth
goal is to develop strategies to look for cluster interaction effects in nuclear cluster
gas, which are mostly due to the excluded volume, which may manifest if nuclear
clusters are similar to Stillinger’s clusters.

It Stillinger’s clusters are similar to nuclear clusters, then there is an expecta-
tion to substantially improve the nuclear liquid-vapor phase diagram obtained by

Moretto’s group using the ideal-cluster-gas methodology.
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Chapter 2

Geometric Clusters of the Ising

Model as Model Clusters

In this chapter, the properties of geometric clusters are studied from the point
of view of Stillinger’s theory, and the results are compared to the predictions of the
ideal-cluster-gas approximation. In Section 2.1 geometric-cluster concentrations are
studied exactly using the Ising model, and then the ideal-cluster-gas and Stillinger-
based approximations are introduced. Section 2.2 shows how to obtain the lattice
gas thermodynamics using geometric clusters according to various approximations.
An alternative approach to connect cluster concentrations with the pressure at co-
existence, not used previously in cluster analyses, is presented for the case of the
Stillinger-based approximation. Numerical Monte Carlo Ising simulations and their

use to obtain cluster concentrations are discussed in Section 2.3, while Section 2.4
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presents a detailed comparison of simulated geometric-cluster concentrations and the
lattice gas thermodynamics obtained from them with the corresponding predictions

of the theoretical approximations.

2.1 Geometric-Cluster Concentrations

Geometric clusters were discussed at length in the introductory part of this the-
sis. They are configurational clusters that are defined according to the condition of
proximity in space: two or more spins (or atoms) form a cluster if they occupy near-
est neighbor lattice sites in an uninterrupted order so that every spin of the cluster
is a nearest neighbor to at least one other spin of the same cluster.

The Ising model provides an unprecedented opportunity to study geometric clus-
ters. Within the model, geometric-cluster concentration, i.e the average number of
clusters per lattice site, can be related to the lattice gas thermodynamics in a clear
and rigorous way [YLee 52]. At zero magnetic field the Ising model is equivalent
to the lattice gas at the liquid-vapor phase boundary as a result of the one-to-one
correspondence between the Ising field strength and the lattice gas chemical poten-
tial. Only at zero field reversing the direction of spins in the Ising lattice realizations
does not change the energy of these realizations. On the other hand, the equiva-
lent procedure of reversing the lattice gas realizations at constant chemical potential
corresponds to a change of phases. The condition of two phases having the same

energy and chemical potential below the critical temperature unambiguously points
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to phase coexistence, i.e. a region in the thermodynamic P-v-T-space, in which
pressure, temperature and chemical potential of the liquid phase are equal to those
of the gas phase.

In what follows below, geometric-cluster concentrations on the zero-field Ising
lattice are obtained as an example of cluster production at liquid-gas phase coex-
istence. Adopting Stillinger’s approach to a lattice [Stil 63], a probability p can be
introduced that a geometric cluster of size ¢ (the number of spins in the cluster),
surface s (the number of links with the neighboring spins of opposite direction) and
shape k (relative arrangement of spins within the cluster) can form in a particular
location j of the lattice. The shapes of geometric clusters are equivalent to those
of self-avoiding polygons or polyhedra (SAP) depending on the dimensionality (see
Introduction for more details). For every particular size a and surface s of SAP, there
may be many possible shapes, which can be counted and are denoted by gsap(a, s),
so that the counter k varies between unity and gsap(a,s). All the cluster locations
J on the lattice are distinct and also can be numbered. When moving from loca-
tion j to a location j + 1, say to the right, every spin of the cluster moves to its
nearest-neighbor position to the right. Depending on the lattice boundary condi-
tions, the total number of locations may differ. Two types of boundary conditions
are distinguished: open and periodic. In the case of open boundary conditions, the
lattice has finite boundaries and is not closed on itself. The spins on the edge are

not completely surrounded by nearest neighbors. As a result, the number of cluster
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locations depends on the cluster size and shape. On the other hand, periodic bound-
ary conditions correspond to a lattice which is closed on itself, e.¢ in two dimensions
a rectangular (or square as a particular case) lattice forms a torus. All the spins
in such a lattice have the same number of nearest neighbors, and, as a result, the
number of cluster locations is independent of cluster characteristics. In this case, if
a lattice is of total size N, there are N of such locations to place a cluster, so that the
counter j goes from one to N. Thus periodic boundary conditions help to eliminate
the unimportant edge effects on a finite lattice and to simplify its geometry. Onsager
used periodic boundary conditions in his solution of the two-dimensional Ising model.
This thesis will also adhere to them. Therefore, recalling that the total number of

possible lattice realizations is 2V, the probability is

i ba,s,k,j (1) exp[—BE]]
pla,s, k.5, 8,N) = =— (2.1)
;exp[—ﬂEi]

where the index i is the lattice realization counter. In Equation 2.1 é,4;(¢) is the
variable indicating the presence or the absence of the cluster of size a, surface s, and
the shape k in the location j of the lattice realization ¢, and it can only take the
values 0 or 1; E; is the total energy of the realization 2. The energy F; consists of
all the energies of clusters present in the particular realization ¢ plus the energy of
the ground state (all spins are parallel), since the total interface between the up and
down spins is the sum of cluster surfaces. This property of the zero-field Ising model

can be easily understood looking at the following mental exercise. The energy of the
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ground state of the lattice is —1/2~.JN (it can be readily checked using Equation 1.54
for the Ising lattice energy, which is the sum over all the spin pairs), where .J is the
interaction strength, and ~ is the number of nearest neighbors. Suppose a cluster
of spins is flipped in the middle of a two-dimensional square lattice, say a square
cluster of size a = 4 (two by two). The energy of this new lattice state will consist
of three components: the energy of four parallel spin pairs inside the cluster, the
energy of eight antiparallel spin pairs on the surface of the cluster, and the energy of
2N — 4 — 8 parallel spin pairs outside the cluster. Clearly, the energy of parallel spin
pairs inside and outside the cluster are of the same negative sign totaling —2JN+8.J,
whereas the interface energy 8.J is positive. Therefore, the total energy of the new
lattice realization is —2JN + 16.J, which is 16J above the ground state. As it can
be seen, this energy above the ground state is interface-only dependent, and flipping
more spins to create other clusters will increase the energy above the ground state
in proportion to the increasing interface. This dependence of the lattice energy on
the surface of geometric clusters at coexistence is possible because geometric clusters
do not share their surface between each other. They are clearly separated one from
another and cannot touch, for otherwise a larger cluster is formed.

Notice also that the energy above the ground state is always 2.J times the total
surface (number of antiparallel spin pairs) irrespective of dimensionality. The quan-
tity 2.J, denoted as ¢, is the surface energy coefficient (surface tension). Therefore, in

the zero-field Ising model the cluster energy F(a,s) (energy above the ground state
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to form a cluster) is proportional to the surface s of a cluster:
E(a,s)=cs =2Js. (2.2)

For those realizations where a cluster of size a, surface s and shape k is present,
it is always possible to separate the energy of the cluster E(a,s) from the energy of

the remaining clusters E!, which also includes the ground state energy:
E;=FE(a,s)+ E; (2.3)

Then the probability p can be written in the following form:

S busili) expl—AE]
pla sk, j, 3,N) = exp[~BE(a, s)] =5 : (2.4)
> expl~AE]

where the Boltzmann factor of the cluster energy can be factored out because of 6,
which automatically eliminates all the terms in the sum not satisfying the required

condition. The quantity

QN
> bas (i) expl—BE]
w(a, s, k, j,3,N) ==

~ (2.5)
; exp[—BE]

can be understood as the probability that other clusters around the specified cluster
do not affect its formation. If other clusters were not present in any configuration
(hypothetically), then all the lattice realizations contained only the specified cluster,
and w = 1. This assumption, also called dilute limit, is a typical hypothesis of the

ideal cluster gas approximation. Clusters are believed to be so far apart in their phase
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space that their trajectories never cross excluding the possibility of interference. In
the opposite extreme situation, the specified cluster can never be formed, and w = 0.
Such condition may be observed in a cold liquid when condensed fluid forms one giant
cluster the size of the volume of the liquid. In this case formation of smaller clusters
is absolutely prohibited. At intermediate densities w acts as a weight factor lowering
the cluster formation probability in the midst of interference (interaction) with other
clusters.

The concentration n of geometric clusters of size ¢ and surface s (number of
clusters per site of the lattice) can be found as a sum of probabilities p over all the
possible shapes gsap(a,s) that a cluster of size a and surface s can have, and over

all the lattice locations divided by the total lattice size:

eXp N gsap(a,s) .
n(a,s, 3,N) = Z w(a, s, k, j, 8,N) = g(a, s, 3,N) exp[—cfs],
i=1 k=1

(2.6)

where
1 N gsap(a,s)
g(a, s, 3,N) Z w(a, s, k,j, 5,N) (2.7)
]:1 k=1

can be interpreted as the average number of shapes for the cluster of size a and surface
s, which can form on the Ising lattice at temperature T'= 1/3. This number is less
than the corresponding number gsap(a, s) of all the possible shapes because of the
presence of other clusters and the resulting interference. This interference is entirely
of geometric origin and comes from the fact that the freedom of a cluster to change

its shape on the lattice is limited by the temperature dependent presence of other
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clusters that force the cluster in consideration to “squeeze” in between them. This
causes the mutual suppression of geometric-cluster production on the Ising lattice.
Therefore, it may be possible to understand geometric-cluster distributions of the
Ising model if it is possible to determine average cluster-shape numbers, which are
not constants, like gsap(a, s), but vary with temperature and the size of the lattice.

The quantity Nn(a,s, s, N) is the partition function of a cluster of size a and

surface s:
q(a7 87 67 N) = Nn(a7 87 67 N) = eXp[_ﬂF(a7 87 67 N)]7 (2'8)

where

F(a,s,8,N)= FE(a,s) —TS(a,s,3,N) (2.9)

is the cluster free energy with

S(a,s,3,N) =1n[Ng(a,s, 3, N)] (2.10)

being the cluster entropy according to the Boltzmann law. Equations 2.8, 2.9, and
2.10 are included here to emphasize that the effects of cluster interaction (interfer-
ence) enter the individual-cluster thermodynamics through the entropic part of the
cluster free energy. These equations will be useful later when applying Stillinger’s

methodology to geometric clusters.
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2.1.1 Geometric Clusters as an Ideal Gas

It has been shown in the previous section that geometric clusters may not be
considered as non-interacting. The combinatorial factor g entering the cluster dis-
tributions varies with temperature and lattice size as a result of cluster interference.
Nevertheless, it may still be beneficial to assume the condition of dilute limit so that
geometric clusters may be thought of as an ideal gas with the goal to estimate the
extent of their interaction.

Application of the ideal-cluster-gas approximation renders geometric clusters free
to take all the possible shapes gsap(a, s) in any position j on the lattice without being
restricted by the surrounding clusters. Such an assumption may be good enough for
dilute systems, but becomes quite unrealistic at high densities or near the critical
point. It is equivalent to taking all the values w in Equation 2.6 to be unity. The

concentration of clusters in such an ideal gas becomes

QSAP(a75

N
n(a,s, ) ~ SRIEAE@ 2)] 5~ I = gsap(a,s)expl—cBs),  (2.11)

7=1 k=1

which is no longer a function of N, and is characterized by the temperature indepen-

dent combinatorial factor (number of cluster shapes).

2.1.2 Geometric Clusters According to Stillinger

The analogy between geometric and Stillinger’s clusters has been noted in the

Introduction. It seems reasonable to apply to geometric clusters the same arguments
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Stillinger used in his theory. Stillinger’s clusters of size a are shown to have a two-

factor formation probability p,[r] in a container location r:

pa[r] :pg exp(—ﬂW[a,r]), (2'12)

where r is an array of radius-vectors of individual particles in the cluster, p¥ is the
location independent formation probability of a cluster in the absence of interaction,
and W{a,r] is the free energy needed to form a cavity around a cluster in the medium
of other clusters to account for the interaction. This free energy is due to the change
in entropy of the whole system owing to the formation of such a cavity, which restricts
the available space for other clusters and creates room for the new cluster. The
Boltzmann factor of the cavity formation free energy exp(—pgW/a,r]) is, in fact, a
probability that the new cluster will not interact with other clusters: in ideal-gas-like
systems it is unity, while in dense environments it tends to zero. The variation in
shape of Stillinger’s clusters is implied by radius-vectors r, since in any location of
the container, which is fixed by the condition of constant center of mass of a cluster,
there are many possibilities for individual radius-vectors to satisfy this condition.
Now consider a geometric cluster of size a, surface s and shape k& in the lattice
location j. By analogy with Equation 2.12, the cluster formation probability can be

written as

p(av S, kajv 67 N) = exp(—cﬂs) eXp[—ﬂW(a, S, kajv 67 N)]? (213)
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where it can be noticed that

w(a,s, k,j, 3,N) =exp[—W(a,s, k,j, 5, N)] (2.14)

according to Equations 2.4 and 2.5. In other words, the constraining effect of other
clusters on the formation probability of the cluster in consideration can be attributed
to the free energy of creating a cavity on the lattice. This free energy comes as a result
of reduced entropy of other clusters which is due to restricting their configurational

space. Then the concentration can be written as

N gsap(a,s)
n(ays, B.N) = gsap(a, s)2P=PL 03 el AW las kAN (219

NgSAP a, 8 -
According to Stillinger, the cavity formation free energy can be calculated and

consists of two contribution (¢f. Equation 1.38):

6W(a787k7]7ﬂ7N)] = 6Pv(a78) +f(a787k7]767N7p) (2'16)

where P is the lattice gas pressure, v(a, s) is the volume of a cavity around the cluster
of size a and surface s, and f is a position and cluster dependent function of the

lattice gas density p. Therefore, the cluster concentration becomes

n(av 5, 67 N) = gSAP(a7 S) eXp[—CﬂS] exp[_ﬂpv@% S)] <6Xp[—ﬂf]> (av 5, 67 N7 p)v

(2.17)
where
N gsap(a,s)
231 ; eXp[—ﬂf(a,S,k,j,ﬂ,N, p])
(exp[=pf]) (a,5,8,N,p) = (2.18)

NQSAP(% 3)
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The quantity (exp[—3f]) (a, s, 3, N, p) can be expressed in terms of (f) (a, s, 3, N, p):

{exp[—5f]) = 6Xp[-ﬁ<f>]+% aa—;exp[—ﬁf] oi+...=exp[—B(f)](1+p%0+...)
o

(2.19)
Equation 2.19 is the infinite moment expansion ! of the average function in terms
of its average argument. Only even-order moments appear  in the expansion. The

first two moments shown here can be calculated as follows:

N gsap(a,s)

f(a787k7j7ﬂ7N7p)

a,s,3,N, p) = =L = 2.20
(f)(a.s,3.N,p) Nysar(a.s) (2.20)
is the zeroth moment, and
N gsap(as) ]
y [f(a757k7]757N7/))_<f> (a75757N7P)]2
Ufc(a,s,ﬂ,N, p) = ==l (2.21)

NgSAP(a7 8)
is the second moment. It is important to notice, that f is averaged over positions
on the lattice and shapes of the cavity. For a large enough lattice, various positions
tend to become equally probable, i.e. the distribution of f with j is flat. Similar
situation can be conjectured regarding the distribution of f with the shapes k&, since
the cavity volume does not appreciably change with the shape (it depends on the
thickness of the surface). These arguments lead to a reasonable approximation:

(exp[—pB[]) ~ exp[—B (f)], (2.22)

!The methodology of the statistical moment expansion and its derivation are thoroughly pre-
sented in the second part of this thesis. See Section 5.2 for more information.

?As demonstrated in Section 5.2 of Part 2 of this thesis, the odd-order statistical moments of the
expansion do not survive the averaging operation since the positive and negative deviations from
the average cancel each other in the infinite limit of the number of individual deviations. Obviously,
this does not occur to the even-order moments.
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which yields the following cluster concentrations:

n(a, s, 3,N) = gsap(a, s)exp[—cps]exp[—FPv(a,s)] exp[—F(f) (a,s, 5, N, p)]
(2.23)

Geometric-cluster concentration in Equation 2.23 may not be further simplified
without introducing more approximations due to extreme complexity of the quantity
(f)(a,s,3,N,p). Each of the approximations will now be discussed in turn.

First of all, the size of the lattice N does not significantly affect the cluster
production unless the clusters are of size comparable with N. As N tends to infinity,
the dependence completely disappears in the thermodynamic limit. Therefore, for
large enough lattices the finite-container effects can be safely disregarded.

Secondly, the quantity (f) (a,s,3,N,p) can be approximated using the RFL
theory of the fluid of spheres (disks in two dimensions or rods in one dimension)
[Lebo 65]. In the words of Stillinger, “... if the cluster almost always had a smooth
spherical surface, ... the Reiss-Frisch-Helfand-Lebowitz theory of spherical cavity
formation work in real fluids would apply” [Stil 63]. If Stillinger’s clusters are con-
strained to form spherical cavities, and attraction is neglected, Stillinger’s theory
should approximately reduce to RFL description. Therefore, the density dependent
part of the cavity free energy can be adopted from RFL. They derived the following

expressions for the quantity (f) in one, two and three dimensions [Lebo 65]:

1D: B(f)(p) = —In(l—p)



2D: B(f)(R,p) ~ —ln(l—p)—l—lps R (2.24)

Ps Qpc 3/)? 2
3D: B{(f)(R,p) ~ —In(l—p)+ R+ + R7,

where R = R(a) is the radius of the sphere, and

pe = ZZWR(a)n(a,ﬂ) in 3D only

> 2xR(a)n(a,B) in 2D
ps = { ° (2.25)
S 4rR(a)*n(a,) in 3D

> In(a, ) in 1D

p = S 4rR(a)*n(a,f) in 2D

> ixR(a)’n(a,8) in 3D

a

are circular, surface, and volume densities, respectively, and n(a, ) is the concentra-
tion of spherical clusters of size a. Their interpretation depends on dimensionality.
In three dimensions the volume density p is the density in its usual meaning as a
fraction of the container volume taken up by the volume of all the spheres. In two
dimensions it is a fraction of the container surface occupied by the surface of all the
circles, and in one dimension it is just the fractional length of all the rods of length [
on the container string. The surface density p;s in three dimensions is the total sphere
surface per container volume with a similar definition in terms of a circumference
in two dimensions. The circular density p., which appears only in three dimensions,

can be interpreted as the average density of spherical cluster’s linear measure (cir-
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cumference if a cut through the center is made). All these densities are intricately
intertwined to account for the volume, surface and curvature effects in the cavity
formation.

Depending on the dimensionality of the problem, corresponding approximations
for (f) can be introduced to describe geometric-cluster concentrations. In this work,
however, the simplest one-dimensional form will be employed and tested with ge-
ometric clusters. No clear reason can be offered at this time to justify the choice
except that of empirical validity for geometric clusters of the two-dimensional Ising
model. It will be shown later in this chapter that the simulated concentrations of
geometric clusters very accurately follow the one-dimensional form of (f), and no
need exists to introduce more complex approximations. Some speculations, however,
can be considered as to why the one-dimensional form of (f) works well to account
for cluster interference. This form is a part of (f) in all dimensions of interest (one,
two, and three), and represents the zeroth-order effect of placing a sphere in the
container (a point sphere effect). This is the effect of having something in compar-
ison with nothing, a sharp transition from no effect to finite effect. On the other
hand, the other terms describe specific properties of the newly placed sphere (surface,
curvature) and only modify the extent of the already existing effect. These modifi-
cations may not be significant. As an example, consider Fourier transformation of a
function. If the function is smooth and not dramatically varying with its argument

in the range of consideration, the zeroth-order Fourier coefficient is by far the most
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dominant and can reasonably well approximate the function with a constant. The
less important higher-order coefficients only improve upon the approximation and
determine the extent of the deviation from the constant.

When applied to Equation 2.23, the one-dimensional form of (f) yields an elegant
pressure and density dependent approximation for cluster concentrations, that can be
readily calculated analytically in one and two dimensions for which the Ising model

is solved exactly. The concentrations are:

n(a,s,8) & gsap(a, s) expl—chs|expl—FPv(a, 5)](1 - p) (2.26)

Thirdly, the issue of the geometric-cluster cavity volume needs to be addressed.
On the Ising lattice the volume of a cavity v(a,s), which is formed to contain the
cluster of size @ and surface s, consists of two contributions. The first contribution
is from the size a of the cluster itself, which forms the core of the cavity volume.
The second contribution is from the cluster surface of finite thickness. For a cluster
to maintain its identity, there has to be a shell of sites around the core that is in-
accessible to other clusters, since otherwise they would join the cluster. This shell
consists of a maximum of s sites for compact or small clusters, but may contain
less then s if a cluster has stringy parts with bends in the string. The bends cause
the number of sites around the cluster to be less then the number of links to them,
which constitute the cluster surface. In this case the shell is not exactly related to
the surface. For example, two-dimensional geometric cluster of size three and surface

(perimeter) eight can have two irreducible shapes (which cannot be transformed into
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each other by rotation): a string and an angle. The string-shaped cluster has eight
nearest-neighbor sites around it, whereas the angle-shaped cluster has only seven.
Nevertheless, as a good approximation, it will be assumed in this work that the shell
always has s sites, since compact or small clusters appear more frequently on the
lattice due to the less energy requirements. Therefore, in addition to a core sites
of the cluster the cavity should contain s shell sites around the core, which repre-
sent the cluster surface of finite thickness. The shell thickness ¢, should necessarily
be introduced for generality yielding the following approximate form for the cavity
volume:

v(a,s) ~a+tss, (2.27)

which is exact for compact and some small clusters. The shell thickness is equal to the
lattice spacing, i.e. the distance between the sites of the lattice. If the cavity volume
is measured in units of lattice sites, the shell thickness is unity. Such definition of the
cavity volume provides for an elegant way to introduce surface deformation effects
into an otherwise spherical description of the finite volume effects in Equation 2.26.
Clearly, the geometric-cluster surface shell contribution to the cavity volume is a
significant fraction of the total, that can be the largest for small or strongly deformed
clusters recalling that s varies between about 4y/a and 2a¢ +2 in two dimensions, and
even more radically in three dimensions.

Thus the concentration of geometric clusters on the Ising lattice to be explored
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in this work may be approximated by the following expression:

nlays, B) ~ gsap(a.s)expl—chs|expl—BP(a+ st))(1 - p),  (2:28)

in which the temperature dependence of combinatorial factors has been factored out.

For simplicity Equation 2.28 will be referred to as the finite volume approximation

(FVA) throughout this thesis.

2.2 Coexistence Lattice Gas Thermodynamics with

Geometric Clusters

As mentioned earlier in the Introduction, thermodynamics of a system are ob-
tainable through clusters using a cluster model. In the following, two formalisms are
presented to extract thermodynamics of the lattice gas at the liquid-vapor coexis-
tence using geometric clusters as an ideal gas and as a gas of Stillinger’s clusters.
In the case of Stillinger’s clusters, the theory is modified to suit the requirements at
coexistence, and the cluster concentrations are assumed to obey the finite volume

approximation according to Equation 2.28.

2.2.1 1Ideal Cluster Gas

In the framework of the ideal cluster gas approximation the lattice gas pressure

and density below the critical temperature can be evaluated using Equations 1.18 as
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applied to geometric cluster concentrations:

%

P TZn(a,s,ﬂ)

p o~ Zan(a,s,ﬂ) (2.29)

a,s

Criticality of the lattice gas at coexistence can in principle be observed in the
behavior of the heat capacity at constant volume Cy, which can be calculated from

pressure using standard thermodynamic relations:

oo G Lok
YTV T voar|,
E aP , 0 (P

where F is the energy of the lattice gas, and p is the chemical potential, V is the
volume of a system, and ¢y is the heat capacity per unit volume. At the critical
point ¢y is infinite in the thermodynamic limit, which is a characteristic signature
of the second order phase transition. ® If the lattice size is finite, the heat capacity
is expected to have a peak of finite hight at the critical temperature. This peak may
allow determination of the critical temperature for finite systems. The lattice gas

heat capacity per one lattice site within the ideal cluster gas approximation is

o ,0 [P
Cv—a—TTa—TG)

%

d d?
QTZﬁn(a,S,ﬂ)—I-TQ ﬁn(avsvﬂ)

a,s

N,u

o~ CQﬂQZszgSAp(a,s) expl—cfs], (2.31)

a,s

which can be easily derived using Equations 2.29 and 2.30.

3Critical phenomena are qualified as second order phase transitions, which are particularly char-
acterized by the infinite discontinuity in the second derivative of fluid’s free energy with respect to
temperature. Heat capacity contains such a derivative, as it can be seen in Equation 2.30 recalling
that the free energy is proportional to the pressure.
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2.2.2 Non-Ideal Cluster Gas

Stillinger’s cluster theory can be used to obtain the lattice gas pressure and den-
sity from geometric clusters using Equations 1.37. If, however, cluster concentrations
off coexistence are not available *, they cannot be integrated over the chemical po-
tential to obtain the pressure. This problem can be overcome by performing the
calculation of the coexistence pressure and other thermodynamics using the energy
of the system as a function of temperature. In the Ising model geometric-cluster
concentrations can be used to calculate the average lattice energy exactly due to

their direct relation to the energy of a single lattice realization ::
1
EZ' = CSZ' — §7JN, (2.32)

where S; is the total surface between the up and down spins (the number of opposite-
spin pairs) in a realization. The energy ¢S; is above the lattice ground state energy
—1/27JN, where ¢ = 2.J is the surface energy coefficient, N is the total number of
spins on the lattice, J is the interaction constant, and ~ is the number of the nearest
neighbors of a spin on the lattice. Geometric clusters have a well defined surface,

not shared between the clusters, which is the number of links with opposite spins

*A somewhat artificial difficulty for geometric clusters, since non-zero field MC simulations can
be easily performed. This made up problem, however, is raised to solve a real problem with nuclear
clusters, for which experimental distributions are assumed to pertain only to the coexistence of
liquid and gas due to the exponential fall-off of the cluster’s abundance with their size (number
of nucleons). If the system were in the gas-only region, only monomers could be observed. In the
liquid-only region, the cluster abundance would increase exponentially with the cluster size. As it is,
however, the limited presence of multimers supports the assumption of coexistence. At coexistence,
standard Stillinger’s approach cannot be used, since the chemical potential is not an independent
function of temperature.
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bordering the cluster. Therefore, the total surface of a realization S; is composed of

a sum of surfaces of all the geometric clusters present in this realization:

Si=Y_sNi(a,s), (2.33)

where N;(a,s) is the number of clusters of size a and surface s in a realization .

Then the average energy per spin of the Ising lattice u; can be calculated as follows:

2N
ZEiexp(—ﬂEl)
up = =1 =
N2 3 exp(— )
=1

S Ni(ass)exp(—BE)  LyJ 2 Nexp(—AE;)

. =1
= ¢ o

2N
we o N2T YD exp(—BL;) N2 >~ exp(—BE;)
=1 =1

= chn(a,s,ﬂ)—l—ug, (2.34)

where u9 = —1/2+.J is the Ising ground state energy per spin.
The average energy above the ground state u is related to the lattice gas pressure

at coexistence through a standard thermodynamic relation:

opP

uchsn(a,s,ﬂ):Ta—T - P (2.35)

Therefore, the knowledge of the geometric-cluster concentrations as functions of tem-
perature obtained at coexistence is sufficient to determine the pressure. The first-
order differential equation with the initial condition P(T = 0) = 0 can be solved in

order to get the PT' coexistence line.
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Using the approximate form for the cluster concentrations, the pressure and den-
sity of the lattice gas can be evaluated using SAP combinatorics. Since the concen-
trations are density and pressure dependent quantities, they can be written in the

following way:

n(a, s, 3, P,p) ~ gsap(a,s)exp(—cfs)exp[—pF(a+ sts)P](1 — p) (2.36)

A system of equations

=~
|
|

e
%

aTM czsn(a787ﬂ7p7p)

a,s

p R Zan(a,s,ﬂ,P, p) (2.37)

can be defined, that enables the lattice gas pressure and density calculation in the
range of validity of Equation 2.36. For concise reference this methodology will be

called differential equation technique (DET) in the rest of the thesis.

In Equations 2.37 the density can be expressed as a function of the pressure:

EM an’(a, s, 3, P)

N 2.38
P 1"’2@,5@”/(%5757]3)7 ( )

where
(5,5, P) & gsap(a, s)exp(—cBs)expl—la + st)P)  (239)

is the density independent part of the geometric cluster concentrations. Then an

approximate first-order differential equation

c sn'(a,s, 3, P P
2SO0 P) g 0P, (2.40)
L+ >, an'(a,s, 3, P) ory,
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can be written to define the pressure as a function of temperature and cluster com-
binatorials. This differential equation is of central importance in this thesis, since
within the validity of Equation 2.36 it allows the construction of a liquid-vapor phase
diagram if interference effects are not neglected.

Critical properties of the lattice gas can be evaluated in a standard way calcu-
lating the heat capacity at constant volume as a function of temperature along the

phase separation line

_
—ar,

cy (2.41)

and finding its peak at the critical point. Using Equations 2.35 and 2.36, the lattice
gas heat capacity can be expressed in terms of the geometric-cluster concentrations
in the following way:

c? 2 2
cy R~ T2 s“n — t, SN s“n — 2 sn asn
a,s a,s a,s a,s

a,s

+ (Z sn)? Z a*n + ts(z sn)? Z asn (2.42)

If cluster concentrations are known beyond the critical temperature, the finite volume

approximation may be accurate enough to display the peak whose location can be

determined with Equation 2.42 to estimate the critical temperature ®.

>At and beyond the critical temperature coexistence of phases is lost. However, it does not
mean that clusters cease to exist and their concentrations cannot be found. Equation 2.36 offers a
prediction to cluster distributions on a certain trajectory in the P-V-T space in the supercritical
region. This trajectory necessarily passes through the critical point and is determined only by
the fundamental properties of SAPs (numbers of self-avoiding polygons or polyhedra gsap(a.s)).
Therefore Equation 2.42 is not a priori bound to fail in the supercritical region, but rather is open
for testing to determine its range of validity.
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2.3 Obtaining Geometric Cluster Concentrations

Simulated geometric-cluster concentrations are obtained from the Ising MC com-
puter runs at different preset temperatures. In this work the two-dimensional zero-
field square-lattice Ising model was simulated at temperatures between 7,,;, = 1.5
and T = 2.25 (J = 1) below the critical temperature T. ~ 2.269 using the Wolff
algorithm with a computer code courteously provided by Dr. Larry Phair. The

temperature points were equidistant with the gap between them AT = 0.05.
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Figure 2.1: Concentration of a geometric cluster at different temperatures. The error
bars are too small to be seen.

In the code, Phair employed his own cluster identification routine to tag geometric

clusters on every lattice realization to distinguish them as separate clusters. Among
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other data, the output of the code contained listings of numbered lattice realizations,
each of which provided a tagged list of spin coordinates. These listings were then
used to reconstruct individual clusters on every realization, and to sort them by size
and surface (perimeter). After sorting, numbers of clusters in every size and surface
bin were divided by the lattice size and the number of simulated lattice realizations
to get the concentrations. An example of a cluster concentration as a function of

temperature is shown in Figure 2.1.

2.4 Numerical Analysis of Geometric Clusters

To test applicability of a formalism to geometric clusters, theoretical and simu-
lated cluster concentrations, as well as system’s thermodynamics, need to be inde-

pendently obtained and compared.

2.4.1 1Ideal Cluster Gas

Applicability of the ideal-cluster-gas approximation to geometric clusters is pre-
sented in Figure 2.2, which shows several simulated concentrations as functions of
temperature as compared to equivalent concentrations calculated with Equation 2.11.
Comparison of the two data sets reveals reasonable accuracy of the ideal-gas descrip-
tion at low temperatures far below the critical temperature T. ~ 2.269. However, as

the temperature of the lattice is increased, Fquation 2.11 starts failing and eventu-
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Figure 2.2: Comparison of some geometric-cluster (GC) concentrations with the
corresponding theoretical predictions based on the ideal-cluster-gas approximation
(Point-Particle).

ally displays large deviations from the simulated data in the vicinity of the critical
point. Quantitatively the discrepancy between simulated and theoretical concentra-
tions can be estimated in terms of the cluster-averaged relative deviation, expressed

in per cent:

n

An . @ |n(G,S,ﬂ) - nsim(a787ﬂ)|
N Z n(a,s, 5 ’ 24

where ng,(a, s, 3) indicates cluster concentrations from the simulation, and N is
the number of cluster types of different size a and surface s used to evaluate the

quantity. This statistic is specifically intended to put equal emphasis on large and
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little clusters alike. Though large clusters are much less numerous than monomers
and little clusters, like trimers, and do not play much of a role in overall thermo-
dynamic behavior of the lattice (or fluid in general), they acquire much importance
in nuclear cluster analysis applications. As it has been shown in the introduction,
only large nuclear clusters can be trusted to convey reliable thermodynamic infor-
mation. Therefore, when testing properties of geometric clusters as model clusters,
large clusters are of primary concern, since their properties determine applicability

of analysis techniques to build the phase diagram.
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Figure 2.3: The average relative deviation of geometric-cluster concentrations from
the predictions of the ideal-cluster-gas model. Clusters up to and including the size
a = 15 were used.
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Unfortunately, the statistic in Equation 2.43 is flawed at low temperatures, where
cluster production is predominantly suppressed. The rare multispin clusters, that do
form in a limited number of simulated lattice realizations, appear in very small
numbers which deviate substantially from the expected averages. As a result, the
cluster-averaged relative deviation is dominated by statistical noise, i.e. the devia-
tions due to several events (or even one event) of large cluster formation. This can
be seen in Figure 2.3 which demonstrates An/n for a set of clusters with the size
up to and including @ = 15, A/ = 64 in all. The unexpectedly large deviations in
the first three temperature points of Figure 2.3 are dominated by these statistically
unreliable data, and should not be paid attention to. Only the data that fall on a
straight line should be taken into consideration, and correspond to sampling above
the noise.

Overall, at low temperatures Figure 2.3 predicts a small cumulative effect of
interference for geometric clusters. However, as the temperature rises, the deviations
increase with the temperature to reach 80% around the critical point. This increasing
behavior may be explained as a result of increasing pressure of gas in the two-phase
mixture. As the temperature increases along the phase boundary curve as shown
in Figure 1.10, the amount of liquid decreases, and the amount of gas increases
at constant total container volume. The larger the pressure of the gas phase, the
stronger the interaction between the gas clusters due to the excluded volume effect.

Using the approximation in Equation 2.28 and keeping only the dominant exponential
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part containing the pressure, the cluster-averaged relative deviation can be roughly

estimated as follows:

100 100P P
~ 721 —exp[—[P(a + st;)] ~ W;(a—l—sts) o< s (2.44)

a,s

an

n
which increases roughly as a sum of cluster concentrations according to Equations
2.29.

Another unbiased test of the approximation can be carried out by comparing the
exact SAP combinatorial factors with those obtained by fitting simulated concen-
trations with Equation 2.11 as a function of temperature. In the fitting of every
particular cluster concentration, only g(a,s) is used as a variable parameter. If
the fitting formula correctly reflects the properties of the clusters, it is expected to
reproduce combinatorial factors of geometric clusters just as they are known from
SAP counting. However, incorrect or insufficient models would yield combinatorial
factors that systematically deviate from the expected exact numbers. Figure 2.4
demonstrates combinatorial factors for 64 clusters up to and including @ = 15, ob-
tained using the aforementioned procedure, plotted against the exactly known SAP
factors. If the recovered numbers were accurate, the plot would show a one-to-one
correspondence evidenced by a straight y = x-line. As it is, however, the deviations
from the y = z-line are fairly large and follow a systematic trend. All the combina-
torial factors, that were obtained by fitting, underestimate the exact quantities, and
fall on a straight line, indicating the model’s failure to reproduce the same property

for all the clusters considered. The fact that the extracted combinatorial factors
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are smaller than those expected from SAPs indicates that the freedom of clusters to
take various shapes is suppressed by the presence of other clusters, an effect that the

current model cannot account for.
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Figure 2.4: Comparison of several SAP combinatorials with the corresponding geo-

metric cluster combinatorials extracted by fitting their concentrations with Equation
2.11.

There is an intriguing possibility of simple linear mapping the wrong combinato-
rial factors to the right ones. Since the deviations are systematic, and the incorrect
combinatorials follow an approximately linear dependence on the true SAP numbers,
this dependence can be empirically parameterized by the linear function y = kx 4 b,

where k and b are some coefficients. Doing this simple trick yields

gsap(a,s) = (3.96 £0.20)g; joq1(@;5) — (1.90 £ 0.27), (2.45)
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where g; joq1(@, 5) are the combinatorial factors obtained from fitting simulated geometric-
cluster concentrations with the ideal cluster gas approximation. This mapping em-
pirically accounts for the effects of cluster interaction on the combinatorial factors
of the Ising geometric clusters and prompts the existence of a similar mapping in
nuclear systems. Although the knowledge of correct cluster combinatorics does not
help finding correct thermodynamics without a proper attention to cluster interac-
tion at every temperature, still these data are important on their own as an indicator

of the extent of cluster interference.
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Figure 2.5: The lattice gas coexistence pressure in the limit of the ideal cluster gas
calculated with geometric-cluster concentrations from simulations (solid circles), and
using Equation 2.11 (open circles), as compared to the exact pressure (line). The
solid stars depict the average of the two pressures. The mean-field Bragg-Williams
pressure is also shown as open triangles.

Thermodynamics of the lattice gas at the phase boundary can also be used to



99

test the accuracy of the non-interacting-cluster method. As an example, pressure can
be found within the ideal-cluster-gas approximation using Equations 2.29. At the
same time, the exact pressure P can be found from the Onsager solution using the
equivalence relations in Table 1.12. If the ideal-cluster-gas approximation is good for
geometric clusters, it should yield the lattice gas pressure just as Onsager predicts
it or close to it. Otherwise the poor correspondence would be indicative of an inad-
equate methodology. In addition to that, the two possible independent methods to
calculate the pressure using an ideal gas of clusters should produce consistent results.
According to the first method, cluster concentrations from MC simulations can be
summed up at specified temperatures using Equations 2.29. In the second method,
Equation 2.11 can be used at the same temperatures to predict the concentrations of
geometric clusters as if they were non-interacting, and then these concentrations can
be accordingly summed up. Both methods are expected to produce equal results,
comparable with the exact pressure. However, the expectations are not fulfilled, as
the results of the calculations are shown in Figure 2.5. The pressure according to
the first approach is abbreviated GC (geometric clusters), according to the second
approach the pressure is called SAP, and the exact pressure is called Onsager. Pre-
dictions of the zeroth order mean-field Bragg-Williams approximation are also shown
in the figure. Notice that the Bragg-Williams approximation is the worst among all
shown in the figure thereby giving a credit to the ideal cluster gas approximation as

of a higher order compared to the mean field. Nevertheless, it can be observed with
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certainty that the ideal-cluster-gas approximation still applies poorly to geometric
clusters unless the temperatures are low. At high temperatures and in the vicin-
ity of the critical temperature the deviations are of the order of 30% with the two
methods yielding inconsistent results which bend off the exact pressure in opposite
directions. The Bragg-Williams approximation is more or less consistent with the
first method of calculating the pressure directly from the simulated cluster concen-
trations indicating that the non-interacting-cluster technique is more than sufficient
to obtain rough estimation of mean-field thermodynamics of the system. However,
at certain conditions these thermodynamics can significantly deviate from the exact
values, and may not be very helpful. These deviations are the result of the cluster
interaction, which needs to be accounted for in order to correctly reproduce fluid’s
thermodynamics from the observed cluster distributions.

An interesting result, shown in the same figure, concerns the pressure obtained
by averaging GC and SAP pressures. It can be seen that this average pressure comes
fairly close to the exact Onsager’s calculation thus allowing for a simple recipe to
estimate the true pressure and the extent of the finite volume effects in the system.
This is another empirical result that combined with the empirical parameterization
in Equation 2.45 may provide a simple test procedure for probing a system on ac-
count of cluster interference. Again one should have nuclear clusters in mind for
the potential use of these simple tricks as preludes to the full-fledged Stillinger-like

analysis methodology.
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Figure 2.6: The lattice gas coexistence heat capacity in the limit of the ideal cluster
gas calculated with geometric-cluster concentrations from simulations (solid circles),
and using Equation 2.31 (open circles), as compared to the exact heat capacity (line).
The heat capacity according to Bragg-Williams is also plotted.

Critical properties of the lattice gas cannot be obtained from geometric clusters
as an ideal gas using the heat capacity. The demonstration of this fact can be
seen in Figure 2.6, which offers a comparison of the exact lattice gas heat capacity
along the phase boundary line with the approximate ideal-cluster-gas heat capacities
calculated using Equation 2.31 in two previously discussed ways. In addition to
that, the heat capacity according to Bragg-Williams mean-field approximation is also
presented. To conduct this test, the temperature range of the Ising MC simulations
was extended to T,,,, = 2.35. Not surprisingly, the figure shows no consistency of

the results, and no result comes close to the exact heat capacity depicted by the solid
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line. The heat capacity, designated SAP and calculated using self-avoiding-polygon
combinatorics, diverges quickly prompting the existence of a different critical point
for the hypothetical ideal gas of geometric clusters located at about 2.06J, which
is quite far from reaching the exact critical point of the lattice gas at Ty &~ 2.269.
Without certainty, this suggests that the critical temperature of the lattice gas is
significantly influenced by cluster interference, and that without interference, as is
the case in the hypothetical ideal gas of geometric clusters, the critical temperature
is reduced. On the other hand, the heat capacity called GC is calculated using
geometric cluster concentrations obtained directly from the MC simulations. Instead
of showing a peak in the positive range, this heat capacity dips toward the negative
range around the critical point and is, therefore, non-physical. In contrast, the
Bragg-Williams heat capacity is relatively flat in the critical region, indicating the

lack of the critical information.

2.4.2 Non-ideal Cluster Gas

Numerical tests with geometric clusters as a non-ideal gas can be carried out in
the same manner as the one offered to check applicability of the ideal-cluster-gas
approximation. Figure 2.7 presents a qualitative comparison of simulated geometric-
cluster concentrations with the analytically assessed predictions of the finite volume
approximation (FVA) in Equation 2.28. It can immediately be seen that the devi-

ations are barely visible. A more thorough comparison is shown in Figure 2.8, in
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Figure 2.7: Comparison of some geometric-cluster (GC) concentrations with the
corresponding theoretical predictions by Equation 2.28.

which average relative deviation, calculated with Equation 2.43, is demonstrated in
per cent as a function of temperature for 64 clusters up to a = 15. No doubt, this
figure displays a dramatic improvement over a similar plot in Figure 2.3, which refers
to the ideal-cluster-gas approximation. Apart from fluctuations at low temperatures
due to poor statistics of large clusters, the deviations do not exceed 7-8% and are
not temperature dependent. Notice how the divergent temperature dependence is
annulled using the finite volume approximation, and the deviations stay constant

throughout the whole temperature region under consideration. These constant de-
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Figure 2.8: The average relative deviation of geometric-cluster concentrations from
the predictions of the finite volume approximation.

viations point to systematic errors due to insufficient accuracy of FVA. It must be
emphasized, however, that the extreme simplicity of FVA, which is based on the one-
dimensional Reiss-Frisch-Lebowitz (RFL) approximation, makes it quite surprising
to see deviations so insignificant. Clearly, the more complex two and three dimen-
sional RFL approximations will be able to render the observed discrepancies almost
non-existent.

Pleasing results also come when extracting SAP combinatorics ¢ from simulated

SThis technique of estimating numbers of SAP may be used as an alternative to exact counting
methods in three and higher dimensions when the exact methods fail due to the limited computer
power. Even with the power of modern supercomputers, SAP enumeration in two dimensions is
limited by the size « = 50. In higher dimensions exact calculations cannot break the ¢ = 20 limit.
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Figure 2.9: Comparison of SAP degeneracies with geometric cluster degeneracies ex-
tracted by fitting their concentrations with finite volume approximation in Equation

2.28

concentrations using Equation 2.28. Figure 2.9 shows almost one-to-one correspon-
dence between the exact and calculated combinatorial factors spanning eight orders
of magnitude, with only small deviations appearing at large values. The inconsis-
tencies can better be seen in Figure 2.10, in which relative deviations are plotted
versus exact values. In the plot it may be noticed that up to the values in the fifth
order of magnitude the deviations from the exact numbers do not exceed several per
cent. These combinatorials correspond to small and/or relatively compact clusters

for which the surface contribution to the cavity volume and free energy is approx-

However, MC Ising simulations can be carried out fairly easily and quickly for very large lattices
with high statistics. Using approximations to cluster concentrations, like FVA or better, reliable
SAP combinatorics may be obtained with a small cost [Breu 04].
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Figure 2.10: Relative deviations of geometric cluster degeneracies from exact SAP
degeneracies. Finite volume approximation in Equation 2.28 has been used to fit
geometric cluster concentrations obtained from MC Ising simulations.

imated accurately by FVA. On the other hand, large combinatorials correspond to
stringy clusters that have extremely convoluted surfaces with many bends in the
strings. The estimation of the cavity volume v(a, s) is imprecise for these clusters,
which also require higher order of RFL approximation used to describe the surface
effects on the cavity formation free energy.

The lattice gas thermodynamics can be obtained using FVA with the differential
equation technique (DET) according to Equation 2.37. The use of DET to analyze
the cluster concentrations obtained directly from the simulations is bound to be
accurate, since FVA is not needed, and the lattice energy is accurately calculated

as shown in Equation 1.54. The error is only due to the incomplete set of lattice
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Figure 2.11: The lattice gas pressure calculated from SAP combinatorial factors
assuming non-ideal cluster gas (solid circles). The line represents Onsager’s pressure.

realizations and cluster sizes explored in the simulations. Therefore, it is only of
interest to learn how FVA can be used to describe the lattice gas with a finite set of
SAP combinatorials, since in possible real-life application of this technique to nuclear
clusters the knowledge of combinatorial factors is of central importance. First-order
differential Equation 2.40 can be solved numerically to find the pressure from the
limited distributions gsap(a,s). Matlab was employed to program the algorithm on
a computer. The code is presented in Appendix A. Figure 2.11 shows the result of
the calculation in two dimensions using 877 SAP combinatorials up to and including
a = 50. The agreement with the exact pressure is remarkable with the largest

deviation being 1.53% at T' = 2.25.
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Figure 2.12: Heat capacity of the two-dimensional Ising model calculated using SAP
combinatorials (solid circles) and from the Onsager solution.

The critical point can be estimated from the peak in the heat capacity using
Equation 2.42. Again the 877 SAP combinatorials are used to obtain the results
presented in Figure 2.12 in comparison with exact Onsager’s result. The expectation
of non-divergence of the heat capacity is readily confirmed in the figure. A small but
clearly visible peak occurs that provides the estimation of the critical temperature
at T. ~ 2.358. At first glance the deviations from the exact result seem to be fairly
large. Nevertheless, the methodology should be given much credit. Notwithstanding
the simplicity of FVA, and truncation of SAP distributions used for the calculation,
there is a large improvement in comparison with the ideal-cluster-gas calculation. In

spite of weak comparison to the exactly known lattice gas heat capacity, the finite
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volume approximation correctly reproduces the expected properties of the fluid, while

the estimation of critical temperature deviates from Onsager’s only by 4%.

2.5 Conclusions

It has been demonstrated on the basis of a simple RFL approximation, that ge-
ometric clusters of the Ising model behave like Stillinger’s clusters, and are capable
of accurately recovering thermodynamics of the lattice gas. On the other hand,
the ideal-cluster-gas approach to geometric-cluster analysis yields worse results com-
pletely failing in the vicinity of the critical temperature. Therefore, geometric clusters
may be accepted as proper model clusters to test and develop nuclear cluster analysis
techniques if cluster interference is duly accounted for.

The ultimate test for applicability of Stillinger’s formalism to nuclear clusters lies
only with the experiment. However, the observed success of geometric clusters as a
non-ideal gas, especially in the vicinity of the critical point, to correctly reveal the
properties of the lattice gas hints at the possibly similar properties of nuclear clusters.
If these expectations are true, then the failure of the ideal-cluster-gas approximation
to correctly recover the lattice gas pressure from the geometric-cluster gas casts a
doubt on the previously conducted nuclear analyses, and produces a motivation to
search for alternative techniques.

The first easy step in such a search is to modify previously used Fisher’s model to

accommodate the effects of cluster interference and to employ the differential equa-
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tion technique to analyze nuclear cluster distributions. In fact, to make a connection
between nuclear and lattice clusters, Fisher’s model is only needed to parameterize
cluster combinatorials and surfaces as functions of cluster size. Then the energy of
the nuclear gas phase at the phase boundary may be estimated as a sum over surface
energies of individual clusters, and the pressure may then be inferred from the en-
ergy by solving a differential equation similar to Equation 2.40. Since experimental
cluster distributions are incomplete, the above technique should be coupled with a
fitting procedure to determine the best estimate of the parameters, and reconstruct
the missing cluster distributions. The pressure, density and all the other thermo-
dynamic quantities can then be determined from the modified Fisher-like analytic

concentrations. The next chapter considers this methodology in detail.
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Chapter 3

Interacting-Cluster Approach to

Nuclear Cluster Analysis

The success of Stillinger’s methodology in estimating the lattice gas pressure at
coexistence prompts a question: can it be successfully carried over to Fisher’s droplets
and eventually to nuclear clusters? Apart from incomplete nuclear cluster data, the
need to use Fisher’s model is dictated by the lack of experimental information about
the particular surface area of a nuclear cluster at the moment of detection. Section
3.1 will deal with these issues by introducing the Modified Fisher’s model, which
accounts for effects of cluster interference and nicely avoids the need to use cluster
surface areas. Application of the modified Fisher’s model to data will be considered

in Section 3.2, and Section 3.3 will present final conclusions.
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3.1 The Modified Fisher’s Model

A modified ! Fisher-based analysis procedure, which includes cluster interference
effects, can be obtained by substituting cluster surfaces and combinatorial factors
in the Stillinger-based formalism with the corresponding Fisher’s parameterizations.
However, the original Fisher’s parameterizations did not sufficiently account for frac-
tality effects. Fractality is a property of some shapes to be self-similar with a change
of scale. Fractals will be discussed more thoroughly after this brief introduction,
but now it is important to say that fractality effects may play a significant role
comparable to or even larger than that of cluster interference. And since the finite
volume approximation (FVA) claims a significant improvement in accuracy over the
ideal-cluster gas methodology, avoiding consideration of fractality can undermine
the overall usefulness of Stillinger-based approach to cluster analysis using Fisher’s

model.

!Finite volume effects in Fisher’s model have been considered in the past. Swaminathan and
Poland [Swam 78] used the results of the three-dimensional RFL theory to combine them with
Fisher’s concentrations. In addition to that they developed a methodology to predict individual
cluster concentrations from known Fisher’s parameters. Their approach to introduce finite volume
effects into Fisher’s concentrations is essentially the same as the one in this work. However, their
methodology to analyze a fluid is more general and complex involving a non-linear system of equa-
tions, the number of which is equal to the number of cluster types, whereas this thesis considers
a particular case of phase coexistence offering a rather simple and novel technique, refined on the
basis of geometric clusters. The modification of Fisher’s model by Swaminathan and Poland was
never used in nuclear cluster analysis.
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3.1.1 Fractality Effects in Fisher’s Parameterizations

Fractality [Fede 88, Schr 91] is the property of an object to repeat its unique
form and structure in the form and structure of the building blocks used to create
the object. In other words, the form and structure of the bricks is repeated in the
form and structure of the building, which is repeated in the form and structure of
the city, and so on. In the words of Mandelbrot, who introduced fractals into the
modern physics [Mand 82], “a fractal is a shape made of parts similar to the whole
in some way” [Fede 88].

Fractal shapes are distinguished from non-fractal ones by the fact that their di-
mensionality is different from the dimensionality of the space they form in. Fractality
can be characterized by a fractal dimension. For non-fractals it coincides with Eu-
clidean topological dimension of the space, whereas for fractals it is non-integer and
differs from the space dimension. Fractal dimension is defined as a ratio of the log-
arithm of the number of building blocks that can fit into a composite object, to
the logarithm of the change of scale between the scales (magnification factor) of the
composite object and its building blocks. For example, the fractal dimension of a
square is calculated to be two, since it can contain four squares twice as small. The
fractal dimension of a cube is three. Therefore a square and a cube are not fractals.
On the other hand, the fractal dimension of Sierpinski triangle, shown in Figure 3.1,
is log 3/ log 2 & 1.58, which is quite different from the topological dimension of the

two-dimensional space. Sierpinski triangles are fractal objects.
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Figure 3.1: Sierpinski triangle.

Clusters also possess fractality due to irregularity of their shapes with the excep-
tion of cubes, squares, strings and some other non-fractal shapes that clusters can
take on. Every one of those shapes is characterized by a unique fractal dimension, at
times exceedingly different from the topological dimension. As a result, fractality in
clusters strongly affects the relationship between the volume and surface of clusters.
In fact, for an arbitrary cluster of a particular size the relationship is not unique, like
for a cube or a sphere. Nevertheless, for a group of clusters of a particular size, a
connection between the volume and average surface can be conjectured, which also
gives proper attention to fractality effects. In his original work [Fish 67, Fish 69],
Fisher accounted for cluster fractality introducing a formula similar to the surface-
volume relationship of simple shapes, but with the exponent including an effective

fractal dimension of the cluster surface instead of its topological dimension:

’, (3.1)

@l
I
=
2

where 5 is the average surface of a cluster of size a, o is the ratio of an effective fractal

dimension of the average cluster surface to the topological dimension of the cluster
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volume, and & is a proportionality coefficient. This formula, however, is too much of
an approximation. Stauffer [Stau 75, Stau 79] presented a convincing argument that
the average cluster surface on the lattice splits in two parts. One part is proportional
to a power of the cluster volume and the other part is proportional to the volume
itself. Though Stauffer did not mention fractality as a reason for such a relation,
clearly this effect must be due to fractality as the cluster surface may be extremely
convoluted. In the extreme when the surface fills the whole cluster volume in the
spiral-like arrangement, the surface area becomes only proportional to the volume.
As an example, imagine a sheet of aluminum foil, say 1 ft2. This fairly large sheet
can be wrinkled and pressed into a small sphere. Clearly, at constant thickness of
the foil, the mass (and the volume) of the sphere will be proportional to the actual
surface area of the foil in the sphere (which is 1 {t?), whereas the use of the standard
surface-volume relationship of the sphere will yield grossly incorrect estimation of
the foil’s surface. So it is with clusters. Two-dimensional geometric clusters can be
presented as a simple example to clarify the issue. The most compact non-fractal
clusters are squares, whose surface (perimeter) goes exactly as the volume to the
power 1/2. In the other extreme, geometric clusters can form spirals and strings,
whose surface goes exactly linearly with the cluster volume because it fills up the
volume (the fractal dimension of such a surface approaches the topological dimension
of the volume). All other clusters take some intermediate position with respect to

these two extremes and have both contributions to their average surface. Therefore,



116

according to Stauffer, it seems more fitting to express the average cluster surface as

a superposition of the two extreme (compact and convoluted) contributions:
5 = k[a® + la], (3.2)

where [ is a constant.
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Figure 3.2: Comparison of the exact perimeter dependent SAP combinatorial factors
to the fit with Fisher’s asymptotic in Equation 3.3.

Different expressions for the average cluster surface as a function of the cluster
size should necessarily affect Fisher’s parameterization of the combinatorial factor.

Fisher’s original parameterization for this quantity is

9(3) ~ ¢577 exp(w3), (3.3)
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where ¢ is the cluster combinatorial factor, and ¢, x, and w are some constants. It is
based on an asymptotic empirically found [Rush 59, Fish 59] in the 1950s for numbers
of polygons and random walks on the lattice and later confirmed semi-analytically
[Fish 59]. This asymptotic is extremely accurate when applied to the number of self-
avoiding polygons as a function of their perimeter (the analogy to the surface area in
two dimensions). In Figure 3.2 the exact numbers of SAPs [Jens 03] are compared
to the fit with Equation 3.3. Over the range of thirty five orders of magnitude
the correspondence is blameless, and holds a promise to remain blameless for any
perimeter size. Recent studies [Brak 90, Lin 91, Bous 96, Gutt 00, Jens 00, Gutt 01]
confirmed the earlier work by analytically calculating the numbers of a limited class
of self-avoiding polygons (convex and row-convex polygons), deriving the asymptotics
and testing the results on modern computers. They demonstrated that FEquation 3.3
is a good approximation to the true combinatorial factors.

Fisher further assumes the validity of Equation 3.1 and postulates that

g(a) ~ qoa™ " exp(ka”), (3.4)

 and k = wk. This parameterization, however, does not account

where o = gk~
for the proportionality of the average cluster surface to the volume of the cluster.
Therefore, it seems reasonable to improve upon Fisher’s asymptotic in Equation 3.4

by adopting Stauffer’s parameterization of the average cluster surface and keeping

the general form of Equation 3.3 unchanged:

g(a) = qo[a” + la] ™ exp(k[a® + la]) (3.5)
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This form is expected to account for the fractality effects of average cluster surfaces
more accurately by separately considering the non-fractal surface and volume contri-
butions. Since Equation 3.5 implies o to be a non-fractal surface part, the value of
this quantity may be taken as a ratio of topological surface and volume dimensions.

For example, in two dimensions
g(a) = qola'’? + la] ™ exp(k[a/? + ld]) (3.6)

In the rest of this work o will no longer be considered as a parameter, but will be

fixed according to the dimensionality of the problem.

3.1.2 The Modified Fisher’s Droplet Concentrations

In Chapter 2 it was demonstrated that geometric clusters of the Ising model
obey Stillinger’s theory. An approximation was introduced to describe cluster con-
centrations in the limit of RFL (Reiss, Frisch, Lebowitz) spheres in one dimension,
which produced very good agreement with the results obtained from two-dimensional
Monte Carlo Ising simulations. This encouraging outcome prompts a development of
a similar Fisher-based methodology to analyze nuclear cluster data with its inherent
limitations of incompleteness and lack of surface information. The starting point in

this endeavor is the finite volume approximation adopted in Chapter 2:

n(a, s, 3, P, p) = g(a,s)exp(—cBs) exp[=BP(a+t:5)](1 — p), (3.7)
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where here ¢(a, s) will denote combinatorial factors of nuclear clusters. In order to
obtain the modified Fisher’s concentrations, Equation 3.7 must be first summed up

over the cluster surfaces to yield the size dependent concentrations:

n(a, 3, P, p) = exp[—fPal(1—p) > g(a,s)exp(—cBs) exp[—FPt,s] (3.8)
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Figure 3.3: The basis for Fisher’s conjecture in Equation 3.10 using the example
of SAP. In this example T" = 2. The pressure dependent part does not change the
overall picture, and was omitted in this calculation.

According to Fisher’s arguments, the sum in Equation 3.8 is strongly dominated
by one term, and can approximately be substituted by this term, which corresponds

to the most probable surface 3[3]:
5 sgla ) exp(—cfs) expl—BP1.s

) = 5= glars) exp(—eds) expl—B P
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Figure 3.4: The basis for Fisher’s conjecture in Equation 3.12 regarding the temper-
ature. SAPs of size ¢ = 20 are used as an example. The pressure dependent part
does not change the overall picture, and was omitted in this calculation.

Therefore, the sum is

" gla, s) exp(—cBs) exp[—APts] ~ g([8]) exp(—cASI]) expl—BPLI[A]]  (3.10)

This approximation has a good confirmation in the properties of self-avoiding poly-
gons. Figure 3.3 depicts the summand (without the pressure dependent part, which
does not alter the picture) for various SAP sizes at a fixed temperature below the
critical Ising temperature as a function of SAP surfaces (perimeters). The peaks are

clearly seen. Therefore, the size dependent cluster concentrations may be written as

n(a, 3, P, p) ~ g(5[5]) exp(—cfs]0]) exp[—FP(a + t5[5])](1 — p), (3.11)

where ¢(3[3]) is the combinatorial factor of a cluster of size a at the most probable
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surface corresponding to an inverse temperature 3. Fisher argues that this tempera-
ture dependence is not strong and is dominated by the maximum temperature in the
interval of consideration. This point can be demonstrated by writing the temperature

averaged most probable surface of a cluster of size a:

B2
I 5[8g(518]) exp(—cf3[5]) exp[—BPt,5]5]]
5="2 ~ 5]f] (3.12)

5
ﬁf 9(5[P]) exp(—c35]3]) exp[— B Pt 5] 5]]

The integrals in Equation 3.12 are also expected to be strongly peaked at a temper-
ature corresponding to the maximum temperature in the range [ : 33]. Therefore,
the most probable surface s can be assumed to be a function of the maximum tem-
perature in the range being explored: a constant as far as the range is fixed. The
confirmation to this assumption is readily furnished by SAPs. In Figure 3.4 surface
area distributions for a polygon of a fixed size are shown at different temperatures.
Clearly, the peaks of these distributions are separated by orders of magnitude, with
the peak at the highest temperature being about fifteen times higher than the peak
at a temperature different only by ten per cent. Therefore, the é-function approxi-
mation for the integrals in Equation 3.12 seems quite fitting.

With the most probable surface s assumed to be a constant within the chosen
temperature range, the modified Fisher’s concentrations at coexistence can be ex-

pressed according to Equations 3.2, 3.3, and 3.5 as follows:

n(a, 8, P,p) ~ qo[a” +1a]™" exp([k—cof —tsk B P][a” + la]) exp(—pPa)(1—p), (3.13)



122

where ¢y = ck. Equation 3.13 represents the form, that may be further used in the

analysis of experimental data.

3.1.3 The Coexistence Condition and the Linear Terms

Introduction of the linear terms la in the parameterization of the average cluster
surface 5 demands a justification at the liquid-gas coexistence. The matter is that
at coexistence the transfer of clusters between the phases is not characterized by
the change of the volume part of the free energy (change of the chemical potential
is zero), and for that reason the volume dependent terms in the exponential part
of Equation 3.13 are expected to vanish. This criticism is valid, and no rigorous
justification for retaining the linear terms is offered at this time. Nevertheless, some
comments can be offered to alleviate the problem.

It is important to say that the coexistence condition is not enforced in the method-
ology described in this thesis. When cluster interaction is introduced through the
free energy contribution —3W due to the cavity formation, this contribution also
changes with the chemical potential difference Apu of the phases. Therefore, with in-
teraction included, modified Fisher’s concentrations can be written in the following

general form:

n(a, B) =~ qo[a” 4 la] " exp(ka” — cofa’ + kla — coffla) exp(SApa) exp(—pWI[Au]),
(3.14)

for which enforcing the coexistence condition Ay = 0 requires the explicit knowledge



123

of the W[Ap] dependence. In the formalism presented in this thesis, coexistence is
implied by putting Ag = 0 in the ideal part of Equation 3.14 and considering the
temperature-only dependence of all the quantities involved in the analysis, so that

the thermodynamic quantities are evaluated with the relation

op
u="T (8—T>M — P, (3.15)

which is used to calculate the pressure through the average energy per particle u of
the system. The Apu-dependence of the cavity free energy, however, is not identified,
but rather it is expected to be inferred from the experimental cluster distributions.

The simple approximation for cavity formation free energy
—BWI[Ap =0] = —FP[Ap = 0]veqpity + In(1 — p[Ap = 0]), (3.16)

adopted in this work, where v gy, 1s the volume of the cluster cavity, is general in a
sense that it is not restricted to coexistence and does not easily avail itself to such a
restriction without the explicit knowledge of the expressions P(Au) and p(Apu). As a
result, it is possible that the intricate unknown dependence of the cluster interaction
on Ay may cause linear terms [a to stay in a way not yet clearly investigated.
Nevertheless, it can be shown, that in the limit of low density Equation 3.14 prop-
erly reduces to Fisher’s non-interacting cluster concentrations. At low densities, the
ideal gas law Pv; = pT' can be used to connect the pressure with the fractional vol-
ume density p of the clusters, where v; is the volume of one particle. Combined with

the Taylor expansion of the logarithm (one term retained), the ideal gas condition
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simplifies the cluster interaction as follows:

exp(—BP(Ap)veavity +In(1 — p(Ap))) ~ exp <—MP(AW - P(Aﬂ)>

0

~ 1 —p(Ap) (vczﬂ + 1) : (3.17)

1

Therefore, at low densities the effect of cluster interaction is small, and in case of
coexistence no linear terms survive (except for the [a-terms in the combinatorial
factor).

It is also important to mention, that the linear terms are expected to vanish at
low temperatures at coexistence for a different reason. As it is seen from Equation
3.12, the average cluster surface area is a function of the upper temperature limit g5,
so that the constants k() and [(f33) are also functions of this temperature. As the
temperature goes to zero (33 — o0), the clusters stop having convoluted surfaces due
to the lack of energy in the system to afford a large total liquid-vapor interface. As
a result, the clusters that form at low temperatures are mostly spherical (minimal
surface area) or nearly so with the surface-volume relationship 3(f3) = &(/f2)a”
approaching that of a perfect sphere. In other words, the clusters stop being fractal,
and the linear volume dependence of the cluster surface area disappears (I(32) — 0),
while k(f3;) tends to ko of a geometrical sphere. Exact functional forms for (/)
and [(/3y) are extremely complex and require the knowledge of cluster combinatorics
and all the interference effects in the system. A more complete analysis of cluster

fractality as a function of temperature using a restricted set of SAP combinatorics

can be found in the work of Elliott et al. [Elli 04].
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3.1.4 Thermodynamics

With Equation 3.13 describing cluster concentrations, thermodynamic analysis
of cluster data at coexistence can be performed using the methodology described in
Chapter 2. The differential equation technique (DET) introduced in that chapter
for Stillinger-like geometric clusters can be easily carried over to apply to Fisher’s
droplets with a minimum of Fisher-specific changes. Similar to the modification of
cluster concentrations, the surface summation in Equation 2.40 has to be dropped,
and the cluster surfaces must be replaced by the most probable values at fixed cluster
sizes. Again SAPs are very handy and can be used to justify this approximation. In
Figure 3.5 the surface area distributions of self-avoiding polygons of different sizes are
multiplied by the corresponding surfaces to mimic the summand in the numerator
of the Equation 2.40. The presence of peaks is clearly observed and supports the
approximation of the surface sum by the largest term. Therefore, the Fisher-modified

differential equation can be written as:

op C;En’(a,ﬂ,P)

T —| —P~x
ar|, L+ an'(a, 3, P)’

(3.18)

where

n'(a, 3, P) = qola” + la] " exp([k — cof — tskBP][a” + la]) exp(— 3 Pa) (3.19)

is the density independent part of the cluster concentrations. Substituting the most

probable cluster surface with the appropriate dependence on the cluster size, the
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Figure 3.5: The basis for Fisher’s conjecture in Equation 3.18 using the example of
SAP. In this example again T' = 2, and the pressure dependent part was not included.

coexistence pressure of the fluid can be found as a solution of the equation
TaP PNCO;[QU—I_la]n/(a?ﬁvP)
ory, - L+> an'(a, B3, P)

(3.20)

with the initial condition P(T = 0) = 0, if Fisher’s exponents and other parameters
of the model are known. Once the coexistence pressure is determined, the density of

the fluid can be evaluated as

> an'(a, B, P)
P 1+ > an'(a, B, P)’

(3.21)

and other thermodynamic quantities can be calculated from the pressure in a stan-

dard way. For example, the fluid’s energy is

U~ Cy Z[ag + laln(a, B, P, p), (3.22)

a
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and the heat capacity is

2
cy = g—; , ~ % /432 za:[ag + la]Qn — ts/i?’za:[ag + la]nza:[acr + la]Qn
2
_ 2/{22[@0 + la]nza[aa + la]n—|— (2 Z[ag n la]n) Zazn

+ t6° (Z[ag + la]n) Z ala® + la]n (3.23)

a a

3.2 How the Modified Fisher’s Model Can Be Used

in Data Analysis

The application of the modified Fisher’s model to experimental nuclear cluster
distributions can be accomplished similarly to the methodology employed to analyze
these clusters with the original version of the model. The main goal of the analysis
is to find a set of Fisher’s parameters that characterizes the available cluster dis-
tributions in the best possible way. This is accomplished through fitting the model
to all the data simultaneously (global fitting) by minimizing the total x*. However,
the use of the modified Fisher’s model cannot be reduced to mere fitting due to
the pressure and density dependence of cluster concentrations. Therefore, on each
iteration of the y?-minimization procedure, the best estimates of the pressure and
density must also be found. This can be done using Equations 3.20 and 3.21 for
the intermediate values of Fisher’s parameters. In these equations the summation

has to go to infinity, though in practice summing up to the cluster size of several



128

thousand particles should be sufficient to reach the required accuracy. Therefore,
a self-consistent fitting procedure can be set up to analyze the experimental data
and to determine thermodynamics of the system with a few fitting parameters: qo,
[, x, k, k. The value of o should be fixed according to the dimensionality of the
problem, ¢g can be found independently, since ¢g = ¢k, and the surface tension ¢
is approximately known from the liquid drop model. The skin thickness ¢, can also
be given a reasonable estimate based on charge density profiles obtained in electron
scattering experiments. Once the minimization successfully converges, the pressure
and density obtained at the last iteration provide the best estimates of the nuclear
thermodynamic quantities at coexistence as functions of temperature and enable the
construction of the liquid-vapor phase diagram in an alternative way that takes into

account cluster interference.

3.2.1 Numerical Testing with Geometric Clusters

The modified Fisher’s methodology, as outlined above, is ready to be applied
to nuclear cluster distributions if care is taken to filter out Coulomb and quantum
effects in a standard way. However, the methodology cannot be relied upon unless
it passes the test with geometric clusters of the lattice gas (Ising model). To realize

the test, cluster concentrations from two-dimensional Ising simulations can be folded
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in the surface degree of freedom to become the functions of cluster size:

n(a7 67 P7 p) = Zn(a78767 P7 p)? (3'24)

S

thus resembling a nuclear-cluster data set. These concentrations can be fitted directly
with the modified Fisher’s prescription to obtain the phase diagram of the lattice
gas. A Matlab procedure has been developed to implement the necessary coding.
Five independent fitting parameters were used to minimize the y*: qo, [, z, k, and
¢o. The value of ¢ = 1/2 was fixed by the dimensionality of the problem. Parameter
k = ¢o/c was defined by the Ising surface tension ¢ = 2. The skin thickness ¢ is
unity for geometric clusters on the lattice if thermodynamic quantities in question
are determined per lattice site. The entire listing of the code is provided in Appendix
A.

A finite set of medium-size clusters a € (10 : 25) has been chosen for fitting to
mimic the restrictions on the nuclear data. The temperature range was T' € (1.5 : 2.2)
with a gap AT = 0.05. The lower temperature boundary was determined by the
requirement of sufficient statistics for the clusters in consideration, and the upper
boundary was set to be below the critical temperature T, ~ 2.269, as it is a typical
situation for nuclear clusters.

The y%-minimization successfully converged and yielded the best set of parame-
ters shown in the left half of Table 3.1. With these parameters, the resulting fits are
displayed in Figure 3.6 for several sample concentrations. The figure displays a rather

accurate fitting of the concentration, especially taking into account the fact that the
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Figure 3.6: Geometric-cluster concentrations extracted from a two-dimensional Ising
simulation (symbols) with fits by the modified Fisher’s model (solid lines).

procedure was global. Deviations are observed at low temperatures mostly for larger
clusters due to poor statistics. However, statistics are not the only cause for the
deviations. It can be seen that there are systematic deviations at low temperatures
that show the limitations of the many approximations involved.

The pressure of the lattice gas as a function of temperature can be obtained
at the last iteration of the fitting routine solving Equation 3.20 with the best set
of the fitting parameters. Figure 3.7 exhibits the result of the calculation. It is
very pleasing to see that except for low temperature region the extracted pressure is
almost indistinguishable from the exact coexistence pressure of the lattice gas. The

error bars are about one per cent (estimated from the parameter errors), and cannot
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Figure 3.7: Comparison of the two-dimensional lattice gas coexistence pressure ob-
tained from the analysis of geometric clusters (solid circles) with the exact pressure

(line).

be seen on the plot. The varying length of the intervals between the temperature
values is due to the automatic step control mechanism in the numerical procedure
that integrates the differential equation.

The critical temperature of the lattice gas can be determined by the peak in
the heat capacity, calculated using Equation 3.23. It is expected that the modified
Fisher’s model is valid beyond the critical temperature. Again this expectation can be
justified resorting to the analogy with SAPs. In Chapter 2 it has been demonstrated
that the finite volume approximation (FVA) and SAP combinatorics together provide
a very accurate description of simulated geometric cluster concentrations below the

critical temperature of the lattice gas (as a reminder see Equation 3.7). At the
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Figure 3.8: Comparison of the two-dimensional Ising heat capacity obtained from
the analysis of geometric clusters (solid circles) with Onsager’s exact heat capacity

(line).

same time, no condition exists that would require this approximation to fail at and
above the critical temperature: clusters continue to exist and interfere, the system
is characterized by a particular pressure, and the combinatorics of the clusters is
the same SAP combinatorics. On the opposite, the heat capacity calculated with
this approximation clearly shows a meaningful peak and allows estimation of the
lattice gas critical temperature with four per cent accuracy. When merging the
finite volume approximation with Fisher’s model, the only major change is the use
of an analytic expression to describe combinatorial factors. But the combinatorial
factors remain the same no matter what the temperature is. Therefore, the modified

Fisher’s model should not a priori be limited by the subcritical region and may work



133

in the supercritical region just as well till it may somehow fail. When applied to
geometric clusters the sensitivity of Fisher-based procedure can be even better than
that based on SAPs due to parameter flexibility and plausibility of a more complete
summation, that runs up to the cluster size of a thousand in the present calculation
the results of which are shown in Figure 3.8. The figure compares the heat capacity
from fitting simulated geometric cluster data with the exact heat capacity from the
Onsager solution. The critical temperature is estimated at T, &~ 2.293 £0.007, which
deviates from the true critical temperature by about one per cent.

The success of the aforementioned technique to construct the phase diagram of
the two-dimensional lattice gas and accurately determine its critical temperature is

encouraging, and suggests application of this methodology to experimental data.

3.2.2 A Possible Way of Testing Cluster Concentrations for
Non-ideality

Unlike geometric clusters of the Ising model, it is not a priori known whether the
nuclear cluster gas is non-ideal. It may be, however, that during the cluster formation
in the nucleus just prior to the emission there is a competition between various
cluster forms that are mutually exclusive. And if one form is successful in emission,
it precludes other forms from leaving the nucleus thereby creating a possibility of
cluster interference. For example, an analogy of the excluded volume effect can be

visualized as follows. Suppose a cluster of a certain size a forms on the nuclear
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interface and is emitted. At the moment of emission, the fragment blocks an area of
the nuclear interface equal to the fragment’s cross sectional area o,. Multiplied by
the fragments velocity v, and the characteristic nuclear time 7,,,., the cross section o,
yields a volume V, in the immediate vicinity of the emitting nucleus (compare to the
notion of the cluster cavity) which is blocked from containing fragments (clusters) of
any other size but a:

‘/a = 04VaTnue (325)

Therefore, the phase space available to all other possible fragments is reduced caus-
ing the effect of fragment interference. Be it as it may, effects of cluster interference
in nuclear cluster distributions can only be tested experimentally by comparing the
results of traditional Fisher’s analysis with the results obtained using the modified
Fisher’s model: both methods will produce the pressure and y2-values, which need to
be compared to draw the conclusions. This comparison is helpful to answer the ques-
tion whether it is necessary to invoke a more complex cluster analysis methodology,
or the ideal-cluster-gas approximation is enough.

In the following, a comparison procedure is conjectured on the basis of geometric
clusters and SAPs. Geometric clusters form a non-ideal gas that can successfully
be analyzed with the modified Fisher’s model. On the other hand, a hypothetical

ideal gas of geometric clusters can be created using SAP combinatorics with the
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| Modified Fisher x?/D = 2.85 | Original Fisher x?/D = 109.86 |

‘Parameter‘ Value ‘ Error ‘Parameter‘ Value ‘ Error ‘

9o 0.0279 | 0.0003 4o 0.0278 | 0.0050
[ 0.1382 | 0.0002 0.0411 | 0.0171
x 3.5530 | 0.0032 x 3.7147 | 0.3525
k 3.6937 | 0.0026 k 3.3560 | 0.1310
o 7.3077 | 0.0065 o 7.4204 | 0.4084

Table 3.1: The best set of the fitting parameters obtained from the analysis of
geometric clusters of the two-dimensional Ising model. D is the number of degrees
of freedom in the fit.

| Modified Fisher x*/D = 76.05 | Original Fisher y*/D = 19.23 |

‘Parameter‘ Value ‘ Error ‘Parameter‘ Value ‘ Error ‘

4o 0.0036 | 0.0006 4o 0.0364 | 0.0002
[ 0.0650 | 0.0075 0.0595 | 0.0001
x 0.4405 | 0.2697 x 4.0177 | 0.0013
k 3.7671 | 0.0946 k 4.3507 | 0.0011
o 8.8818 | 0.2355 o 8.7929 | 0.0018

Table 3.2: The best set of the fitting parameters obtained from the analysis of SAP
gas clusters. D is the number of degrees of freedom in the fit.
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Figure 3.9: Comparison between the values of the pressure obtained by fitting ge-
ometric clusters of the two-dimensional Ising model with original and the modified
Fisher’s models.

corresponding concentrations calculated in the dilute limit as

n(a,p) = ZQSAP(CL?S) exp(—cfs), (3.26)

where as before gsap(a,s) is the total possible number of SAPs of size a and surface
s. Such a gas mimics a nuclear cluster vapor that is inherently ideal in comparison
with a non-ideal gas modeled by geometric clusters. Application of the two Fisher’s
techniques to these gases may reveal relative characteristic signatures identifying the
presence and extent of the interference effects in cluster distributions.

In order to realize a fair comparison, a modification due to fractality must be

introduced to original Fisher’s model. In other words, the only difference between
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Figure 3.10: Comparison between the values of the pressure obtained by fitting SAP
gas clusters with original and the modified Fisher’s models.

original and the modified Fisher’s models used for testing must be solely due to
cluster interference. Therefore, the original Fisher’s concentrations must contain

parameters [, x, and k as they were defined for the modification:

n(a, B) ~ qola’ + la] ™" exp{[k — co][a” + la]} (3.27)

The following results emerged from the calculations. In the first case the cluster
gas was non-ideal represented by geometric clusters. Application of the modified
Fisher’s model produces a much better y2, while the parameters of the two models
do not differ substantially, as shown in Table 3.1. The pressure obtained from the
modified Fisher’s model is only several per cent higher than that of the original, as

Figure 3.9 depicts it.
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Quite different situation occurs when the cluster gas is ideal, like the hypothetical
SAP gas. Forcing modified Fisher’s model to fit such distributions leads to an utter
failure in comparison with original model, as demonstrated by the x? and the values
of the fitting parameters in Table 3.2. In addition to that, the pressure extracted from
the modified Fisher’s model is suppressed several times as compared to the pressure
of original Fisher’s model. The observation of these symptoms indicates the lack
of the interference effects in cluster concentrations. Therefore, the original version
of Fisher’s model is expected to provides a better estimate of the phase diagram,
since it does not rigidly impose functional forms due to cluster interference which
the concentrations do not support. Figure 3.10 demonstrates the comparison of the

pressures below the critical temperature of the SAP gas, found to be about 2.J.

3.3 Conclusions

The procedure presented in this chapter offers a general Fisher-model-based
methodology to analyze nuclear cluster distributions at thermodynamic phase co-
existence and construct a phase diagram. The procedure makes an assumption that
nuclear clusters, as complex as they are, may still contain characteristic signatures
of Stillinger’s configurational clusters. If so, the methodology may approximately
account for Stillinger’s cluster interference and produce thermodynamic results more
accurate than those obtained with the ideal-cluster-gas approximation. Geometric

clusters of the Ising model, representing Stillinger’s clusters on the lattice, clearly
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demonstrated the superiority of the new interacting-cluster-gas approach in compar-
ison with the traditional treatment of clusters as an ideal gas.

The new analysis procedure opens an opportunity to look for cluster interaction
effects (mostly due to excluded volume) in nuclear cluster production. Combining
the procedures with and without cluster interaction included, it may be possible to
answer the question whether the effects are there, and what their extent is. Char-
acteristic signatures of the two possible outcomes have been demonstrated using the

example of geometric clusters.
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Part 11

Multiple-Chance Effects in

a-Particle Evaporation
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Chapter 4

Introduction

4.1 Theoretical Considerations

Evaporation-like process in hot nuclei and its thermodynamic representation have
been thoroughly discussed in the previous part of this thesis. Regardless of the way
energy is delivered to a nuclear system, the resulting excited nucleus proceeds to
deexcite by emission of fragments in a wide range of masses beginning with neutrons
and protons and reaching drops half the size of the decaying system (fission). The
fragments are emitted in a statistical way, the rate of emission being controlled by
the average bulk binding energy of the fragment.

Equilibrium thermodynamic characterization of nuclear matter, much like that of
ordinary fluids, completely eliminates any memory of events between the phases. In

other words, when drops form, no information about the history of a particular drop
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in the liquid phase is expected to pass to the gas phase. Kinetically, the statistical
emission of fragments implies their random formation on the nuclear interface.
Statistical emission of fragments from thermalized nuclear systems has been
clearly confirmed experimentally to be the dominant mode of decay of hot nuclei
[More 97]. Nevertheless, there has been an expectation that kinetics of the fragment
emission may somehow be influenced by the quantum effects of fragment formation
inside the parent nucleus prior to the emission from the nuclear interface [More 97b)].
This preformation may be especially noticeable for such a tightly bound fragment as
the a-particle. If a-particles are indeed present in the nucleus before emission, their

presence may manifest itself in a certain way in the evaporation process.

v

r

Figure 4.1: Schematic representation of the states of a fragment in a nuclear potential
well.

The logic is as follows. Suppose that a fragment preexists in a nucleus before it
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is emitted. As the fragment readies itself to leave the nucleus, it senses the well-like
nuclear potential and acquires the quantum states, which possess a certain width
due to their coupling with the continuum and the many-body degrees of freedom
of the nucleus. This point is illustrated in Figure 4.1. The states of the fragment
inside the well are the shell-model-like states, while the states above the well are
the optical-model resonances which may appear if a compound nucleus is formed.
Therefore, when the kinetic energy spectrum of such a fragment is accumulated,
the statistical-emission-only background of the spectrum may be modulated by a
strength function, which arises due to the quantum states of the fragment in the
potential well of the parent nucleus. These quantum effects may introduce a bias
in the emission spectrum of fragments, since some energies are preferred over the
others.

Experimental observation of the modulations may be made possible if accurate
theoretical description of the statistical background is achieved. Then the experi-
mental high-statistics spectrum (discussed later) can be compared to a theoretical
form to reveal the modulations.

The statistical background of the kinetic energy evaporation spectrum can in
principle be estimated using detailed balance of the initial (before emission) a and

final (after emission) b states of a nuclear system according to Fermi’s Golden Rule:

para—>b = pbrb—>a7 (4]‘)

where I',_; and [',_, are the direct and the inverse decay widths, and p,, p, are the
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corresponding nuclear level densities. The inverse width can be expressed in terms
of the “inverse” cross section o;,,:

Oinw¥

V Y

Ty = i (4.2)

where v is the velocity of the fragment, and V is the normalization space volume.
Equations 4.1 and 4.2 can be combined to yield the differential decay width with

respect to the fragment’s kinetic energy € in the direct reaction:
I'(€)de x oimpep(E — B — €)de, (4.3)

where F is the initial energy of the hot nucleus, and B is the fragment’s binding
energy. Expanding the logarithm of the level density to the first order in the frag-
ment’s kinetic energy, an approximate expression for the kinetic energy spectrum of
a fragment can be obtained:

['(€)de x e exp <—%> de, (4.4)

where T is the temperature of the hot parent nucleus. Equation 4.4 is the theoretical
basis for conventional models to understand the statistical part of the fragment’s
kinetic energy spectrum obtained in the evaporation of excited nuclei. Additional
models and empirical formulae are used to describe the inverse cross section oy, to
yield an analytic expression for the kinetic energy spectrum. As a result generality
is forfeited. In addition to that, conventional models do not incorporate thermal
shape fluctuations of the emitting nucleus, which leads to poor performance of these

models when analyzing experimental data.
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Figure 4.2: Top: Normal modes at the saddle point. Bottom: Total potential energy
Vr and Coulomb energy Vi, as a function of the deformation coordinate Z.
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An alternative general approach is due to Moretto [More 75, More 87] whose
unconventional fragment emission theory is based on the saddle point approximation
with additional consideration of nuclear deformation. The theory takes into account
only statistical degrees of freedom at the saddle of the transition state and assumes
no knowledge of the entrance channel and preexisting structures in the nucleus.
In addition to the usual saddle degrees of freedom the theory also includes shape
polarizations of the emitting nucleus.

When a decaying nucleus reaches the scission point (decay mode) there are ad-
ditional degrees of freedom or modes that the system can take. As shown in the top
panel of Figure 4.2, Moretto classified the modes as amplifying and non-amplifying.
The mode is amplifying if the relative contribution from Coulomb and surface energy
to the system’s potential energy changes widely with deformation. The deformation
of the residual nucleus can be described with a deformation coordinate 7, which is
defined as a change in distance between the centers of the fragment and the residual
nucleus relative to the undeformed distance, the fragment being in contact with the
nucleus. Increasing of Z leads to the prolate deformation of the nucleus in the di-
rection of emission and thereby to lowering the Coulomb barrier. On the opposite,
decreasing Z results in oblate deformation and elevated Coulomb barrier. Therefore,
a fragment crossing over the saddle point acquires a kinetic energy at infinity smaller
or greater than the Coulomb barrier associated with a spherical configuration. Such

an emission is not classified as subbarrier emission in the sense of quantum barrier
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penetration, but rather it is a purely classical effect.

Thermal fluctuations along the deformation coordinate 7 lead to large fluctua-
tions in the Coulomb interaction energy, as shown in the bottom panel of Figure 4.2.
While the total potential energy V7 has a minimum at some prolate deformation, the
fragment-nucleus Coulomb interaction Vg, 1s a monotonically decreasing function
of the deformation coordinate. Therefore, the total potential and the Coulomb in-
teraction energies can be expanded in series of Z in the vicinity of the saddle point.

Retaining only the first terms of the expansion, the expressions are

Vi o= VP4 kZ?

VCoul = Vcoou[ —c/ (45)

If the shape of the emitting nucleus is allowed to fluctuate involving an energy of the
order of the temperature T, the corresponding fluctuations of the Coulomb energy

are
2
AViou = 24/ %T = 2/7T, (1.6)

where the parameter p is called the amplification parameter, which characterizes the
relative properties of the total and Coulomb potentials with respect to deformation
in the amplifying mode. The parameter p itself is not expected to depend on the
deformation, at least in the second order, but rather indicates the amplitude of
the Coulomb barrier fluctuations as a function of the amplitude of the total energy

fluctuations. The fluctuations of the Coulomb barrier strongly affect the width of
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the kinetic energy spectrum.

When the potential energy varies almost exclusively from the Coulomb energy, the
mode is non-amplifying, since the deformation-dependent Coulomb energy change
is relatively small in the absence of the surface energy change. For instance, the
oscillation of a fragment about the tip of a prolate emitting nucleus can be considered
a non-amplifying mode. As the fragment rolls away from the tip, the Coulomb energy
increases due to the decreasing distance between the centers of the fragment and the
nucleus, while the surface energy of the system changes only in higher order terms
of the deformation coordinate series and can be considered approximately constant.
Non-amplifying modes are not expected to affect the width of the kinetic energy
spectrum as much as the amplifying mode and will not be considered in this thesis.

Moretto derived several analytic expressions for the kinetic energy spectrum of
a fragment P(e) taking into account various combinations of amplifying and non-
amplifying modes. The simplest and the most successful approach included only the

amplifying mode and yielded the following result:

P(e) o< exp (%) erfe <Zﬂ> , (4.7)

where . = e — V2 ;. More complex expression was used by Kexing Jing, whose work
will be mentioned in more detail later. Overall, these analytic results bypassed the
problem of modeling the inverse cross section in conventional statistical models and
provided a way to directly analyze experimental spectra for any traces of residual

quantum effects in nuclear fragment evaporation.
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*He+"2'Ag reaction at 65-MeV beam energy.
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4.2 Experimental Evaporation Spectra

Experimental fragment-evaporation spectra are usually obtained by bombarding
various target nuclei with light charged particles. The most abundant fragments
that evaporate from the resulting compound nucleus are a-particles. Due to high
probability of emission, a-particles can be detected in very large numbers, and high-
statistics kinetic energy spectra can be accumulated. The experimental spectra used
in this thesis were obtained at the 88-Inch Cyclotron of the Lawrence Berkeley Na-
tional Laboratory by Kexing Jing [Jing 99] who used two position-sensitive AE-F
quad telescopes to detect the particles emitted in the reactions. Jing used *He beam
of energies 55, 65, 75, 85, 95, 110, 125, 140 MeV to bombard the targets made of
197 Ay, 181Ta, "2t Ag 128(Cly, 27Al and 2C. A typical spectrum is shown in Figure 4.3.

The data sets used for analysis in this thesis include only the spectra from the
He+"**Ag reaction at 55, 65, 75, 95, 110, and 125 MeV beam energies. Since the
goal of the study is to look for fine effects in the spectra, the maximum errors are
set at 1%, thereby cutting the edges of the spectra at about 10000 counts. Doing
so produces distributions consisting of 61 energy points with the bin size of 200 keV

covering the range of kinetic energies between 10 and 23 MeV.
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4.3 Apparent Evidence of Preexisting Particle Struc-

tures in a-Evaporation

In his attempt to investigate quantum effects in evaporation spectra, Jing used
Moretto’s transition state formalism with the inclusion of one decay mode, one am-
plifying mode, and the barrier penetration [Jing 99]. The resulting formula for the

evaporation spectra P(¢) was the following:

Ple) e_x/T{ erf <(2V£0u1 + p)/2\/pT> — erf((p — 2:1:)/2\/pT>
_|_%e—(p—2l’)2/4pT { e (p=20—pT)? [4pT <1 + erf((p — 9 — ’YPT)/Q\/}?T>>
—elpmRep Ty AT <erf <(2V<90u1 +p+90T)/2\/pT )

—erf((p—Qx—l—’ypT)/Q\/p»T))}}, (4.8)

where again = e~V ; and € is the kinetic energy of evaporated particle; V{3, , is the
Coulomb barrier; T' is the temperature of the residual nucleus; p is the amplification
parameter, and 7 is a parameter representing the barrier penetrability.

In the case where the temperature 7" is low and the Coulomb barrier V,  is large
(for a particles, for example), erf <(2V(90u1 + p)/Z\/ﬁ> =1, and erf <(2V(90u1 +p+

’ypT)/ZVpT) = 1. Taking advantage of this fact, Equation 4.8 can be rewritten as:
Ple) e_x/T{ erfc((p — 2:1:)/2\/pT>
1 2 2
+§e—<p—2x> /apT { o (p—20=pT) /4pTerfC<_(p — 90 — pT)/2 /—pT>

_e(p—2x+’YpT)2/4pTerfC<(p — 27 + "}/pT)/21 /pT>:| } (49)
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It should be noticed that Equations 4.8 and 4.9 do not contain polynomials in € of
2" order or higher, and the (complementary) error functions and the exponentials
are all smooth functions. Therefore, the observation of spectrum modulations should
not come from spurious polynomial oscillations.

Jing used the smooth function of Equation 4.9 to fit the alpha spectra and to
search the residuals for modulations. The extremely accurate fits he obtained indi-
cated the success of Moretto’s theory in accounting for the bulk properties of the
spectra. In addition to that the fit residuals revealed the existence of the oscillations
that were ascribed to the preexistence of a-particles in the potential well of the parent
nucleus. Shown in the lower panel of Figure 4.4 are the measured alpha spectra and
the fit for the *He + " Ag reaction at various beam energies. The quality of the fit is
remarkable. The exceedingly good quality of the fit indicates that, on the one hand,
the bulk of the evaporation spectrum is indeed statistical, and that, on the other
hand, the shape fluctuations at the saddle point indeed play a very important role.
The percent differences between the experimental data and the fits are shown in the
upper panel of the figure. The residuals of the fits are of the order of 1% throughout
the energy range, which shows the goodness of the fitting function. The residuals
clearly show a statistically significant modulation with an amplitude of about 1.5%.
The important feature to notice is the lack of dependence of the modulations on
bombarding energy. However, the shape of the modulations is strongly dependent

on the type of the compound nucleus formed in the reaction, as indicated in Figure
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Figure 4.4: Lower panels: The experimentally measured « spectra (o) from *He +
nat Ao reactions at 55, 65, 75, 85, 95, 110 MeV beam energies, and the corresponding
fits (—) with Equation 4.9. Upper panels: The percent difference between the
experimental data and the fits with Equation 4.9 are shown in the lower panels. The
error bars represent the statistical errors of the experimental data.
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4.5 for the reaction *He + 197Ag.

The discovery of the oscillations raised several important questions:

e Are the modulations physical, as those expected for residual quantum effects?

e Could the modulations be introduced by departures from linearity of ADCs,

amplification electronics, detectors, etc.?

o Could the oscillations be the result of the fitting problem associated with the

rigidity in the fitting function?

In answering these questions Jing demonstrated that the instrumental effects could
not have been possible, since the same modulations were observed in several indepen-
dent detector-electronics chains. In addition to that the the same modulations have
been confirmed in different follow-up experiments using different detectors, ADCs,
and different chains of amplification electronics. However, answering the question
about physicality of the effect has not been clearly provided in his thesis. The main
problem of distinguishing between artificial fitting function rigidity effects and ob-
servation of a true phenomena was very difficult. It may be possible that there is
a slight mismatch between a smooth fitting function and a true statistical evapora-
tion spectrum which is also smooth that produces the oscillations. Jing used several
advanced methods (orthogonal polynomial analysis and Strutinski smoothing) to
separate the oscillations from the background and identify their uniqueness. Unfor-

tunately, in conclusion he wrote that “the search for evidence for the existence of
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Figure 4.5: Lower panels: The experimentally measured « spectra (o) from *He +
197 Au reactions at 75, 85, 95, 110 MeV beam energies, and the corresponding fits (—
) with Equation 4.9. Upper panels: The percent difference between the experimental
data and the fits with Equation 4.9 are shown in the lower panels. The error bars
represent the statistical errors of the experimental data.
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complex particles as independent particles inside a nucleus is still an ongoing effort
... The spectral shape used in the fitting is shown to represent alpha spectra to an
excellent precision, although this is not sufficient to convince that the modulations,
which appear in the residuals of the fits, are physical ... It seems still a long way to
reach definite conclusion regarding the physical reality of the observed modulations,

thus the existence of complex particles as independent particles inside a nucleus”.
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Chapter 5

The New Look at the Oscillations:

Myth or Reality?

The challenge presented by the duality of the oscillations: their possible origin
in the discrepancies between the otherwise smooth functional forms of experimental
and theoretical spectra, or in true quantum phenomena, seemed unsurmountable.
Nevertheless, the problem remained attractive and promising to yield the evidence
of quantum properties surviving thermalization of hot nuclear liquid. Many more
weeks went into the analysis of the puzzle until one day an unexpectedly simple and

ordinary answer put an end to the lofty expectations.
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Figure 5.1: The quality of fitting experimental data with Equation 5.1. The circles
represent the data, and the solid line is the fit.

5.1 Mundane Solution to an Intriguing Puzzle

The best results for the description of experimental a-spectra are acclaimed by
Moretto [More 75, Jing 99], who developed a single-chance emission theory and de-
rived several analytic expressions for the kinetic energy spectrum of a fragment. Al-
though Jing employed a complex version of Moretto’s theory (one amplifying mode,
one non-amplifying mode and quantum barrier penetration) to fit the spectra and
discover the oscillations [Jing 99], the simplest version of the theory, which includes

only one amplifying mode, produces very good data fitting results as well, although
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Figure 5.2: An example of oscillations observed in fitting data with Equation 5.1.

at a cost of fewer fitting parameters. According to the theory, the evaporation spec-

trum can be represented by the simple formula:

P(c) = Aexp (-#) erfe (%) , (5.1)

where A is a proportionality constant, € is the kinetic energy of detected fragments, B
is the Coulomb barrier at equilibrium deformation, p is the amplification parameter,
and T is the temperature of the parent nucleus. The quality of fitting the data by
Equation 5.1 is shown in Figure 5.1, which manifests only small deviations. Sure

enough, the residuals display the familiar oscillations, analogous to those observed
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by Jing. Figure 5.2 shows the oscillations. The oscillations are about 1.5% above
the background and clearly stand out beyond the statistical noise.

In this thesis, an old and simple explanation will be offered to account for the
oscillations in the a-spectra. Being straightforward and unattractive, this approach
was hoped to be the last to come true. The pervasive idea of residual quantum
effects surviving beyond the thermal emission too much captivated the minds of
researchers, as it surely did the author’s until an unexpectedly simple trick unlocked
the true reality of the puzzle.

Experimental evaporation spectra cannot be expected to be first-chance only.
If, for example, a-emission is considered, the a-particle can be emitted from a hot
nucleus after the emission of a nucleon. At temperatures when evaporation takes
place, emission of a proton or a neutron is the dominant channel of deexcitation, and
individual emissions do not remove a large fraction of the excess energy from the
nucleus causing multiple-chance a-emission to remain quite probable. As a result,
experimental spectra, which are not acquired on the event-by-event basis, but rather
consist of all the particles emitted from the target, end up being comprised of a-
particles emitted from different parent nuclei.

A very simple calculation can be used to demonstrate this point. Consider the
example of the 65 MeV *He + "#Ag reaction, which produces '?In ! at the tem-

perature about 2.5 MeV. If the a-particle is emitted second chance after a neutron,

!Natural silver consists of 51.84 atom % of isotope '°"Ag and 48.16 atom % of isotope '%?Ag.
Production of '?In is considered here only as an example, since '1%In is produced in abundance as
well.
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the probability of such an event relative to the first-chance emission is not far from
unity, since neutron emission is by far the most probable process in comparison with
the other modes of decay and removes an insignificant part of the nuclear excitation
of the order of 2T. The proton emission is suppressed in comparison to the neu-
tron emission roughly by p, ~ exp(—Bcouw/T'), where Beyy is the proton’s Coulomb
barrier, and 7' is the temperature. For "2?In Bg,, is of order 5 MeV, which gives
pp ~13%. In other words, the second-chance post-proton a-emission is only about 8
times less probable than the post-neutron emission.

The third-chance and higher modes of a-evaporation may already be significantly
suppressed due to cooling of the emitting nucleus. However, the multiple-chance
emission chains are numerous, and their number increases with the order of the
emission mode. For example, the third-chance a-emission can be realized in four
ways of nucleon emission sequences preceding the emission of the a-particle, whereas
the forth-chance event is nine-fold degenerate.

So far, there has not been a mention of the emission of light charged particles other
than protons that can proceed evaporation of a-particles. For example, emission of
deuterons and tritons is a probable process competing with the proton emission.
These channels of deexcitation, although being less probable than nucleon emission,
add to the variety of possible emission modes preceding a-evaporation and enrich
the total multiple-chance component in a-spectra.

Almost equal abundance of two isotopes in natural silver can also add to the
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variety of independent emitters that contribute to the experimental spectrum. Both
H0Th and *?In a-emitters are first-chance whose properties are not the same.
Overall, the conclusion can be drawn that the kinetic energy a-evaporation spec-
tra may not be considered first-chance single-parent only, but, rather contrary, mixed
isotopic content of the target and the presence of the multiple-chance component can
have a significant effect on the shape of the spectrum, the multiple-chance component
being largely dominated by the second-chance mode. Therefore, since a-particles are
emitted from different nuclei, the Coulomb barriers are slightly different for every
parent nucleus (due to shrinkage and loss of charge when nucleons and other particles
are emitted), and so are the temperatures since the multiple-chance emission occurs
from cooled nuclei. The variation in deformation between various parent nuclei is not
expected to be large, and for simplicity it will be disregarded in the present analysis.

Mathematically, these ideas can be written in the following form:
Ptot(e) = Zwipi(BivTi76)7 (52)

where Pi.:(¢€) is the observed total spectrum of all types of a-particles, 7 is the counter
of emitting parent nuclei, and w;, B;, T; are the weight, Coulomb barrier, and temper-
ature of a particular mode of a-emission. Therefore, no single Coulomb barrier and
temperature can be ascribed to an experimental spectrum. Rather these quantities
possess a distribution folded into the spectrum according to Equation 5.2.

The aforementioned conclusion did not come as a well thought out result, but

was found unexpectedly in the course of data analysis. It was suggested that if
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£y, By, B, Ty, 15, P, Rel. Prob.,
MeV MeV MeV MeV MeV MeV wy fwy
55 | 12.77£0.15 | 12.3640.03 | 2.714+0.04 | 1.284+0.09 | 2.49£0.18 | 0.83£0.32
65 | 12.744£0.09 | 12.3840.02 | 2.8840.03 | 1.31£0.08 | 2.29£0.12 | 0.60£0.32
75 | 12.9540.15 | 12.41£0.03 | 3.0640.05 | 1.4140.09 | 2.48+0.15 | 0.94£0.24
95 | 13.024+0.19 | 12.4440.04 | 3.3440.09 | 1.614+£0.13 | 2.37£0.16 | 0.89+£0.31
110 | 12.92+0.17 | 12.4940.05 | 3.3440.07 | 1.48+0.18 | 2.36£0.20 | 0.5840.43
125 | 13.35£0.18 | 12.6540.03 | 3.57+0.07 | 1.68+£0.08 | 2.73£0.15 | 1.2740.43

Table 5.1: Fitting parameters obtained from the two-spectra decomposition analysis
of the a-spectra from the reaction *He+"**Ag at various beam energies FEj.

the multiple-chance hypothesis were to be right, the observed a-spectra could be

presented using Moretto’s formula in the following way according to Equation 5.2:

Empirically, at least two average contributions must show up in fitting the data

(5.3)

as a superposition of two single-chance spectra, whose weights, temperatures and
barriers must differ. The contributions are average since they represent many possible
components much in the way like two-point Gaussian quadrature represents an entire

integral. Thus, it can be written that

Ple) =~

where the indexes 1 and 2 refer to the two contributions.
The technique of two-spectra decomposition turned out to be very successful in
analysis of experimental data. When fitting the data with the two spectra decompo-

sition method, seven variables have been used as parameters of the fit: wy, wq, By,
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Figure 5.3: Fitting the data with the two spectra decomposition technique is shown
to account for the oscillations. The circles represent the relative residuals of the
single-chance fit, while the solid line stands for the relative difference between the
multiple-chance and single-chance theoretical formulae.

By, Ty, Ty, and p. As an example of the fitting, the data set from the experiment at
65 MeV beam energy is shown in Figure 5.3. In the figure, the letter M stands for
the multiple-chance spectra both experimental and theoretical (Equation 5.4), while
the letter S denotes the single-chance theoretical spectrum of Equation 5.1 according
to Moretto. The two spectra decomposition fit yielded the y? per degree of freedom
at about 0.96 as compared to about 5.23 when fitting the same spectrum with the

first-chance formula in Equation 5.1. More examples of fitting the data at different
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Figure 5.4: Examples of fitting the data with the two spectra decomposition tech-
nique at various excitation energies. The oscillations are seen to be completely
accounted for. The circles represent the relative residuals of the single-chance fit,
while the solid lines stand for the relative difference between the multiple-chance
and single-chance theoretical formulae.
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beam energies are presented in Figure 5.4. The y?-values are all about unity.

The success of the two-spectra decomposition fitting is quite reassuring, and leads
to a reasonable preliminary conclusion that the oscillations in the a-emission spectra
are created artificially due to fitting the single chance theory to the multiple-chance
spectrum. In spite of the visual appeal and simplicity, fitting alone, however, is
not sufficient to prove the point. Rigorous model considerations may be necessary
to further develop the topic. Nevertheless, analysis of the fitting parameters may
strengthen the case.

Table 5.1 offers a list of the fitting parameters extracted from fitting data at dif-
ferent beam energies. Parameters with the subscript 1 can be attributed to the high
temperature mostly first-chance spectrum of a-particles, whereas subscript 2 collec-
tively refers to the multiple-chance group dominated by the second-chance emission.
Meaningful tendencies can be found in the behavior of the parameters as the excita-
tion energy is increased. First of all, attention should be paid to the temperatures of
the spectra, which progressively increase with excitation, as it undoubtedly should
be. With the ()-value of the reaction being 14.2 MeV, temperatures T can reason-

ably well be fitted with a Fermi gas formula for the excitation energy E*:

112
E* = TTQ + const (5.5)

to obtain the level density coefficient parameter £ ~ 8.5. An additional constant is
used to approximately account for the unknown temperature dependence of the level

density parameter.
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Temperatures Ty are generally twice as low in comparison with temperatures T},
indicating a large loss of energy between the first- and second-chance a-particles.
This result is not clear, and may not be physical at all in terms of absolute values.
There may be an interplay between the parameters of the fit causing the temperature
T5 to be forced low. At this point no conclusive answer can be presented. However,
the very fact that T, is lower than T; already indicates the right trend.

The Coulomb barriers By of the predominantly first-chance emission display a
slight growth with temperature which is possibly caused by increasing the relative
abundance of the second-chance component. Since the barriers B; are not purely
first-chance, the increasing fraction of post-neutron second-chance a-emission may
alter these barriers due to decreased radius of '1In in comparison with 1*2In. In this
case the barrier should change in reverse proportion to the radius.

The effect of increasing the second-chance component may also be marginally
inferred from the dependence of the amplification parameter p on the temperature.
Remembering that p is defined as a ratio of the square of the Coulomb barrier
amplitude and the total energy amplitude, the slight growth of this parameter hints
at growing the Coulomb barrier amplitude.

A similar increase can be seen for the barriers B, evidently caused by the same
reason. More important, however, is the difference between B; and B,, which is
indicative of the processes preceding the a-emission. It can be seen that the barriers

B, are consistently lower in comparison with the barriers By. If the multiple-chance
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component in a-spectra were only due to neutron emission, the barriers B and B,
would compare in the opposite way: the sole neutron emission leads to reducing the
size of the emitting nucleus without changing its charge. As it is, however, the smaller
barriers By suggest a significant fraction of light charged particles contributing to
the multiple-chance nature of a-evaporation.

Not much can be said about the relative contribution w,/w; of the two spectra
due to the large uncertainty. The errors are of the order of 50 and more per cent.
Nevertheless, with the exception of 125 MeV reaction, the trend is according to
the expected pattern of the multiple-chance component being smaller then the first-
chance component. As the temperature is increased, the data are also consistent with
the anticipated increase of the multiple-chance emission compared to the first-chance.

Altogether, it should be emphasized that the technique of two-spectra decompo-
sition is only meant to demonstrate the possible cause of oscillations qualitatively,
and no accurate description of physical parameters should be anticipated. The ac-
tual structure of evaporation spectra is expected to be very complex with scores of
multiple-chance contributions whose probabilities can vary widely. Nevertheless the
simple assumption of the two average spectra does well in doing away with the oscil-
lations and demonstrating the correct trends in extracted physical parameters that
together reinforce the belief that the multiple-chance nature of fragment evaporation
is indeed the reason for the observed oscillations and not a residual quantum effect.

In order to further confirm the suggested explanation for the oscillations, multiple-
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chance modification of Moretto’s theory needs to be introduced and tested on exper-
imental data. One way to implement this task is through the statistical moment ex-
pansion of the spectrum to account for the distribution of temperatures and Coulomb

barriers.

5.2 Moment Expansion of Evaporation Spectra

The idea to use the statistical moment expansion of evaporation spectra was re-
cently offered by Moretto in response to the success of the two-spectra decomposition
technique [Breu 00]. The moment expansion method can be introduced in the fol-
lowing way. It is always possible to expand the temperature and Coulomb barrier
dependent spectrum function P(e, B,T) in Taylor series about the average values
or the zeroth moments B and T of these quantities. Up to the second order the

expansion is

P(e,B,T) = P(e,B,T)

opP L Ep .,
t ool TP e g P )

opP 1P .
toarls T D e,

D*P — _
+ aBaTET(B—B)(T—T)Jr... (5.6)

In integral form, the observed spectrum can be written as

F(e)://w(B,T)P(e,B,T)dBdT, (5.7)
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where w(B,T) is the normalized probability distribution function in coordinates of

temperature and the Coulomb barrier. Therefore

_ — — 1 0%*P 1 9%P 0*P
Ple, B,T)= Ple, B, T)+— N R A R B.T)+...
(67 9 ) (67 ” )+2 aBQ §7TUB+2 aTQ §7TUT—|— aBaT §7TCOV( 9 )—I_
(5.8)
where
oy = w(B, T)(B — B)*dBdT
w(B, TYT — T)dedT (5.9)

Cov(B,T) = w(B,T)(B — B)(T — T)dBdT

S

I
W W W
S S NS

are second moments or variances. The first moments in Equation 5.8 are zeros since
by assumption they do not survive the averaging operation.

Equation 5.8 elegantly introduces the multiple-chance effects into evaporation
spectra as due to a distribution of temperatures and Coulomb barriers. However,
the application of Equation 5.8 to data is hindered without using an analytic form for
P(e, B,T) and for the second derivatives. The problem can be overcome considering
the properties of the expansion. It is easy to see that when there is no distribution
of temperatures and barriers, second moments in Equation 5.8 become zero, and all
what is left is P(e, B,T). On the other hand, zero second moments mean that evap-

oration is purely single-chance, which is exactly when Moretto’s formula in Equation
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5.1 is valid. Therefore, it is an obvious step to assume that

P(e, B,T) = Aexp (—6 _T§> erfc (Z#) 7 (5.10)

which is also confirmed by the good quality of fits this formula provides for a-spectra

(except for the oscillations).

While P(e, B,T) describes the average background of the spectra as if it were
single-chance, the second derivatives in Equation 5.8 refer to the effects of various
multiple-chance components. Formally, they are the derivatives of the unknown func-
tional form of the multiple-chance spectrum. However, to a very good approximation,
Moretto’s formula in Equation 5.1 can still be used to determine these derivatives,
since the functional form it provides is sufficient to describe experimental spectrum
up to 1.5% (oscillations). Altogether, the following analytic expression can be derived

as an extension of Moretto’s theory to include multiple-chance evaporation:

P(e,B,T) = Aexp (—%) erfc (Z%jp%&)

[1+ % ag(:E) (e—_B _2> . COV(TB;,T) <e_§_1>]

2T 2T T T
A ox _G—E oo | p—2(e— B) ’
+ Vr(pT)3/? P ( T ) P ( 2/ pT )
[:ayp =B 1_22“19 A~ B — 6T)p— 2c — B)
T e e B)ﬁ — 2= BY oun, T)] (5.11)

Equation 5.11 can be used directly to fit experimental data. It has seven unknown

fitting parameters: A, B, T, p, o, or, and Cov(B,T). The results of the fitting
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are shown in Figure 5.5, in which, as before, M stands for multiple-chance spectra
both experimental and theoretical, whereas S is single-chance spectrum according to

Moretto’s theory. The parameters obtained from the fitting are summarized in Table

5.2. The \*’s per degree of freedom of the fits are all of order unity.

10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 24
SHe+Ag-a € E =125 MeV

b
T

!

20 1z 1 lée 18 20 22 24

Figure 5.5: Examples of fitting the data with the moment expansion methodology
at various excitation energies. The oscillations are completely described. The circles
represent the relative residuals of the single-chance fit to the data, while the solid
lines stand for the relative difference between the multiple-chance and single-chance

fits.
The parameters reveal a steady and consistent change with the excitation energy
of the reaction, the errors being small. This change can find a reasonable explanation

on the basis of the multiple-chance emission picture. As the excitation energy is
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By, B, T, P, 0B, or, Cov(B,T),
MeV MeV MeV MeV MeV MeV MeV?
55 | 12.62£0.02 | 2.01£0.04 | 2.2840.07 | 0.59£0.07 | 0.71£0.03 | 0.15+£0.02
65 | 12.68£0.01 | 2.16+0.03 | 2.254+0.06 | 0.58+0.06 | 0.75+£0.02 | 0.181+0.01
7h | 12.71£0.02 | 2.264+0.04 | 2.3940.10 | 0.46£0.12 | 0.77£0.03 | 0.2540.02
95 | 12.77£0.02 | 2.51£0.06 | 2.254+0.10 | 0.55£0.10 | 0.83£0.03 | 0.27+£0.02
110 | 12.854+0.03 | 2.52+0.07 | 2.29+£0.11 | 0.664+0.11 | 0.89£0.04 | 0.27£0.03
125 1 12.9440.02 | 2.59£0.05 | 2.56+£0.12 | 0.464+0.13 | 0.89£0.02 | 0.30£0.02

Table 5.2: Fitting parameters obtained from the moment expansion analysis of the
a-spectra from the reaction *He+"*'Ag at various beam energies Fj.

increased, the average temperature of the emitting system progressively grows, while
the spread of the temperature distribution, tracked by the standard deviation o7,
also increases. The spread is fairly large in comparison with the absolute value of
the average temperature and hints at the significant fraction of low temperature
emission. The growth of the spread with the temperature can be explained by the
appearance of new modes of emission as the temperature is increased.

The growth of the average temperature T causes the growth of the average
Coulomb barrier B, which can reasonably be understood as due to increasing role
of the second-chance post-neutron emission. The standard deviation opg stays about
the same and indicates a significant spread of the barriers of various a-emitting nu-
clei. The spread does not seem to change appreciably, since the upper limit of the
barrier distribution function does not change with temperature, whereas the shape
of the distribution may change and affect the average.

In the current analysis, the amplification parameter p is assumed to be a constant,
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independent on the identity of the emitting nucleus. Although in general it is not
true, insignificant variations in mass between various emitters suggest that the am-
plification parameter should not be expected to change widely. Fitting experimental
spectra well confirms this expectation. The oscillations can be accounted for with the
assumption of constant p. In addition to that, within the range of errors the data
in Table 5.2 indicate a constant value of p with respect to changing temperature.
This observation demonstrates that the growing number of possible a-emitters have
about the same amplification parameter. On the other hand, a slight growth of p
may still be conjectured due to increasing presence of multiple-chance post-neutron
emission. Marginally, the data may also be interpreted to support this assumption.
Even if it is true, overall the data supports the expectation that the amplification
parameter is very narrowly distributed with the mass of a-emitters.

A very important parameter is the covariance Cov(B,T'), which indicates the
correlation between the Coulomb barrier and temperature distributions as functions
of the mass of the emitting nucleus. As seen from the fitting parameter table, the
covariance of these two distributions is positive at every investigated excitation. This
fact vividly indicates the decrease of Coulomb barriers with the mass of a-emitters as
the temperature goes down depending on the order of the multiple-chance emission
event. In other words, as a nucleus cools emitting various light particles, its Coulomb
barrier toward a-emission on the average is reduced. This fact is contrary to the

expectation of neutron-only pre-a emission and supports the idea of a significant
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fraction of light charged particles participating in forming pre-a emission chains.

In closing this discussion, it must be emphasized that the extension of Moretto’s
theory presented here fully accounts for every slightest detail of the observed experi-
mental a-spectra and produces the values of theoretical parameters that can well be
explained within the scope of the theory. Although alternative explanations for the
oscillations cannot be ruled out completely yet, the experimental evidence is strong

in favor of the explanation offered in this thesis.

5.3 Conclusions

The puzzle of kinetic energy oscillations in evaporation a-spectra, which was in-
troduced through the use of single-chance Moretto’s theory and long considered as
a manifestation of residual quantum effects, has been offered a simple and thorough
explanation: the oscillations are the artificial result of fitting a single-chance theory
to multiple-chance experimental data. This conclusion was initially reached with the
data analysis technique of two spectra decomposition, which assumed the experi-
mental spectrum to consist of at least two independent contributions of a-particles
emitted from different parent nuclei. These nuclei can be the result of pre-a emis-
sion of particles from the initial compound nucleus, and they can be the result of
the isotopic content of the target. The technique successfully accounted for the
oscillations in experimental spectra and produced meaningful fitting parameters in

compliance with the assumed physical phenomenon. However, the technique had
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weaknesses and in itself was insufficient to strengthen the newly offered explanation
of the oscillations.

Moretto worked out an extension of his single-chance emission theory to allow
for multiple-chance properties of the emitting system. Due to a variety of a-emitters
contributing to the observed spectrum, the otherwise constant physical parameters
like Coulomb barrier and temperature acquire a distribution, whose attributes ex-
pressed in statistical moments like variance and covariance, can be added to the
formalism by way of statistical moment expansion. Restricting the expansion up
to and including the second moments, analytic expressions were obtained to fit ex-
perimental spectra. Fitting produced excellent results with the physical parameters
exhibiting meaningful values according to the newly offered explanation of the effect.

Unfortunately, no absolute final answer can strictly be given at the time since
all the conclusions were based on fitting with many parameters involved. Although
experimental evidence is very pressing toward validity of the suggested explanation
for the oscillations, no rigorous conclusion can be made without setting a detailed
model calculation to accurately account for all the possible modes of a-emission at
all temperatures of interest. Then comparisons can be made between the experiment
and the calculation, and the aforementioned techniques can act as mediators in the
analysis. Unfortunately, this calculation is extremely involved and was not attempted

in this thesis.
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Appendix A

Analysis Codes

To realize the calculations described in Chapters 2 and 3, the following Matlab
codes were involved. Section A.1l, presents a simple program to calculate the lattice
gas pressure with SAP combinatorics according to the methodology of Chapter 2.
Section A.2 details the application of the modified Fisher’s model to geometric clus-
ters in order to obtain the lattice gas pressure and find characteristic signatures of

cluster interaction.

A.1 The Lattice Gas Pressure from SAP

bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o
WhhhhhAAhhhh Load Initial Data hhUAAAALLLAAAALAALAS
bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o

clear;

% SAP distributions by size and area.

load SAP.dat

% Onsager’s pressure vs. temperature for comparison.



load PTO.dat
% Onsager’s heat capacity vs. temperature for comparison.
load CVO0.dat

% Onsager’s pressure and temperature in separate vectors.
T=PTO(:,1); P=PTO(:,2);

% Heat capacity and temperature in separate vectors.
TCV=CvO(:,1); CV=CVO(:,2);

% SAP size, surface and number in separate vectors
A=SAP(1:877,1); S=SAP(1:877,2); g=SAP(1:877,3);

Tt I I Tt Tl s T T T e o ol T o o o ol T et o o T e T e
WhLKRRLE L ALY Solve Differential Equation %AAL%ALAALS
Tt I I Tt Tl s T T T e o ol T o o o ol T et o o T e T e

% Set ODE options

options = odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

% Solve the differential equation f (see below) to obtain an

% approximation to the lattice gas pressure PSOL vs. temperature
% TSOL.

[TSOL,PSOL]=o0de45(0f, [1e-50 3],0,0options,A,P,g);

bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o

DRRARLhAAAAYS Additional Calculations hAhhhhAAALLAANAY
bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o

183

% Calculate an approximation to the lattice gas heat capacity CVSOL.

CVSOL = CV(TSOL,PSOL,A,P,g);

% Find the critical temperature TC and pressure PC.
minoptions = optimset(’TolX’,1le-10);

TC = fminbnd(@cvfunc,2,3,minoptions,TSOL,PSOL,A,P,g);
PC = interpi1(TSOL,PSOL,TC,’spline’);

bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o
WhRRRRR%K LK. PLovting hhhhhhRRIhIh I KL L LR R LR R%
bbb R RIII Il o b bl o ol o ot To Tt 2o o oo 2o o 2o o o o o o o Tl o

% Interpolating TSOL and PSOL to match vectors T and P.
PSOL=interpi1 (TSOL,PSOL,T, ’spline’);

% Plotting.

plot (TSOL,PSOL,’*’,T,P,’=");



YA ANAN
YA ANAN
YA ANAN

% Different
function dy
c = 2;

Sp = c.*sum
sa = sum(A.
dydt = (sp.

% Heat capa
function CV

y = interpl
c = 2;

sp = sum(P
sa = sum(A
sp2 = sum(P.

sa?2 = sum(A.
sap = sum(A.

sa = 1+sa;
he = -c~2/

% Heat capa
function CV

c = 2;

for j = [1:
sp = sum
sa = sum
sSp2 = sum
sa2 = sum
sap = sum
sa = l+sa
he(j) =

end

bbb bbbkl ol o toTo o o to o oo oo 2o o o o o o o Tl T
% Functions %hLLARRIAKI KL LRLRL LR RS
bbb bbbkl ol o toTo o o to o oo oo 2o o o o o o o Tl T

i1al equation
dt = £(t,y,A,P,g)

(P.*xg.*exp(-c.*P./t-(A+P) .*xy./t));
*g . kexp(-c.*P./t-(A+P) .*xy./t));
/(1+sa)+y) . /t;

city
= cvfunc(t,tv,yv,A,P,g)

(tv,yv,t,’spline’);

.xg.xexp(-c.*xP./t-(A+P) .*xy./t));
.xg.xexp(-c.*xP./t-(A+P) .*xy./t));
"2.%g.xexp(-c.*P./t-(A+P) .xy./t));
"2.%g.xexp(-c.*P./t-(A+P) .xy./t));
*P . kg . kexp(-c.*P./t-(A+P) .*xy./t));

t"2%(sp2/sa-sp*sp2/sa”2-2xsp*sap/sa”2
+sp”2*sa2/sa”3+sp”2xsap/sa”3);

city as an array.
= cv(t,y,A,P,g)

length(t)]

(P .xg.xexp(-c.*
(A .xg.xexp(-c.*
(P."2.%g . *exp(-c.*
(A."2.xg . *exp(-c.*
(A.*P.*xg . *exp(-c.*

d

At (3)-(A+P) xy(3)./t(3)));
At (3)-(A+P) xy(3)./t(3)));
At (3)-(A+P) xy(3)./t(3)));
At (3)-(A+P) xy(3)./t(3)));
At (3)-(A+P) xy(3)./t(3)));

' 'u 'u o

c”2/t(j) 2% (sp2/sa-sp*sp2/sa”2-2xspxsap/sa”2+
sp~2*sa2/sa”3+sp”2*sap/sa”3);
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A.2 Modified Fisher’s Code

9 sk sk sk s ok sk sk sk ok ok ok ok ok kK ok ok ok K KK ok ok ok oK 3K K o ok ok sk oK K ok ok ok oK
Jxkrkrk Data 1nput *kkkkskkskkskkkkkkkkok
9 sk sk sk s ok sk sk sk ok ok ok ok ok kK ok ok ok K KK ok ok ok oK 3K K o ok ok sk oK K ok ok ok oK

clear;

% Declaration of global arrays.
global data;

global errors;

global PTO;

% Load data and error arrays. These are two-dimensional

% arrays with geometric cluster concentrations and statistical
% errors to the concentrations vs. temperature and cluster size.
load data;

load errors;

% Load Onsager’s pressure and heat capacity vs. temperature.
load PTO.dat

load CVO0.dat

% Rearrange Onsager’s data into vectors.

T = PTO(:,1); P PTO(:,2);

TCV = CvO(:,1); CV cvo(:,2);

% Set the range of cluster sums.

A=[1:1000];

% Set the cluster size fitting range.

Afit=[10:25]";

0A,*******************************************

Jx*x Original Fisher’s Model Minimization *x
Yok st stk s o s koo sk ko sk sk ok sk s ook sk s s ok sk sk o s ok stk o ok sk sk

% Initial values of Fisher’s parameters.

q_0 = 0.032;
1 =0.1;

b d = 3;

k = 3;

sig = 1/2;
c_0 = 8;

parmf0(1) = q_0;
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parmf0(2)
parmf0(3)
parmf0(4) =
parmf0(5)

oo
[T A

% Fitting
fitoptions = optimset(’TolFun’,le-6,’TolX’,le-6,’MaxIter’,
100000, ’MaXFunEvals’,1000OO,’LargeScale’,’off’);
[parmf,chisqf,exitflag,output,grad,hessian] = fminunc(@ffito,
parmf0O,fitoptions,Afit,T);

parmf = abs(parmf);

q_0 = parmf(1);
1 = parmf (2);
X = parmf (3);
k = parmf(4);
c_0 = parmnf(5);

% Calculating the lattice gas pressure with the original
% Fisher’s model POF.
for j = [1:length(T)]
POF(j) = T(j)*sum(nf(A,T(j),q.0,1,x,k,sig,c_0));
end

%*******************************************
[)

A******* Parameter errors *kskskskskskskokskkkkskskkkk
%*******************************************

dparmf=sqrt(diag(inv(hessian)));
fitparsf=[parmf’,dparmf];

0A,***********************************************

Yxkkxkkkk Modified Fisher’s Model Minimization *
Of sk sk ok sk sk ok sk sk ok ok sk ok ok sk sk ok sk ok sk ok sk s ok ok sk sk ok ok sk ok ok ok s ok ok ke ok ok sk ok ok ok sk ok ok

% Initial parameter values

q_0 = 0.032;
1 =0.1;
b d = 3.6;
k = 3.7;
c_0 = 7.3377;



parm0(1) = q_0;

parm0(2) = 1;

parm0(3) = x;

parm0(4) = k;

parm0(5) = c_0;

% Fitting

odeoptions = odeset(’RelTol’,le-9,’AbsTol’,1e-9);
fitoptions = optimset(’TolFun’,5e-1,’TolX’,5e-1,’MaxIter’,

1000OO,’MaXFunEva1s’,1000OO,’LargeScale’,’off’);
parm = fminsearch(@ffit,parm0,fitoptions,odeoptions,T,A,Afit);
fitoptions = optimset(’TolFun’,le-6,’TolX’,le-6,’MaxIter’,100000,
’MaXFunEvals’,1000OO,’LargeScale’,’off’);
[parm,chisq,exitflag,output,grad,hessian] = fminunc(@ffit,parm,
fitoptions,odeoptions,T,A,Afit);

q_0 = parm(1);
1 = parm(2);
X = parm(3);
k = parm(4);
c_0 = parm(5);
sig = 1 / 2;

kap = c_0 / 2;

%*******************************************
[)

A******* Parameter errors *kskskskskskskokskkkkskskkkk
%*******************************************

dparm=sqrt(diag(inv(hessian)));
fitpars=[parm’,dparm];

%*****************************************
%********* Thermodynamics sk ok 3k sk ok 3k ok 3k ok 3k ok ok %k ok ok %k
%*****************************************

% An approximation to the lattice gas pressure as a

% solution to the differential equation fdiff with the

% best set of Fisher’s parameters.

[TSOL,PSOL] = ode113(@fdiff,[1e-10 3],0,0deoptions,A,
q-0,c_0,x,sig,k,kap,1);

% Heat capacity.
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CVSOL = cv (A,TSOL,PSOL,q_0,c_0,x,sig,k,kap,1)’;

9 sk sk sk s ok sk sk ok ok ok K ok kK ok ok ok oK KK ok ok ok sk ok K o ok ok sk ok 3 o ok ok ok koK
0 .

hrkrkrkkk DEnsity Hokkkkskksokkksokikkokkkkkkk
9 sk sk sk s ok sk sk ok ok ok K ok kK ok ok ok oK KK ok ok ok sk ok K o ok ok sk ok 3 o ok ok ok koK

RSOL = rho (A,TSOL,PSOL,q_0,c_0,x,sig,k,kap,1)’;

%*****************************************

Jx*kkkxkkkx Sample Cluster Distributions *x*
%% kst sk sk ok sk ok sk ke sk sk sksk sk o ok ok sk ke sk sk sksk sk sk sk ok o keok sk sksk sk sk sk sk ok

n10d = data(10,1:length(T));
n15d = data(15,1:1length(T));
n20d = data(20,1:length(T));
n25d = data(25,1:1length(T));

e10d = errors(10,1:1length(T));
el5d = errors(15,1:1length(T));
e20d = errors(20,1:1length(T));
e25d = errors(25,1:1length(T));

n1l0 = n(10,tv,pv,rv,q_0,c_0,x,sig,k,kap,1);
nl5 = n(15,tv,pv,rv,q_0,c_0,x,sig,k,kap,1);
n20 = n(20,tv,pv,rv,q_0,c_0,x,sig,k,kap,1);
n25 = n(25,tv,pv,rv,q_0,c_0,x,sig,k,kap,1);

%*****************************************

0 L .
Yskkkkkkkkk Critical Point skskkskskskokskkkskokkkx
9 sk sk sk s ok sk sk ok ok ok K ok kK ok ok ok oK KK ok ok ok sk ok K o ok ok sk ok 3 o ok ok ok koK

minoptions=optimset(’TolX’,1e-9);

TC = fminbnd (@cvfunc,2.1,2.4,minoptions,TSOL,PSOL,
A,q_0,c_0,x,sig,k,kap,1);
PC = interpl(TSOL,PSOL,TC, ’spline’);

%*****************************************

0 L .
A********* Critical Point Error skskskxkskskokkxkxk
%*****************************************

f1 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0+
0.0001%q_0,c_0,x,sig,k,kap,1);
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f2 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0-
0.0001%q_0,c_0,x,sig,k,kap,1);

dtcdq0 = (£1-f2) / 0.0002 / q_0;

f1 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x,sig,k,kap,1+0.0001%1);

f2 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x,sig,k,kap,1-0.0001%1);

dtcdl = (£f1-£f2) / 0.0002 / 1;

f1 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x+0.0001*x,sig,k,kap,1);

f2 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x-0.0001*x,sig,k,kap,1);

dtcdx = (f1-£f2) / 0.0002 / x;

f1 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x,sig,k+0.0001%k,kap,1);

f2 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0,x,sig,k-0.0001%k,kap,1);

dtcdk = (f1-£f2) / 0.0002 / k;

f1 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0+0.0001%c_0,x,sig,k,kap,1);

f2 = fminbnd(@cvfunc,2,3,minoptions,t,p,A,q_0,
c_0-0.0001%c_0,x,sig,k,kap,1);

dtcdcO = (£1-£f2) / 0.0002 / <c_0;

DTC = sqrt(dtcdq0”2*dparm(1) "2+dtcdl”2*dparm(2) "2+

dtcdx”2*dparm(3) “2+dtcdk” 2*dparm(4) "2+

dtcdc0”2*dparm(5)~2);
O sk sk sk sk o o o ok sk sk ok o ok sk s o o ok sk o sk ok sk o sk ok sk sk s sk sk ok o ok ok

Trkdokk PLotting Hkskkskkskkskkskokkkokkkkkonkxokk
9 sk sk sk s ok sk sk ok ok ok K ok kK ok ok ok oK KK ok ok ok sk ok K o ok ok sk ok 3 o ok ok ok koK

plot (TSOL,PSOL,TSOL,POF,’*’ ,T,P,’=");
9 sk sk sk s ok sk sk ok ok ok K ok kK ok ok ok oK KK ok ok ok sk ok K o ok ok sk ok 3 o ok ok ok koK
Ykkkkokk FUNCLIONS *Hkokskskokokskk skokokkok sk sk okok ok kK

0A,*****************************************

% Heat capacity as an array.

function CV = cv(A,t,p,q_0,c_0,x,sig,k,kap,1)

c =c_0/ kap;
Asig = A."sig + 1.%A;
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for j
Sp
sp2
sa2
sap
sa
u

he(3)

end

[1:length(t)]

kap

*xsum(Asig .*np(A,t(j),p(j),q.0,c_0,x,sig,k,kap,1));

kap~2.*sum(Asig."2.*np(A,t(j),p(j),q_0,c_0,x,sig,k,kap,1));

sum(A."2 .*np(A,t(j),p(j),q.0,c_0,x,sig,k,kap,1));

kap *xsum(A.*Asig.*np(A,t(j),p(j),q_0,c_0,x,sig,k,kap,1));
sum(A .*np(A,t(j),p(j),q.0,c_0,x,sig,k,kap,1));
cksp/(1+sa);

= (c.”2.%sp2-c.*u.*(sp2+2.*sap)+
u."2.%(sa2+sap)) ./t(j)."2./(1+sa);

% Heat capacity
function CV = cvfunc(t,tv,pv,A,q_0,c_0,x,sig,k,kap,1)

Asig
Sp
sp2
sa2
sap
sa

u

hc

c_0 / kap;

interpl(tv,pv,t,’spline’);

A."sig + 1.%A;

kap* sum(Asig .*xnp(A,t,p,q_0,c_0,x,sig,k,kap,1));

kap~2*sum(Asig. 2.*np(A,t,p,q_0,c_0,x,sig,k,kap,1));
sum(A."2 .*xnp(A,t,p,q_0,c_0,x,sig,k,kap,1));

kap* sum(A.*Asig.*np(A,t,p,q_0,c_0,x,sig,k,kap,1));
sum (A .*xnp(A,t,p,q_0,c_0,x,sig,k,kap,1));

cksp/(1+sa);

-(c " 2*sp2-ckux (sp2+2*sap)+u”2*(sa2+sap) )/t~ 2/ (1+sa);

% Differential equation
function dydt = fdiff(t,y,A,q_0,c_0,x,sig,k,kap,l)

Asig
sl =
82 =
dydt

A."sig + 1.%A;

c_0.*sum(Asig.*np(A,t,y,9.0,c_0,x,sig,k,kap,1));

sum (A .*xnp(A,t,y,9.0,c_0,x,sig,k,kap,1));

= (s1./(1+s2)+y)./t;

% Fitting function for the modified Fisher’s model.
function [chisq,t,p]l=ffit(parm,odeoptions,tv,A,Afit);

global data;
global errors;
global att;

parm = abs(parm);

190



q_0 = parm(1);
1 = parm(2);
X = parm(3);
k = parm(4);
c_0 = parm(5);
kap = c_0 / 2;
sig = 1 / 2;

[t,pl=o0del113(0fdiff,[1e-30 3],0,0deoptions,A,q_0,
c_0,x,sig,k,kap,1);

pv = interpl(t,p,tv,’spline’);
TV = rho(A,tv,pv,q_0,c_0,x,sig,k,kap,1);
chisq=0;

for j=[1:length(tv)]

nc = n(Afit,tv(j),pv(j),rv(j),q_0,c_0,x,sig,k,kap,1);

ss = sum((data(Afit,j)-nc)."2./errors(Afit,j)."2);
chisq = chisq + ss;
end

chisq = chisq / (length(Afit)*length(tv)-length(parm));

disp([parm,chisql)

% Fitting function for the original Fisher’s model.
function chisq = ffit0(parm,Afit,tv);

global data;
global errors;

parm = abs(parm);

q_0 = parm(1);
1 = parm(2);
X = parm(3);
k = parm(4);
c_0 = parm(5);
sig = 1/2;

chisq=0;
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for j=[1:length(tv)]
ss = sum((data(Afit,j)-nf(Afit,tv(j),q_0,
1,x,k,sig,c_0)).72./errors(Afit,j)."2);
chisq = chisq + ss;
end

chisg=(chisq)/(length(Afit)*length(tv)-length(parm));
disp([parm,chisql)

% Modified Fisher’s cluster concentration
function conc = n(a,t,p,r,q_0,c_0,x,sig,k,kap,1);

conc = np(a,t,p,q.0,c_0,x,sig,k,kap,1) .*(1-r);

% Modified Fisher’s pressure-only dependent
% cluster concentration
function conc = np(a,t,p,q_0,c_0,x,sig,k,kap,1);

asig = a. sig + 1.*a;
q_0.*asig.” (-x) .*exp(k.*asig -
(c_0.xasig + (atkap.*asig) .*p)./t);

conc

% Original Fisher’s cluster concentration
function conc = nf(a,t,q_0,1,x,k,sig,c_0);

asig = a. sig + 1.*a;

conc = q_0.*asig. (-x).*exp(k.*asig - c_0.*asig./t);
% Density.
function r = rho(A,t,p,q_0,c_0,x,sig,k,kap,1)

for j=[1:length(t)]
s = sum(A.*np(A,t(j),p(j),q_0,c_0,x,sig,k,kap,1));
r(j) = s./(1 + s);

end
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