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1Abstra
tI. Ex
luded Volume E�e
ts in Ising Cluster Distributions and Nu
learMultifragmentationII. Multiple-Chan
e E�e
ts in �-Parti
le EvaporationbyDimitry Eugene BreusDo
tor of Philosophy in Engineering-Nu
lear EngineeringUniversity of California at BerkeleyProfessor Stenley G. Prussin, ChairIn Part I, geometri
 
lusters of the Ising model are studied as possible model
lusters for nu
lear multifragmentation. These 
lusters may not be 
onsidered asnon-intera
ting (ideal gas) due to ex
luded volume e�e
t whi
h predominantly isthe artifa
t of the 
luster's �nite size. Intera
tion signi�
antly 
ompli
ates the useof 
lusters in the analysis of thermodynami
 systems. Stillinger's theory is used asa basis for the analysis, whi
h within the RFL (Reiss, Fris
h, Lebowitz) 
uid-of-spheres approximation produ
es a predi
tion for 
luster 
on
entrations well obeyedby geometri
 
lusters of the Ising model. If thermodynami
 
ondition of phase 
oex-isten
e is met, these 
on
entrations 
an be in
orporated into a di�erential equation



2pro
edure of moderate 
omplexity to elu
idate the liquid-vapor phase diagram ofthe system with 
luster intera
tion in
luded. The drawba
k of in
reased 
omplex-ity is outweighted by the reward of greater a

ura
y of the phase diagram, as it isdemonstrated by the Ising model.A novel nu
lear-
luster analysis pro
edure is developed by modifying Fisher'smodel to 
ontain 
luster intera
tion and employing the di�erential equation pro
e-dure to obtain thermodynami
 variables. With this pro
edure applied to geometri

lusters, the guidelines are developed to look for ex
luded volume e�e
t in nu
learmultifragmentation.In Part II, an explanation is o�ered for the re
ently observed os
illations in the en-ergy spe
tra of �-parti
les emitted from hot 
ompound nu
lei. Contrary to what waspreviously expe
ted, the os
illations are assumed to be 
aused by the multiple-
han
enature of �-evaporation. In a semi-empiri
al fashion this assumption is su

essfully
on�rmed by a te
hnique of two-spe
tra de
omposition whi
h treats experimental�-spe
tra as having 
ontributions from at least two independent emitters.Building upon the su

ess of the multiple-
han
e explanation of the os
illations,Moretto's single-
han
e evaporation theory is augmented to in
lude multiple-
han
eemission and tested on experimental data to yield positive results.Professor Stenley G. PrussinDissertation Committee Chair
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Chapter 1Introdu
tion1.1 Histori
al Ba
kground of the Resear
hInitiated by the Be
querel's dis
overy of radioa
tivity in 1896, the �rst quarterof the twentieth 
entury featured a series of important �ndings that showed theexisten
e of the atomi
 nu
leus and its 
omplex stru
ture and behavior. In 1911Rutherford demonstrated in his famous �-parti
le s
attering experiment that theatom (he used gold) has a small massive dense 
harged nu
leus, that 
ontained themajor part of the atomi
 mass. In 1913 Bohr 
on�rmed these experimental �ndings,introdu
ing his quantized planetary atomi
 model, whi
h a

urately des
ribed theele
troni
 levels in the hydrogen atom. Moseley determined the nu
lear 
harge in1914, and the same year Rutherford suggested that the nu
leus of hydrogen wasthe fundamental positively 
harged parti
le, whi
h he 
alled proton. Later in 1917



3Rutherford proved the existen
e of protons in the nu
leus by bombarding nitrogenwith �-parti
les and observing the protons 
oming out. This was also the �rstobservation of a nu
lear rea
tion. Around the same time Rutherford 
onje
turedthe existen
e of a neutral parti
le in the nu
leus, whi
h was similar to the proton.However, it was not until the 1932 dis
overy of the neutron by Chadwi
k that theproton-neutron nu
lear model was developed by Heisenberg. Still it was not 
learhow protons and neutrons (
olle
tively 
alled nu
leons) were bound together in thenu
leus. A

urate measurements of the proton mass as well as the masses of manynu
lei using the methods of mass spe
trometry provided the 
lue. Sin
e the neutronand proton masses were known, it was possible to determine the di�eren
e betweenthe mass of the bound nu
leus and the total mass of the individual nu
leons thatformed the nu
leus. First of all, it was found that the mass di�eren
e (also 
alledthe mass defe
t) was relatively large, almost 1% of the nu
lear mass. A

ording toEinstein's mass-energy relation su
h a mass di�eren
e 
orresponds to a large amountof energy needed to break the nu
leus apart into individual nu
leons. Se
ondly, itwas also found that the nu
lear binding energy divided by the number of nu
leonsin the nu
leus (also 
alled the binding energy per nu
leon) did not 
hange mu
hfrom nu
leus to nu
leus, and 
u
tuated around the 
onstant value of 8 MeV. Thisobservation was equivalent to the nu
lear binding energies varying approximatelylinearly with the number of nu
leons in the nu
leus (the nu
lear mass number), andrevealed the short-range nature of the nu
lear intera
tion.



4Another experimental 
on�rmation of the short-range nature of the nu
lear for
es
ame through the measurement of nu
lear radii. By 1934 it was already understoodthat the 
hange of the nu
lear radius r with the nu
lear size obeyed the 
ubi
 rootdependen
e r = r0A1=3; (1.1)where r0 = 1:2 � 10�13 
m was a 
onstant. This dependen
e was indi
ative of the
onstant nu
lear density 
al
ulated as the ratio of the nu
lear mass number A andthe volume 4=3�r3.These two properties of 
onstant density and 
onstant binding energy per parti
leare the manifestation of saturating of nu
lear for
es, 
hara
teristi
 of ordinary liquids,whose mole
ules also exhibit a short-range intera
tion.The short-range for
e 
auses a parti
le in a system to experien
e intera
tion onlywith its nearest neighbors, the number of whi
h is limited by the geometry of 
losepa
king. When a parti
le is 
ompletely surrounded by its nearest neighbors, itsintera
tion is said to be saturated, sin
e the se
ond nearest neighbors are alreadyblo
ked from approa
hing the parti
le 
lose enough to intera
t. Therefore the totalbinding in the bulk of the liquid Bv grows linearly with the amount of the liquid,and so it is proportional to the volume v of the liquid:Bv / v: (1.2)A �nite amount of liquid, like a drop, possesses an outer boundary or a surfa
e.The surfa
e mole
ules are not 
ompletely surrounded by nearest neighbors, and do



5not experien
e 
omplete binding. As a result, the total binding energy in the dropis less than expe
ted on the basis of bulk binding energy. The redu
tion in bindingenergy Bs is proportional to the number of mole
ules in the surfa
e layer, whi
h inturn is proportional to the surfa
e area s of the drop:Bs / s: (1.3)If a drop of liquid is 
harged, its binding energy de
reases even more sin
e the
harges repel ea
h other and destabilize the drop. This redu
tion in binding energyBC , goes quadrati
ally with the total 
harge Z on the drop and is inversely propor-tional to the radius of the drop rD. The exa
t 
al
ulation for a uniformly 
hargedsphere yields BC = 35 Z2rD : (1.4)Thus a nu
leus may be thought of as a drop of 
harged liquid obeying the re-quirements of binding in 
lassi
al 
harged 
uids. This idea was formally employedby Weizsa
ker in 1935, when he introdu
ed a semi-empiri
al formula for the nu
learbinding energy B using the analogy with a spheri
al drop of 
harged liquid:B = avA� asA2=3� aC Z2A1=3 � asym (A� 2Z)2A + Æ; (1.5)where A2=3 follows from the relation of the surfa
e of a sphere to its volume, A1=3follows from the relation of the radius of a sphere to its volume, and av, as, aC,asym are proportionality 
oeÆ
ients to be determined experimentally. In addition to
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Figure 1.1: Su

ess of the liquid drop model. The solid 
ir
les are the experimentaldata for the stable isotopes. The solid line is the liquid drop model �t. Bindingenergies are per nu
leon.the 
lassi
al terms the formula 
ontains two more quantum terms for symmetry andpairing energies. The symmetry term re
e
ts the tenden
y of nu
lei to have equalnumber of neutrons and protons, and the pairing energy Æ arises as a result of likenu
leons of opposite spin assuming a lower energy state if they 
ombine to form apair.The liquid drop formula, apart from the quantum terms, is a general 
hara
teristi
feature displayed by �nite 
ondensed systems with short-range intera
tion. Su
h



7systems are 
alled leptodermous (thin-skinned) due to the presen
e of a thin outerlayer whose properties alter the properties of the whole system in 
omparison withthe in�nite bulk behavior. Ea
h geometri
 attribute of the �niteness, like volume,surfa
e or 
urvature, individually 
ontributes to a system's extensive property. Forexample, the binding energy of the parti
les in the system 
an be presented as anexpansion in powers of A�1=3:B = A(
1 + 
2A�1=3 + 
3[A�1=3℄2 + : : :); (1.6)where A is the system's size (or mass number, whi
h is proportional to the volumeof the system), and 
1, 
2, : : : are energy 
oeÆ
ients. This series is generally referredto as the liquid drop expansion. As seen from Equation 1.6, �nite size e�e
ts inleptodermous systems be
ome small as A tends to in�nity, and the binding be
omesproportional to the size A.The nu
lear liquid drop model turned out to be very su

essful in des
ribingbinding energies of atomi
 nu
lei (see Figure 1.1). The average deviation for all theknown isotopes is only about 1%. Still there are 
u
tuations, espe
ially in the regionof small masses and for spe
ial numbers (magi
) of neutrons and protons. These
u
tuations are the manifestation of the shell e�e
ts in the nu
leus, whi
h arise dueto quantization of nu
leon energies, and their degenera
ies. Inside ea
h group (shell)nu
leons have similar energies, whereas the energy gaps between the shells are of theorder of the shell thi
kness (di�eren
e between the maximum and minimum energiesin the shell). As a result, binding energies are also a�e
ted by these pe
uliarities
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ausing 
u
tuations depi
ted in Figure 1.1.Nevertheless, the 
u
tuations are small, and the nu
lei exhibit an almost 99%-smooth liquid-like behavior. This important 
on
lusion means that the study ofnu
lei may be greatly simpli�ed by 
onsidering them as drops of uniform liquid-likematter. In this approa
h the individual behavior of nu
leons in the nu
leus be
omesirrelevant. What matters are their 
olle
tive properties in the nu
leus as a whole.1.2 Nu
lear Thermodynami
s and Phase Transi-tionThe des
ription of the ground-state nu
lei in terms of a liquid drop led to severalimportant 
on
lusions. First of all, it be
ame 
lear that the Equation 1.5 des
ribes�nite 
harged drops of some bulk nu
lear matter. The volume term avA of the liquiddrop expansion, if taken alone, gives the bulk binding energy of the in�nite matter,un
harged and symmetri
 in the sense that the masses of protons and neutrons areequal. This matter possesses some global properties that manifest the nature of the\pure" nu
lear binding, undisturbed by Coulomb and quantum e�e
ts. Sin
e thematter is in�nite, one is naturally led to study its properties thermodynami
allyusing su
h ma
ros
opi
 variables as pressure and temperature.Se
ondly, a thermodynami
 study of in�nite nu
lear matter is a way to 
ondensethe knowledge of its physi
s into a 
on
ise des
ription. Then all the variety of nu
lei



9and nu
lear pro
esses may be understood by extrapolation of the properties of thein�nite system to the properties of �nite 
harged drops, like individual nu
lei. Thispoint 
an be illustrated using a simple example. Suppose we 
an only observe tiny
harged droplets of water. The properties of water in the droplets depend on thesize and 
harge of the droplets. However, if we know the general properties of thebulk in�nite water, we 
an always predi
t the properties of ea
h of the small dropsusing the liquid drop expansion.Thirdly, nu
lear matter may have phases. Depending on the temperature andpressure, thermodynami
 systems generally 
an form di�erent phases. A phase of asystem is a homogeneous part of the system that is separated from other parts bya distin
t boundary. Phases 
an transform into ea
h other depending on the stateof the system. This transformation is 
alled phase transition. Sin
e nu
lei display aliquid-like behavior in their ground state, 
orresponding to zero temperature, thereis the expe
tation of a nu
lear vapor phase at higher temperatures.The simplest model of liquids in 
lassi
al thermodynami
s is represented by theVan der Waals theory, whi
h des
ribes the properties of 
uids en
ompassing liquidand gas phases. A

ording to this theory, these 
uids are 
omposed of parti
les hav-ing a non-zero size and a pairwise attra
tive for
e whi
h qui
kly drops to a negligiblevalue as the interparti
le separation in
reases. It was proposed by Van der Waals in1873 as a modi�
ation to the ideal gas law. This theory des
ribes the behavior ofreal 
uids. In parti
ular, it exhibits a �rst-order phase transition between a liquid



10phase and a gas phase, as well as 
riti
ality.First-order phase transitions o

ur at pressure, temperature and 
hemi
al po-tential 
ommon to the two phases involved in the transition. Only the amounts ofthe phases 
hange, 
ausing the spe
i�
 volume (volume per unit mass) of the sys-tem to undergo a modi�
ation, whi
h o

urs primarily due to the formation of gas.If the spe
i�
 volume of the system is intermediate between those of pure phases,the phases are said to be in 
oexisten
e. Sin
e thermodynami
 states of individualphases are not a�e
ted by ea
h other's presen
e, phase 
oexisten
e does not requirethe 
onta
t of the phases.Van der Waals theory also predi
ts 
riti
ality as a 
hara
teristi
 property of theequilibrium liquid-gas systems. Above a 
ertain temperature, 
alled 
riti
al temper-ature, the Van der Waals 
uid 
annot exist in the form of a liquid irrespe
tive of theapplied pressure. Therefore, liquid and gas 
annot 
oexist above this temperature,and only gas is present in the system. The transformation from the mixed-phase re-gion to the gas-only region, that happens at the 
riti
al point, is 
alled se
ond-orderphase transition.The order of the transition has to do with a dis
ontinuity in a derivative of the
uid's free energy with respe
t to an intensive thermodynami
 variable that 
ontrolsthe transition (like temperature). In the liquid-vapor transition the �rst derivativeis dis
ontinuous, at the 
riti
al point dis
ontinuity appears in the se
ond derivative.Nu
lear matter is expe
ted to manifest the properties of a Van der Waals 
uid.



11A nu
lear gas phase has been 
onje
tured in the evaporation-like pro
ess of de
ay ofex
ited nu
lei, whi
h may be thought of as a hot liquid. Ex
itation 
an be impartedto a ground-state nu
leus, for example, by 
olliding it with a nu
leon. If the nu
leonor another proje
tile nu
leus used for 
ollision unites with the target nu
leus, andthe 
ollision energy gets evenly distributed over all the internal degrees of freedom(thermalization), a 
ompound nu
leus is formed. Irrespe
tive of the way energygets transferred to a nu
leus, the resulting hot nu
leus emits protons, neutrons and
omposite fragments. Protons and light 
omposites, like deuterons, tritons and �-parti
les, are 
alled light 
harged parti
les (LCP). The 
omposites of larger mass,like the isotopes of lithium and heavier fragments, are 
olle
tively 
alled intermediatemass fragments (IMFs). The emission of single nu
leons, LCPs and IMFs from a hotnu
leus suggests the o

urren
e of the nu
lear liquid-vapor phase 
oexisten
e, whi
his identi�ed following the analogy of nu
lear and Van der Waals 
uids.However, the thermodynami
 
ondition of phase equilibrium is not 
lear in nu
learevaporation. First of all, it is not guaranteed that thermalization o

urs beforefragment emission. Se
ondly, the nu
lear vapor phase does not stay around thenu
leus, leading to time dependent 
ooling of the drop.1.3 Nu
lear Kineti
s and Phase TransitionKineti
 
onsiderations are useful in 
larifying the equilibrium 
ondition of nu
learevaporation. The rate of drop evaporation is the number of parti
les (or fragments)



12per unit volume dn lost by the drop on the average per unit time dt. It is 
ontrolledby the liquid drop's average bulk binding energy B and the temperature T of theliquid. If the drop is thermalized, evaporation rates at di�erent temperatures followthe Arrhenius law: Rate = dndt = C(T ) exp�� BRT� ; (1.7)where C(T ) is a preexponential, whi
h may depend on the temperature, and R is thegas 
onstant. A typi
al Arrhenius plot looks like a straight line in the ln(Rate)-1=T
oordinates.With a fully thermalized liquid drop, the phase equilibrium 
an always be de�nedby the initial rate of emission from the drop just after it is allowed to evaporate. Thisinteresting fa
t 
ir
umvents the problem of the missing vapor phase in nu
lear evap-oration. The �rst vapor parti
le emitted out of the drop (nu
leus) after evaporationbegins de�nes the rate of emission at an equilibrium state of the liquid at some initialtemperature. Sin
e at equilibrium there has to be an equal 
ow of parti
les from thegas ba
k into the liquid, it is always possible to de�ne a 
orresponding equilibriumstate of the gas around the drop with the relationRate = dndt = n(T )��; (1.8)where here n(T ) is the parti
le (or fragment) 
on
entration in the gas, � is theparti
le's (or fragment's) average velo
ity, and � is the inverse 
ross se
tion, 
hara
-terizing the emission of a parti
le (or a fragment) from the nu
lear interfa
e. Sin
ethe 
ondition of phase 
oexisten
e does not require the phases to be in 
onta
t, the



13vapor phase does not have to be present, and 
an be referred to as a \virtual va-por" [More 04℄. Of 
ourse, the parti
les 
oming se
ond 
an no longer 
hara
terizethe same equilibrium state, sin
e the temperature of the liquid 
hanges. Therefore,only the �rst nu
leons or fragments emitted from the ex
ited nu
leus after its forma-tion, 
alled the �rst 
han
e emission, 
an uniquely 
hara
terize nu
lear equilibriumliquid-vapor 
oexisten
e. If these nu
leons and fragments are found to obey the Ar-rhenius law, with proper analysis te
hniques 
oexisten
e thermodynami
s may beexperimentally extra
ted and summarized in a phase diagram.1.4 Phase DiagramsThe nu
lear liquid-vapor phase diagram de�nes the regions of pure phases in thethermodynami
 P -v-T -spa
e, and is a goal of experimental nu
lear thermodynami
s,quite within the rea
h of modern dete
tor te
hnology and skillful analysis te
hniques.In fa
t, the 
onstru
tion of a �rst nu
lear liquid-vapor phase diagram has alreadybeen reported by one resear
h group [Elli 02, Elli 03℄. When �nally a

omplished,the experimental phase diagram will provide a reliable 
he
k for the mu
h moreinvolved nu
lear equation-of-state studies.Usually a phase diagram is displayed using its proje
tions onto the 
oordinateplanes, like the T -v and P -T proje
tions of water phase diagram shown in Figure1.2.In the T � v proje
tion the heavy-bell-shaped 
urve envelopes the two-phase
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Figure 1.2: Various proje
tions of a phase diagram of water.liquid-vapor region. To the left of this zone is the 
ompressed-liquid single-phaseregion, and to the right of the envelope is the superheated vapor region. The left-hand and the right-hand boundaries of the two-state envelope 
orrespond to thestates of the saturated liquid and the saturated vapor, respe
tively. The maximumof the envelope is the 
riti
al point, beyond whi
h there is no distin
tion betweenliquid and vapor. Several isobars are also shown in the �gure.The P �T proje
tion appears simpler than the T�v diagram sin
e the two-phaseenvelope is looked at on edge, and so is 
ollapsed onto a 
urved line. The line labeledL/V gives the temperature dependen
e of the vapor pressure of the liquid at theliquid-vapor 
oexisten
e.Dire
t ma
ros
opi
 measurements of nu
lear pressure and spe
i�
 volume to builddiagrams, like those in Figure 1.2, is not a feasible task, sin
e nu
lear matter is not



15available in large bulk quantities. Nevertheless, experimental determination of thenu
lear liquid-vapor phase diagram is possible indire
tly with a method that employsvapor 
lusters.1.5 The Cluster Method in Nu
lear Thermody-nami
sVapor 
lusters are groups of individual vapor atoms or mole
ules bound togetherby the short-range attra
tion. They express the tenden
y of a non-ideal gas to 
on-dense and form liquid. In fa
t, 
lusters may be thought of as tiny drops of liquid,that preform in vapor prior to 
ondensation. Far from 
ondensation the formationof 
lusters is inhibited due to higher vapor pressure of the drops in 
omparison withthe pressure of gas. Any 
luster that o

asionally forms qui
kly evaporates. On theopposite, reverse 
onditions favor the formation of 
lusters when the gas pressure be-
omes 
omparable to the vapor pressure of little 
lusters. In this 
ase, larger 
lustersa
tually have lower vapor pressure, that promotes their further growth. Therefore,every state of a gas is 
hara
terized by a temperature and density dependent distribu-tion of 
lusters a

ording to the number of parti
les in them, also 
alled 
luster size.Away from 
ondensation in the thermodynami
 P -v-T spa
e of a gas the distributionis largely dominated by monomers, whereas at 
ondensation 
lusters of ma
ros
opi
size be
ome more probable. The onset of 
ondensation is marked by an intermediate



16distribution still dominated by monomers, but having signi�
ant fra
tion of other
lusters as well.Clusters may be de�ned in a variety of ways depending on the distribution ofenergy over the internal degrees of freedom of a group of parti
les. Di�erent 
lusterde�nitions produ
e di�erent size distributions for the same state of vapor. Therefore,
luster de�nition is ne
essary to determine the state of the system that produ
ed theobserved distribution. Sin
e it is a diÆ
ult task to distinguish 
lusters by internaldegrees of freedom, usually the internal degrees of freedom are not 
onsidered in ahope that they do not 
ontribute very mu
h. Instead, 
lusters of simple de�nitionsare used, taking into a

ount but a few degrees of freedom, like the aforementioned
luster size and the number of parti
les that fa
e the outside of the 
luster (remi-nis
ent of 
luster surfa
e). Su
h restri
tion leads to the introdu
tion of the so-
alled
on�gurational 
lusters. On
e a de�nition of a 
luster is settled upon, the analysis ofa thermodynami
 system 
an be 
arried through with the 
onstru
tion of a 
lustertheory expressing a formal link between the lo
al properties of vapor, re
e
ted in
lusters, and the global properties of vapor, like the pressure P and density � (theinverse spe
i�
 volume 1=v). Di�erent 
luster de�nitions generally require di�er-ent 
luster theories, though for a parti
ular 
luster de�nition a 
luster theory maybe developed exa
tly. The main problem of a 
luster theory, however, is mat
hingtheoreti
al 
luster distributions with those experimentally observed.In nu
lear physi
s 
lusters 
an be observed dire
tly and 
ounted. They are the



17nu
lear fragments, in
luding single nu
leons as a parti
ular 
ase, that are emittedfrom the hot nu
leus. Therefore, a thermodynami
 state of nu
lear matter may bedetermined from the experimental 
luster size distribution using the mediatory roleof a 
luster theory. The problem of 
luster de�nition, however, introdu
es an elementof un
ertainty in any 
al
ulation of this sort.1.6 Clusters and Cluster TheoriesCluster theories are developed using the ma
hinery of statisti
al me
hani
s to
al
ulate the partition fun
tion of a 
uid [Path 86, Huan 87℄.A Van der Waals 
uid 
an be thought of as 
omposed of N stru
tureless parti
lesof mass m, intera
ting through a short-range two-body potential u(rij), where rij isthe distan
e between parti
les i and j. The Hamiltonian of the 
uid is the sum ofkineti
 and intera
tion energies of the parti
les:H (frig; fpig) = NXi=1 p2i2m +Xi<j u(rij); (1.9)where ri and pi are the position and momentum 
oordinates of the ith parti
le,rij = jri � rjj, and the se
ond sum is over all the parti
le pairs. In the 
anoni
alensemble, for a given volume V and temperature T , the partition fun
tion of the
uid is given byQN(T; V ) = 1N !h3N Zfrig;fpig exp(��H (frig; fpig))dr1 : : : drNdp1 : : : dpN ; (1.10)



18where � = 1=T , h is Plan
k's 
onstant, and the integration runs over the 
oordinateand momentum spa
e of every parti
le within V . Integrations over the momentum
oordinates 
an be 
arried out analyti
ally to yieldQN(T; V ) = 1N !�3N ZN (T; V ); (1.11)where � = hp2�mT (1.12)is the thermal wavelength of a parti
le, that expresses the re
ipro
al of the parti
le'skineti
 
ontribution to the 
uid's partition fun
tion, andZN (T; V ) = ZV Yi<j exp(��u(rij))dr1 : : : drN (1.13)is the 
on�gurational integral of the partition fun
tion due to the pair potentialintera
tion. If the 
uid in V is free to ex
hange parti
les with an outside reservoirat a given 
hemi
al potential � per parti
le, the relative probability of having Nparti
les in V is QNzN , where z = exp(��) is a parti
le's fuga
ity. The grandpartition fun
tion for su
h a system isL (z; T; V ) =XN�0 zNQN(T; V ) (1.14)From the grand partition fun
tion, the thermodynami
s of the 
uid 
an be 
omputedin a standard way with the following relations:�P = 1V lnL (z; T; V )� = 1v = �� ln z 1V lnL (z; T; V ); (1.15)



19from whi
h the equation of state may be derived.Clusters 
an be introdu
ed into the des
ription of the 
uid by rewriting the 
uid'sgrand partition fun
tion in terms of individual 
luster partition fun
tions. This 
anbe done assuming various degrees of approximation.1.6.1 Non-intera
ting ClustersThe simplest approximate way to express the partition fun
tion of a 
uid through
lusters is to assume their independen
e. Clusters of given size a (number of parti-
les) are 
hara
terized by the 
luster partition fun
tion qa(T; V ), that re
e
ts all the
luster's internal properties, and by a 
hemi
al potential �a = a�, that shows the
hange in the system's free energy due to the introdu
tion of the 
luster. The parti-tion fun
tion of the 
uid is then fa
torizable in terms of 
luster partition fun
tions[Sato 03℄: L (z; T; V ) = 1Ya=1 exp(qa(T; V )za) (1.16)This assumption is 
alled the ideal-
luster-gas approximation, in whi
h 
lusters areassumed to behave like an ideal gas. It 
an be demonstrated [Sato 03℄ that withinthe ideal-
luster-gas approximation the pressure P , the density �, and the 
luster
on
entration na of the system of the volume V are given by�P = 1V 1Xa=1 qaza;� = 1V 1Xa=1 aqaza;



20na(�; z) = 1V qaza (1.17)Eliminating z between the pressure and density equations leads to the equation ofstate of the system, whi
h is 
ompletely de�ned by the qa values. An important
onsequen
e of the theory is that the equation of state of a system 
an be expressedthrough sums over the 
luster 
on
entrations na:�P = 1Xa=1 na� = 1Xa=1 ana (1.18)This result is valuable from the standpoint of nu
lear physi
s as it 
ompletely by-passes the problem of 
luster de�nition. Experimental 
luster distributions na 
andire
tly yield the thermodynami
s within the ideal-
luster-gas approximation.Sin
e the de�nition of a 
luster as a drop of liquid, also 
alled physi
al 
luster,
an mean many things and is not pre
ise, it is not possible to 
al
ulate the partitionfun
tion qa without spe
ifying the de�nition of a physi
al 
luster. Su
h spe
i�
ationleads to ideal-
luster-gas models, that 
an yield analyti
 results. The most prominentof them are due to Bijl [Bijl 38℄, Band [Band 39℄, Frenkel [Fren 39℄ (BBF) (who, infa
t, introdu
ed the notion of the physi
al 
luster) and Fisher [Fish 67℄.1.6.1.1 BBF ModelIn 1938-1939 Bijl, Band and Frenkel independently introdu
ed physi
al 
lusters,in whi
h they disregarded the internal degrees of freedom of a 
luster. In addition



21to that, the 
lusters were assumed to be 
ompa
t, 
hara
terized by their size a andsurfa
e s. Therefore, the potential energy of the 
luster was written as the sum ofthe bulk and the surfa
e terms:E
l = �eaa+ esa2=3; (1.19)where the term with a2=3 follows from the relation of the surfa
e of the sphere to itsvolume, and ea and es are the bulk and surfa
e energy 
oeÆ
ients, respe
tively.Sin
e the 
lusters were assumed to be 
ompa
t with a shape 
losest to the spher-i
al (not exa
tly spheri
al sin
e they were made up of spheri
al parti
les), no surfa
eentropy of the 
lusters was taken into a

ount. The partition fun
tion was derivedby integrating the position and momentum 
oordinates of the 
enter of mass of the
luster over the phase spa
e of the system:qa = V�3a3=2 exp(�[eaa� esa2=3℄); (1.20)where �=pa is the thermal wavelength of a 
luster of size a. The 
on
entration of
lusters of size a follows from the partition fun
tion a

ording to Equations 1.17:na = qazaV = a3=2�3 exp(�[eaa� esa2=3℄)za = a3=2�3 yaxa2=3; (1.21)where y = z exp(�ea) and x = exp(��es).The fun
tion y depends on the temperature and density (through z). The fun
tionx is independent of the density and is always less than unity. For a given temperatureT , x is �xed, and the 
luster size distribution na depends on density only through y.



22When y < 1, na de
reases exponentially with in
reasing a: there is no ma
ros
opi

luster, whi
h 
orresponds to the gas phase. For y > 1, na in
reases exponentiallywith in
reasing 
luster size: a ma
ros
opi
 
luster appears, indi
ating the formationof the liquid phase. At the moment when 
ondensation sets in (
oexisten
e) y =y
ond = 1 so that �
ond = �ea, where 
ond stands for 
ondensation. Therefore, at
oexisten
e the energy of the 
luster formation depends only on the 
luster surfa
e,and n
oexa = a3=2�3 exp(��esa2=3) (1.22)The BBF model was the �rst phenomenologi
al model that introdu
ed a 
learand intuitive interpretation of 
ondensation with physi
al 
lusters and gave analyti
results, sin
e the sums in Equation 1.17 
an be evaluated at any � and T . However,this model did not allow one to lo
ate the 
riti
al point, and was bound to fail at highdensities, sin
e the real 
lusters 
annot be regarded as point parti
les in 
lose-pa
king
on�gurations of the system.1.6.1.2 Fisher's Droplet ModelAnother very su

essful 
luster model was introdu
ed by Fisher in 1967. As theBBF model, Fisher's droplet model is based on the ideal gas of 
lusters approxima-tion. However, Fisher writes the partition fun
tion of the 
lusters of size a with thehelp of additional features. He allows for the entropy of the 
lusters. Clusters are notassumed to be 
ompa
t. A drop may deviate from the spheri
al shape and deform.



23Deformation is asso
iated with the 
luster's surfa
e entropy due to the fa
t that adrop of the same volume may possess many possible shapes.The mean energy and entropy of a Fisher's droplet of size a, with a mean surfa
es, are written as a sum of the surfa
e and bulk terms:E
l = �eaa+ essS
l = s0aa+ s0ss; (1.23)where ea and s0a are the volume energy and entropy 
oeÆ
ients, respe
tively, and esand s0s are the surfa
e energy and entropy 
oeÆ
ients.Sin
e the 
lusters are not 
ompa
t, Fisher introdu
es the parameter � to relatethe surfa
e and volume of a 
luster: s = a0a�; (1.24)where a0 is a 
onstant. For a perfe
t sphere � = 2=3, for a string � = 1, for anaverage 
luster surfa
e � should be somewhere in between.Instead of the 
luster potential energy, like in BBF model, Fisher writes the freeenergy of the 
luster of size a as�F
l = ��(ea + s0aT )a+ �a0(es � s0sT )a� + � ln a� ln q0V; (1.25)in whi
h he introdu
es an additional 
orre
tion to the 
luster free energy:��F
l = � ln a� ln q0V (1.26)



24The term � ln a 
omes from the topologi
al 
onsiderations of surfa
es that 
loseon themselves with � being a 
hara
teristi
 
onstant. The term proportional tolnV is the result of the integration over the position of the 
luster's 
enter of mass(translational motion), in whi
h q0 is a 
onstant, so that the thermal wavelengthsare assumed weakly dependent on the temperature and buried in q0.The 
luster partition fun
tion isqa = exp(��F
l) = q0V a�� exp(�(ea+ s0aT )a� �a0(es � s0sT )a�); (1.27)from whi
h the pressure, density and 
luster 
on
entrations 
an be inferred usingEquations 1.17 if T , �, and the model-spe
i�
 
onstants are known.In the spirit of BBF model, the 
luster 
on
entration 
an be written asna = q0a��yaxa�; (1.28)where y = z exp(�[ea+s0aT ℄) and x = exp(��a0[es�s0sT ℄). The 
ondensation beginswith the appearan
e of a ma
ros
opi
 
luster. A

ording to the value of x, two 
asesare possible. If x < 1, as in BBFmodel, the 
ondensation point (
oexisten
e) is givenby y
ond = 1, so that �
ond = �[ea + s0aT ℄. On the other hand, if x � 1 the 
lustersize distribution na exponentially in
reases when y > 1 leading to divergen
e of thepressure and density series in Equations 1.17. Therefore, 
ondensation only happenswhen x < 1, that is for T < T
 = es=s0s. This upper limit on the 
ondensationtemperature is interpreted as the 
riti
al temperature, and Fisher's model is notvalid above T
.



25Like in BBF model, at 
oexisten
e formation of Fisher's droplets is 
ontrolled bytheir surfa
e energy only. As a result the 
luster 
on
entrations simplify:na = q0a�� exp(��a0(es � s0sT )a�) = q0a�� exp(��
0�a�); (1.29)where 
0 = a0es, and � = 1�T=T
 is a 
onvenient measure of how far away from the
riti
al temperature the system is lo
ated.Fisher's model is a remarkable model. Being simple, it 
aptures all the propertiesof a Van der Waals vapor. The unknown parameters 
an be readily determined froma thermodynami
 experiment with a real vapor. As a result, a 
omplete des
riptionof a system 
an be obtained using Equations 1.17. In spite of many approximationsthat enter the model, it possesses mu
h 
exibility to hide in
onsisten
ies in theparameters without loss of the general physi
al-
luster pi
ture. Nevertheless, the
omplete disregarding of 
luster intera
tion may render the model ina

urate whenevaluating thermodynami
 variables at high 
uid densities, espe
ially in the vi
inityof the 
riti
al point.1.6.2 Intera
ting ClustersAll the ideal-
luster-gas models are fundamentally 
awed. Notwithstanding thesimpli
ity, usefulness and 
lear physi
al intuition that these models display, they arebound to be impre
ise or even wrong under 
ertain 
onditions, like at the 
riti
alpoint or other high density regimes. The ideal-
luster-gas theory appeals to unreal-isti
 approximations, like the non-intera
tion of 
lusters and their point-parti
le-like



26behavior, that is never true at 
lose pa
king. For example, at 
ondensation ma
ro-s
opi
 
lusters may appear. In the words of Stillinger [Stil 63℄, sin
e \su
h largeaggregates use up mu
h of the available vessel volume, leaving 
onsiderably less forothers, it is 
lear that only by taking 
luster noninterpenetration into a

ount 
ana proper theory of phase transitions be 
onstru
ted". Unlike the weak attra
tionthat the parti
les in a Van der Waals 
uid exert on ea
h other, the repulsion dueto �nite volume is very strong. The need to a

ount for the e�e
ts of repulsion andattra
tion between 
lusters led to the developing of intera
ting 
luster theory in the1950s. Until then only Band attempted to introdu
e �nite volume e�e
ts into hismodel [Band 39℄.If 
lusters are assumed intera
ting, their pre
ise de�nition is important before atheory 
an be built. In the theories presented below 
lusters are de�ned as groups ofparti
les obeying 
ertain geometri
 rules. Only 
on�gurational 
lusters were studiedthis way, i.e. no internal degrees of freedom of 
lusters were taken into 
onsideration,thereby restri
ting the 
luster intera
tion to the e�e
ts of noninterpenetration andweak attra
tion tails of the pair potentials.Two major 
luster theories emerged as a result of this approa
h: the theory byLee, Barker and Abraham (LBA) [LBA 73℄, and Stillinger's theory [Stil 63, Stil 67℄with follow-ups [Gill 77℄. Their development was inspired by the pioneer work ofReiss, Fris
h and Lebowitz (RFL) [RFL 59, RFHL 60, Helf 61, Lebo 65℄ on the 
uidof spheres, who �rst attempted to systemati
ally address the issues of �nite parti
le



27volume in thermodynami
 systems.1.6.2.1 RFL TheoryRFL developed their theory without the dire
t referen
e to the 
on
ept of 
lustersand methods of statisti
al me
hani
s. They 
onsidered a mixture of spheres of variousdiameters numbered from 1 to m with number densities (
on
entrations) n1 : : : nm
hara
terized by the temperature T . The spheres do not exhibit any attra
tion andintera
t only through mutual volume ex
lusion. Sin
e the spheres in the mixturehave �nite volume, putting in a new sphere requires some work in order to makeenough spa
e for it, whi
h is due to the 
hange in the 
on�gurational part of thesystem's free energy (entropi
 term). In other words, when a new sphere is inserted,it has to push other spheres aside 
reating a 
avity and 
ausing a 
hange in thefree energy of the 
uid. RFL 
al
ulate the 
avity work W (D;n1 : : : nm;D1 : : :Dm) ofinserting the sphere of diameter D into the m-
omponent mixture by assuming thatfor all values D > 0 the work 
an be approximated by a 
ubi
 polynomial:W = T�S = W0 + �W�D ����D=0D + 12 �2W�D2 ����D=0D2 + �6D3P; (1.30)where W0 is the work of inserting a point (volumeless) sphere, P is the pressure, and�S is the 
hange in the 
uid's entropy. This approximation was prompted by the
avity formation work in the two extreme 
ases of inserting a no volume and a largevolume spheres. If a point sphere with D = 0 is put in, 
ounter to our intuition,the 
hange in the 
uid's free energy is not zero. Even though no 
avity is formed,



28the point sphere restri
ts the available spa
e for other spheres, sin
e their 
enters
annot approa
h the point sphere 
loser than their radii. In other words, the pointsphere 
annot exist inside of other spheres in the mixture. Using integral-equationte
hniques, RFL formally 
al
ulate thatW0 = �T ln"1� mXi=1 �6D3i ni# ; D = 0 (1.31)Sin
e ni are number densities, i.e numbers per unit volume, and �=6D3i are spherevolumes, the sum represents the total fra
tional volume whi
h is o

upied and is notavailable to the point sphere. A Boltzmann fa
tor of W0, namely exp(��W0), yieldsthe redu
tion in probability to observe a point sphere in the 
ontainer due to �nitevolume of other spheres.On the other hand, inserting a very large sphere in the mixture requires thework P�V , where �V is just the volume of the sphere �=6D3. Therefore, the 
ubi
polynomial in Equation 1.30 represents the asymptoti
 
ases plus 
ontributions atintermediate diameters due to the surfa
e and 
urvature of the sphere expressed asa Taylor expansion up to the se
ond order.RFL were able to derive all the 
oeÆ
ients in Equation 1.30 and to build theequation of state of the 
uid of spheres. They demonstrated the magnitude of the�nite volume e�e
ts in 
uids and introdu
ed 1 the notion of 
avity formation, that1The basi
 prin
iples of 
avity formation have been known for a long time. They 
ome fromgeneral statisti
al me
hani
al 
onsiderations that ifW is the reversible work required for the 
reationof a 
avity of an arbitrary shape, then the probability of observing a 
u
tuation in whi
h su
h a
avity forms is given by the Boltzmann fa
tor exp(��W ) [Tolm 38℄. However, RFL were the �rstto apply this notion to a

ount for the ex
luded volume e�e
ts in 
uids.



29is 
entral to the understanding of the 
luster intera
tion.1.6.2.2 Stillinger's TheoryStillinger was the �rst to rigorously apply the idea of 
avity-formation in 
uid tophysi
al 
lusters within the framework of statisti
al me
hani
s. Inspired by the workof RFL, he 
onsidered BBF 
lusters as a starting point of his theory negle
ting theinternal degrees of freedom of the 
lusters. However, unlike BBF 
lusters, Stillinger's
lusters were exa
tly de�ned as 
on�gurational groups of parti
les separated by dis-tan
es not ex
eeding a 
hara
teristi
 distan
e D, de�ned as a minimum of the pairpotential u(r), where r is the interparti
le distan
e (see the left panel of Figure 1.3).If a sphere of radius D is drawn around ea
h parti
le in a snapshot of the system(see the right panel of Figure 1.3), then only parti
les with interse
ting spheres mayform 
lusters. Otherwise single parti
les remain un
lustered. Su
h 
on�gurational
luster de�nition allowed Stillinger to improve upon BBF de�nition eliminating the
ondition of 
ompa
tness. Clusters of any shape and surfa
e 
ould form, e�e
tivelyintrodu
ing the surfa
e entropy.Cavity formation in Stillinger's theory plays the 
entral role. Like for RFLspheres, the appearan
e of a 
luster in the midst of other 
lusters requires mak-ing a spa
e for it, whi
h 
osts an extra amount of free energy. This free energy isdue to the 
hange in the 
on�gurational part of the 
uid's free energy. Thus forminga 
luster in the 
uid requires some free energy to put the parti
les together plus an



30u(r)
r

6
--D � DFigure 1.3: Left panel: a s
hemati
 of the interparti
le pair potential. Right panel:de�nition of Stillinger's 
lusters. The large 
ir
le visualizes the 
on
ept of the 
avity.extra free energy to insert the new 
luster in the medium of other 
lusters pushingthem aside. For this reason, 
lusters intera
t primarily due to their geometry. Theexa
t me
hani
s of the intera
tion, whi
h Stillinger dubbed \geometri
al interfer-en
e", may be viewed loosely as a requirement that two 
lusters, say of size s andt, not approa
h too near lest they be 
ounted erroneously as a single 
luster of sizes+ t. Therefore every 
luster has to have a \prote
tive" shell or 
avity around it inorder to avoid loosing its identity. See how this idea is illustrated in Figure 1.3). Thelarge 
ir
le separates the area around the 
luster of size four, whi
h is not a

essibleby the single parti
les, unless the 
luster of size �ve is formed. This 
avity restri
tsthe 
on�gurational spa
e of other 
lusters in the system, damping their abundan
esand e�e
tively repelling the parti
les.The same 
avity 
an also attra
t parti
les due to the tails of pair potentials, a



31mu
h weaker e�e
t then repulsion.To des
ribe 
luster interferen
e quantitatively, Stillinger rigorously introdu
edthe notion of the 
avity formation free energy. A system, like in Figure 1.3, 
anbe 
hara
terized by a grand partition fun
tion exp(��
), where the negative grandpotential �
 
an be identi�ed as the pressure of the system P times its volume V :�
 = PV . If now a 
luster of size a and some �xed shape is pla
ed in a �xed positionin the 
ontainer (like the 
luster of size four in Figure 1.3), it 
reates an impenetrable
avity around it that is not a

essible by other parti
les in the volume. The grandpartition fun
tion of parti
les in the 
ontainer ex
luding the 
avity with the �xed
luster is exp(��
a[r℄), where 
a[r℄ again is the grand potential of the system withthe ex
luded 
avity, and r stands for radius-ve
tors of the parti
les in the 
lusterwhi
h determine the exa
t lo
ation and shape of the 
luster. Stillinger introdu
edthe quantity pa[r℄ to be equal to the probability that the a parti
les of the same
luster (serially numbered and regarded as distinguishable) simultaneously o

upythe �xed 
avity volume (
luster formation probability). He rigorously demonstratedthat this 
luster formation probability 
an be expressed in terms of the partitionfun
tions exp(��
) and exp(��
a[r℄) as follows:pa[r℄ = p0a exp(��[
a[r℄� 
℄); (1.32)where p0a is the probability of forming the 
luster in an empty 
ontainer that doesnot have any other parti
les ex
ept those forming the 
luster (ideal 
luster gas), andthe di�eren
e 
a[r℄�
 = Wa[r℄ is the reversible isothermal work required to 
reate



32the 
avity around the 
luster of size a.Owing to the probability 
hara
ter of pa[r℄, this fun
tion may be integrated overall positions inside the 
ontainer volume V to give Na(z), the average number of
lusters of size a: Na(z) = ZV pa[r℄dr = q0a(z)za; (1.33)where the 
luster partition fun
tion q0a(z) is now fuga
ity dependent due to thefuga
ity dependen
e of Wa[r℄, whi
h 
an be rewritten as Wa[r; z℄:q0a(z) = qa ZV exp(��Wa[r; z℄)dr (1.34)Then the density is �(z) = 1V 1Xa=1 aq0a(z)za = 1Xa=1 ana(z); (1.35)where na(z) is the 
on
entration of 
lusters of size a. The pressure P of the wholesystem may be obtained integrating Equation 1.35 with respe
t to z at 
onstant �:�P = Zz �(z)d ln z; (1.36)whi
h requires expli
it knowledge of Wa[r; z℄. Altogether, the pressure and densityequations 
an be written similarly to Equations 1.17 of the ideal-
luster-gas approx-imation: � = 1V 1Xa=1 aqaza ZV exp(��Wa[r; z℄)dr�P = 1V 1Xa=1 qaza ZV aza Zz (z0)a�1 exp(��Wa[r; z0℄)dz0dr



33na = 1V qaza ZV exp(��Wa[r; z℄)dr; (1.37)from whi
h the equation of state 
ould be found by eliminating z, if it were possible.Unlike the ideal-
luster-gas approximation, additional 
omplex position and fuga
itydependent manipulations appear due to 
luster intera
tion.Stillinger derived a Mayer 
luster expansion 2 for the quantities Wa[r; z℄ andexpli
itly demonstrated their dependen
e on the global thermodynami
 variables ofpressure and density. S
hemati
ally this expression 
an be written as follows:�Wa[r; z℄ = �Pva + f [r; �℄ (1.38)where va is the volume of a 
avity around the 
luster of size a, and f is a position and
luster size dependent fun
tion of density �. Equation 1.38 demonstrates that thepressure and density 
ontributions to Wa[r; z℄ are always separable, and that onlythe density 
ontribution is position dependent. Sin
e Wa[r; z℄ depends on the globalsystem properties, equilibrium 
luster abundan
es in 
uid are not independent, likein the ideal 
luster gas. The pressure and density 
an no longer be found throughsimple summations in Equations 1.17, but rather require a sear
h for a self-
onsistentsolution of Equations 1.37.2Mayer's 
lusters and expansions employing them were �rst introdu
ed by Mayer in 1937[Maye 40℄. These 
lusters have nothing to do with physi
al 
lusters in 
uids, and should rather be
alled graphs that 
onstitute a 
onvenient mathemati
al abstra
tion that allows expression of the
uid's partition fun
tion as an in�nite sum of independent 
omponents. Mayer's N -parti
le graphsare exa
tly de�ned as 
olle
tions of N distin
t 
ir
les numbered 1; 2; 3; : : :; N , with any number oflines joining the same number of distin
t pairs of 
ir
les. Thus every 
ir
le in a graph is atta
hedto at least one line, and every 
ir
le is joined dire
tly or indire
tly to all other 
ir
les in the graph.



341.6.2.3 LBA TheoryLBA presented a formal theory of physi
al 
lusters whi
h a

ounted for bothinter
luster for
es and geometri
al interferen
e. Their formal theory is exa
t for anyreasonable de�nition of 
on�gurational physi
al 
luster, like Stillinger's 
luster. Asan example in their work they adopted a de�nition of physi
al 
luster, introdu
ed byReiss, Katz, and Cohen [Reis 68, Reis 70℄, whi
h requires that ea
h member mole
ulelie within a spheri
al volume of pres
ribed radius Ra whose 
enter is the 
enter ofmass of the group of a parti
les.LBA used their theory only for Monte Carlo studies of individual 
lusters. Theydid not attempt to 
al
ulate the equation of state of the 
uid, as Stillinger did.Therefore, LBA theory is not �tting as a tool for thermodynami
 analysis of a systemthrough 
lusters. Rather it explores properties of individual 
lusters as they 
hangewith temperature and de�nition.The main reason for mentioning LBA theory here is due to the important 
on
lu-sion that they arrived at studying various 
on�gurational 
luster de�nitions. Theyfound that a 
luster's free energy is almost independent of its de�nition provided thatthe de�nition is reasonable and the temperature is suÆ
iently low. Using this 
on
lu-sion, LBA stressed that Stillinger's theory, being a 
omplete theory for a parti
ulartype of physi
al 
lusters, would be approximately valid for any 
luster de�nition.This 
on
lusion is very important for the resear
h presented in this thesis, sin
enu
lear 
lusters are not exa
tly de�ned. On the basis of LBA work, one may hope



35that nu
lear 
luster distributions possess signatures of geometri
 interferen
e whi
h
an be identi�ed within the s
ope of Stillinger's theory.1.7 Building a Nu
lear Phase Diagram Using Clus-tersIn ma
ros
opi
 systems, like water or argon, the use of 
luster theories as ameans to build a phase diagram is not of primary importan
e, sin
e other moredire
t te
hniques 
an be used. Cluster models, like Fisher's model, are rather oftheoreti
al value and are employed to explore and identify the formation of 
lustersin real 
uids using thermodynami
 data obtained elsewhere.In nu
lear physi
s the situation is reversed, sin
e 
lusters 
an be readily dete
ted,but no dire
t measurement of nu
lear vapor pressure is feasible. Here 
luster mod-els be
ome handy as mediators providing re
ipes to analyze experimental nu
learfragment abundan
es and to draw 
on
lusions about the state of the system thatprodu
ed these fragments.It has been found experimentally that the �rst-
han
e emission yields of nu
learfragments obey the Arrhenius law [More 97, Elli 02℄. First-
han
e fragment yields areobtained event by event from hot nu
lei in nu
lear evaporation experiments. Yieldsare rates multiplied by the 
hara
teristi
 time of emission, and are proportionalto 
on
entrations through Equation 1.8. Figure 1.4 demonstrates an example of
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Figure 1.4: Experimental yields of nu
lear fragments from the rea
tion of 8 GeV/
� on gold. Lines represent �ts with Fisher's model.yields per nu
leon of the parent nu
leus YA for several nu
lear fragments at varioustemperatures using the lnYA-1=T -
oordinates [Elli 02℄. Clearly, the plots are verylinear. On the basis of the initial rate pi
ture, linearity of the �rst-
han
e nu
learArrhenius plots experimentally validates the thermodynami
 approa
h to the analysisof nu
lear evaporation. First-
han
e nu
lear fragment yields bear dire
t experimentalinformation about the equilibrium liquid-vapor 
oexisten
e of nu
lear matter.The simplest way to build a liquid-vapor phase diagram from 
lusters is to use theideal-gas-of-
lusters approximation at 
oexisten
e. This approximation disregardsthe problem of detailed 
luster de�nition, and 
an be applied to nu
lear 
lustersdire
tly if they are assumed not to intera
t. Looking at Equations 1.18, it be
omes
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lear that the pressure and density 
an easily be obtained by summing the 
on
en-trations and size-weighted 
on
entrations of 
lusters, respe
tively. However, in the
ase of nu
lear 
lusters there are 
ompli
ations that require additional manipulationsto disentangle relevant and non-relevant 
ontributions to the 
luster yields.Nu
lear 
luster distributions su�er from the e�e
ts of Coulomb intera
tion. Whena 
ompound nu
leus readies itself to emit a fragment, the formation free energy ofthe fragment is not only due to its surfa
e but also to the Coulomb intera
tion be-tween the fragment and the residual nu
leus, as well as to the Coulomb self-energyof the fragments. In fa
t, Coulomb intera
tion is ruinous to the whole pi
ture ofequilibrium phase transition. More detailed dis
ussion on this subje
t will be pre-sented later in this 
hapter. For now it is important to realize that the goal of nu
learthermodynami
s is the study of un
harged matter, undisturbed by Coulomb e�e
ts.To this end, 
omplete removal of Coulomb intera
tion from the pi
ture 
an remedythe problem and lead to the a
hievement of the goal. Therefore, nu
lear 
lusterdistributions need to be adjusted a

ordingly by dividing out the part of the freeenergy whi
h is due to the Coulomb intera
tion. Sin
e the behavior of the Coulombfor
e is well known analyti
ally, this pro
edure presents no fundamental diÆ
ulty.\Filtered" 
luster distributions 
an be summed up using appropriate relations for Pand � to obtain the phase diagram [More 03℄.The ideal-
luster-gas-based phase diagram 
ould have been obtained just usingEquations 1.18, if it were not for the fa
t that experimental fragment distributions
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omplete. They are in
omplete in terms of the 
luster size and in terms of thetemperature. InsuÆ
ien
y of temperature points is not a fundamental problem. It
an be solved by improving upon the experimental te
hniques. The insuÆ
ien
y of
luster sizes in a data set, however, presents an insurmountable restri
tion. The ratepi
ture, des
ribed earlier in the text, 
annot be applied to single nu
leons and light
harged parti
les for the reason of multiple 
han
e emission. Unlike heavy fragments,nu
leons and LCPs have a high probability to be emitted from the residual nu
leusafter the emission of the primary fragment, as well as from the primary fragment itselfbefore it rea
hes a dete
tor. As a result, nu
leon and LCP distributions representa mixture of the system's states, among whi
h only one state is equilibrium (�rst-
han
e) at the initial temperature, while others are due to lower temperatures. Heavyfragments, on the other hand, are mostly emitted �rst-
han
e. Their multiple-
han
eprobabilities are extremely low, so that their e�e
ts on the fragment's distributionsare less then statisti
al error of the experiment itself. Therefore, use of Equations1.18 is frustrated owing to the loss of the most important 
ontribution from the lightfragments.To over
ome the insuÆ
ien
y of data, missing light-fragment distributions haveto be re
onstru
ted. To a
hieve this re
onstru
tion, however, detailed knowledge ofthe fragment's free energy is a must. Su
h knowledge 
an be obtained from a model.Fisher's droplet model has been re
ognized as the most elaborate and elegant among
luster models. It also allows simple estimation of the 
riti
al temperature. To
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Figure 1.5: Appli
ation of Fisher's model to nu
lear fragment distributions.employ Fisher's model, experimental fragment distributions must be �tted with the
oexisten
e expression using Equation 1.29 to determine unknown model parametersfor the system. In addition 
orre
tions should be in
luded to �lter out the Coulombe�e
ts. Uniqueness of the Fisher's parameters for the whole system 
an be a
hievedby �tting all the available distributions simultaneously [Elli 05℄. Therefore, the over-all te
hnique should 
onsist of using the expressionna = q0a�� exp(��
0�a�) exp(���FCoul) (1.39)to �nd the best set of Fisher's parameters, whi
h simultaneously minimize the resid-ual sum of all the available experimental distributions. The Coulomb free energy
orre
tion �FCoul 
an be estimated analyti
ally:�FCoul = FResCoul:�Self + F FragCoul:�Self + F Frag:�Res:Coul � FCompCoul:�Self ; (1.40)



40where FCompCoul:�Self is the initial 
ompound-nu
leus Coulomb self-energy, FResCoul:�Self isthe �nal residual-nu
leus Coulomb self-energy, F FragCoul:�Self is the fragment Coulombself-energy, and F Frag:�Res:Coul is the fragment-residual Coulomb intera
tion energy.The self-energy 
ontributions 
an be estimated assuming spheri
ity. To 
al
ulatethe intera
tion energy 
ontribution the tou
hing-spheres approximation 
an be used[More 03℄.If the system obeys the 
onditions of the Fisher's model (short-range intera
tion,thermal emission, fragment independen
e, distin
tiveness of the liquid and vaporphases), the minimization 
onverges, and the s
aled fragment distributions should
ollapse on the same line, as shown in Figure 1.5 for the fragment yields in threedi�erent experiments [Elli 03℄. This 
ollapse of the s
aled distributions is the 
har-a
teristi
 feature of the model's appli
ability.The liquid-vapor phase diagram is obtained using Equations 1.18 with Fisher'sexpressions for the 
on
entrations:�P = 1Xa=1 q0a�� exp(��
0�a�)� = 1Xa=1 aq0a�� exp(��
0�a�); (1.41)where the model parameters are those extra
ted from the �t. It should be noti
ed,however, that the Coulomb 
orre
tion has been removed from 
onsideration when
al
ulating the 
oexisten
e thermodynami
 variables thereby guaranteeing the valid-ity of the obtained phase diagram for the un
harged nu
lear matter.
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Figure 1.6: (Left panel): The redu
ed pressure-temperature phase diagram: the thi
kline shows the 
al
ulated 
o-existen
e line, the points show sele
ted 
al
ulated errors,and the thin line shows a �t to the Clausius-Clapeyron equation. (Right panel): Theredu
ed temperature-density phase diagram: the thi
k line is the 
al
ulated lowdensity bran
h of the 
o-existen
e 
urve, the points are sele
ted 
al
ulated errors,and the thin lines are a �t to and re
e
tion of Guggenheim's equation.The pro
edure outlined above has been used by Elliott et al. [Elli 02℄ to 
onstru
tthe �rst estimation of the nu
lear liquid-vapor phase diagram. They used nu
learfragment distributions from the Indiana Sili
one Sphere (ISiS) experiment to yieldthe results shown in Figure 1.6. The proje
tions are presented in redu
ed form, sothat the pressure, density and temperature are divided by their 
riti
al values. Onlythe gas part of the phase diagram is dire
tly extra
table from the experiment. TheP � T proje
tion does not su�er from this restri
tion, sin
e the vapor and liquidbran
hes 
oin
ide. Using the integral form of Clapeyron-Clausius equation for anideal gas PP
 = exp��HvapT
 �1� T
T �� ; (1.42)
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lear heat of vaporization �Hvap has been evaluated from this proje
tion.The bell-like T �� proje
tion 
an only be 
ompleted using additional informationabout the liquid bran
h. Su
h additional information 
omes from Guggenheim'sequation [Gugg 45, Gugg 93℄�liq:;vap:�
 = 1 + b1�1 � TT
�� b2�1 � TT
�� (1.43)where b1 and b2 are empiri
al parameters, and � here represents a parameter, whi
hwithin Fisher's model 
an be 
al
ulated as� = � � 2� (1.44)Using the Guggenheim equation to �t the vapor bran
h of the phase diagram, theliquid bran
h has been obtained by 
hanging sign in front of b2 as shown in Figure1.6.More 
omplex 
luster te
hniques involving intera
ting-
luster theories have neverbeen employed to build a nu
lear phase diagram. Therefore, it remains to be seen ifsu
h te
hniques 
an e�e
tively be used to augment the existing Fisher's formalism.This thesis will make an attempt to shed some light on the issue and to introdu
ea te
hnique that a

ounts for 
luster interferen
e a

ording to Stillinger's and RFLmethodology with some modi�
ations spe
i�
 to 
oexisten
e.



431.8 Appli
ability of Equilibrium Thermodynam-i
s to Nu
lear EvaporationThere are several 
riti
isms of the attempt to use equilibrium thermodynami
sas a tool in nu
lear physi
s.First of all, there is a doubt that a hot-nu
leus liquid has enough time to rea
hthermal equilibrium before it emits the �rst gas fragment. If liquid itself is notin the state of thermal equilibrium, the �rst vapor fragment does not point to theequilibrated liquid-vapor 
oexisten
e, and the whole thermodynami
 pi
ture is lost.Formation of a hot nu
leus happens in a dynami
 pro
ess of 
ollision between thenu
leus and a proje
tile parti
le. The 
ollision may be strong enough that promptnu
leons are kno
ked out. Clearly, dynami
s should play an important part in thispro
ess, hardly leaving any pla
e for stati
 equilibrium.There is no absolute answer to this 
riti
ism at the present time. The important
lue 
omes from the timing of the emission. Prompt fragments, whi
h 
ome outshortly after the moment of 
ollision and are mostly single nu
leons and LCPs, arenot taken into 
onsideration. On the other hand, IMFs are very rare to appear asprompt. They are mostly emitted later after the pro
ess of thermalization whenthe initial energy of 
ollision is equally distributed over all the internal degrees offreedom. There is no absolute guarantee that IMFs are emitted from a 
ompletelythermalized nu
leus. However, there is mu
h experimental eviden
e that this is so
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Figure 1.7: (Left 
olumn): The probability P (n) for emitting n IMFs is shown as afun
tion of Et for 129Xe-indu
ed rea
tion on di�erent targets: natCu, 89Y and 165Ho.Transverse energy Et = aT 2 is a measure of temperature, where a is a 
onstant. Thesolid 
urves are binomial 
al
ulations of P (n). (Right 
olumn):The re
ipro
al of thesingle fragment emission probability 1=p is shown as fun
tion of 1=pEt for di�erenttargets (natCu, 89Y, 165Ho, 197Au). The line is a linear �t to the data.



45[More 97℄. The thermal s
aling of fragment distributions (their 
hange with thetemperature) is su
h that it is 
hara
teristi
 of thermalized systems (Arrhenius law).In addition to that, redu
ibility of fragment number distributions presents anotherproof of thermalization. Redu
ibility is the property of the IMF number distributionP (n), with n being a number of IMFs, to be a fun
tion of the elementary probabilityp of emitting one fragment a

ording to a statisti
al law, like binomial or Poissonian.Figure 1.7 demonstrates how knowledge of p 
an a

ount for all observed fragmentnumber distributions. Su
h redu
ibility is only possible if the fragments are formed
ompletely independent of ea
h other. Fragment independen
e is indi
ative of thela
k of dynami
al e�e
ts and 
on�rms setting in of thermal equilibrium. In additionto that, the thermal s
aling of the elementary probability p points to the barrier-
ontrolled statisti
al emission.As an aside it is important to mention that independen
e of fragment emissionalso validates the use of Fisher's model, whi
h requires that the 
lusters la
k inter-a
tion.Se
ondly, there is a 
ompli
ation with the presen
e of the Coulomb for
e betweenthe nu
leons in the nu
leus. The Coulomb for
e is long-range and hurts the equilib-rium emission pi
ture. This issue has already been tou
hed upon in the dis
ussionof the methodology of �ltering the Coulomb e�e
ts from the data. Here, however, ajusti�
ation for the methodology will be presented in more detail [More 03℄.For an ex
ited thermalized nu
leus (a hot droplet), there may be two possible
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Figure 1.8: A s
hemati
 representation of the Coulomb 
orre
tion when the emittedfragment is bound (left panels) and unbound (right panels).s
enarios of emitting a fragment (vapor): the fragment may be bound (Q-valueis negative) or unbound (Q-value is positive). If the fragment is bound and haszero 
harge (neutron), a step is observed at the droplet radius equal to the fragmentbinding energy. For non-zero 
harges, a maximumBC is observed at the approximatedistan
e of the droplet and fragment in 
onta
t. From there the potential de
reasesa

ording to the Coulomb law and settles down at in�nity to a value equal to thebinding energy of the fragment, as depi
ted in the left panel of Figure 1.8. In this 
asethere is no diÆ
ulty in de�ning a gas phase in equilibrium with the liquid droplet.The Coulomb barrier BC does not alter the equilibrium. Only kineti
ally it mayslow down its a
hievement. The standard 
luster te
hniques of the previous se
tion
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an be used to obtain the phase diagram of the un
harged matter, �ltering out theCoulomb e�e
ts simply as an unne
essary information.A more problemati
 situation is shown in the right panel of Figure 1.8 that arisesif the emitted fragment is unbound due to the Coulomb intera
tion. In this 
ase thedroplet is metastable, and the ground state of the system 
onsists of two or morepie
es of the original drop at in�nity. Thus it is not possible to speak properly of thisdrop in statisti
al equilibrium with its vapor. For a nu
leus su
h as gold the groundstate 
onsists of three fragments of 
harge about 30 and is more than a hundredMeV below the mass of the gold nu
leus. Therefore, in equilibrium of a gold-likedrop with its vapor, the most probable 
on�guration for the liquid would be thethree fragments of the true ground state, and not the metastable 
on�guration ofthe whole gold nu
leus. This situation is prohibitive to de�ne phase 
oexisten
e fordroplets larger than A � 30. However, there is a way to avoid this diÆ
ulty fromthe experimental point of view. The phase 
oexisten
e 
an be de�ned approximately.Again the solution 
omes from the 
onsideration of the timing. On a suÆ
iently shorttime s
ale the fa
t that the droplet has unbound 
hannels does not play a signi�
antrole. The fragment still has to jump over a barrier (
ombined surfa
e and Coulomb)to leave the nu
leus. If so, the �rst-
han
e emission rates from the metastable statestill qualify as equilibrium as long as the droplet is thermalized. The rates then 
anbe 
orre
ted for the Coulomb e�e
ts, leading to the rates of de
ay of an un
hargeddrop, for whi
h all 
hannels are bound: a situation identi
al to the 
ase of �ltering



48out Coulomb intera
tion in low-mass nu
lei that do not have unbound 
hannels.Thus the te
hnique of Coulomb �ltering is universally appli
able to any experi-mental 
luster data without violating the 
ondition of phase equilibrium in un
hargednu
lear matter.Thirdly, the nu
lear droplets are of �nite size as 
ompared to the in�nite nu
learmatter. Therefore, the nu
lear 
luster distributions have the �nite-droplet-size e�e
tsburied in them, whi
h may lead to re
overing the unwanted pressure of a �nitesystem. For example, simple 
lassi
al 
onsiderations show that the vapor pressureof a �nite-size liquid drop is higher than that of a bulk liquid [More 02℄. It followsfrom the liquid drop expansion of the molar evaporation enthalpy:Hm = H0m + 
A2=3A ; (1.45)where H0m is the molar evaporation enthalpy of the in�nite system, A is the size ofthe drop, and 
 is a 
oeÆ
ient proportional to the surfa
e tension. The Clapeyron-Clausius equation for an ideal gas then gives:P = P1 exp� 
A1=3T � ; (1.46)where P1 is the vapor pressure of the in�nitely large amount of liquid. Unless thesee�e
ts are a

ounted for, the resulting phase diagram is bound to represent the �nitematter.An answer to this 
riti
ism has been worked out by Moretto using the 
omplementmethod [More 05℄. It 
onsists of evaluating the 
hange in free energy o

urring when



49a 
luster is moved from one phase to another. In the 
ase of a �nite liquid drop inequilibrium with its vapor, this is done by transferring a 
luster of any given sizefrom the liquid drop to its vapor and by evaluating the energy and entropy 
hangesasso
iated with both the vapor 
luster and the residual liquid drop (
omplement).This a

ounting 
an be generalized to in
orporate other energy terms, as it hasalready been shown for Coulomb energy. Fisher's formula in Equation 1.29 has tobe modi�ed in the following way:na = q0 �a(ad � a)ad ��� exp(��
0�[a� + (ad � a)� � a�d ℄); (1.47)where ad is the size of the residual 
omplement drop. Then, nu
lear 
luster distribu-tions are analyzed with the 
omplement in
luded, whereas the phase diagram of thein�nite matter is 
onstru
ted with the �nite-size e�e
ts taken out. Therefore, the�nite-size \�ltering" is a

omplished in the same spirit as Coulomb �ltering.



501.9 Simple Models to Test Cluster Te
hniquesThe su

essful use of 
luster te
hniques to re
over the thermodynami
s of thenu
lear phase transition is impossible without the assuran
e that these te
hniquesare at least valid for simple test models that mimi
 phase 
oexisten
e. If a 
ertain
luster analysis te
hnique produ
es an a

urate liquid-vapor phase diagram for amodel, there is a hope it might work for the nu
lear data as well. Relian
e on a testmodel is an ines
apable weakness of the 
luster method in nu
lear physi
s, sin
e itis hardly possible to have an exa
t nu
lear 
luster de�nition uniquely 
orrespondingto the experimental distributions. If it were possible, an exa
t theory 
ould be builtto analyze the distributions, and the assuran
e would be presented by the theoryitself. Sin
e su
h theory does not exist, di�erent 
luster de�nitions must be testedon a simulated thermodynami
 system with a known equation of state to 
ome upwith a de�nition that best reprodu
es the system's thermodynami
s.1.9.1 The Latti
e Gas ModelAmong su
h test models the latti
e gas model is the simplest and most illustrative[Path 86, Huan 87℄. It is a model of a simple 
uid, in whi
h atoms of the 
uid areassumed to take on only dis
rete positions in spa
e. These dis
rete positions form alatti
e of given geometry with a �xed number 
 of nearest neighbors to ea
h latti
esite. Ea
h latti
e site 
an be o

upied by at most one atom. Figure 1.9 illustratesa 
on�guration of a two-dimensional latti
e gas in whi
h the atoms are represented



51              Figure 1.9: A sample realization of the latti
e gas.by solid 
ir
les. The kineti
 energy of an atom is negle
ted, and it is assumed thatonly nearest neighbors intera
t with a 
onstant intera
tion energy �J0 of a pair.The latti
e is usually assumed to be periodi
 to avoid the e�e
ts of the boundary, sothat parti
les in one row or a 
olumn (a two-dimensional 
ase) on the opposite sidesof the latti
e are 
onsidered nearest neighbors. The potential energy of the systemis equivalent to that of a 
uid in whi
h atoms are lo
ated only on latti
e sites andintera
t through a two-body potential v whi
h 
an assume three possible values:v= 8>>>>>><>>>>>>: 1 if atoms are in the same site�J0 if atoms are in nearest-neighbor sites0 otherwise: (1.48)Suppose a latti
e gas 
ontainer has N sites (49 in the example), and the numberof atoms in the system is Na (14 in the example). Also let Naa be the total numberof nearest-neighbor pairs (6 in the example). The total energy of the latti
e gas isELG = �J0Naa; (1.49)



52and the partition fun
tionQLG(Na; T ) = 1Na!Xfag exp(�J0Naa); (1.50)where T is the temperature in energy units (no Boltzmann 
onstant k), � = 1=T , andthe summation extends over all ways fag of distributing Na distinguishable atomsover N latti
e sites. The grand partition fun
tion of the gas on N sites (a
ts like thetotal volume V if one site is equated to a unit volume) isLLG(z;N; T ) = Na=NXNa=0 zNaQLG(Na; T ); (1.51)where the fuga
ity is z = 1�3 exp(��) (1.52)with � being the 
hemi
al potential per atom. Noti
e how the kineti
 motion isinserted into the grand partition fun
tion of the latti
e gas by making thermal wave-lengths a part of the fuga
ity. The equation of state 
an be inferred from the grandpartition fun
tion in a standard way:�PLG = 1N lnLLG(z;N; T )�LG = 1N z ��z lnLLG(z;N; T ) (1.53)The latti
e gas model is non-trivial, and qualitatively reprodu
es all the prop-erties of a 
uid. It displays the �rst-order phase transition and 
riti
ality. Thethermodynami
s of the latti
e gas at 
oexisten
e in two dimensions have been found
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Figure 1.10: P -v-diagram for a two-dimensional latti
e gas. The solid 
urve is theexa
t boundary of the two-phase region.exa
tly, thus making the model an ex
ellent tool to study liquid-vapor phase dia-grams. Figure 1.10 demonstrates as an example a P -v-proje
tion (v stands for thespe
i�
 volume) of the latti
e gas phase diagram in whi
h the transition region is
ompletely mapped out.
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e of the latti
e gas and the Ising model.1.9.2 The Ising ModelThe latti
e gas model has an equivalent model 
oming from a di�erent realmof physi
s. It is the Ising model, whi
h was introdu
ed in 1925 by Ernst Ising[Isin 25, Path 86, Huan 87℄ to study ferromagnetism, or the ability of some metals,like Fe and Ni, to sustain a ma
ros
opi
 magneti
 �eld as a result of spontaneousspin polarization of some atoms. In the model the system 
onsidered is a periodi
latti
e of N sites, like is shown in the right panel of Figure 1.11. Asso
iated with ea
hlatti
e site is a spin variable si (i = 1 : : : N) whi
h is a number that is either +1 or -1.If si = +1, the ith site is said to have spin up, and if si = �1, it is said to have spindown. A given set of numbers fsig spe
i�es a 
on�guration of the whole system withN+ spins up and N� spins down. Figure 1.11 shows how the equivalen
e between thelatti
e gas and the Ising model 
an readily be illustrated. The two identi
al latti
es



55simply use di�erent latti
e variables to represent intera
tion. While the Ising latti
espin variables are �1, the latti
e gas uses the \atomi
" variables 0 and 1.The energy of the Ising system in the 
on�guration spe
i�ed by fsig is de�nedto be EIfsig = �J X<ij> sisj �H NXi=1 si; (1.54)where the �rst sum runs over all the spin pairs < ij > in the 
on�guration, of whi
hthere are 
N=2 with 
 being the number of nearest neighbors of any given site. Theintera
tion energy J and the external magneti
 �eld H are given 
onstants. Thepartition fun
tion is QI(H;T ) =Xfsig exp(��EIfsig); (1.55)where the sum runs over all 2N possible latti
e spin 
on�gurations. The thermody-nami
 fun
tions are obtained in a standard manner from the Helmholtz free energy:FI(H;T ) = �T lnQI(H;T ) (1.56)An important fun
tion to mention is magnetization:MI (H;T ) = � ��H �FIT � (1.57)If H = 0 the quantity MI (0; T ) is 
alled the spontaneous magnetization.In two dimensions at zero magneti
 �eld the Ising model was solved exa
tlyby Onsager [Onsa 44, Newe 53℄ for an in�nite system, and then extended to �nitesystems by Kaufman [Kauf 49℄. Yang found the exa
t expression for the spontaneous



56Ising Model Latti
e GasN+ NaN� N �Na4J J0exp(2�(J
 �H)) z� �FIN + 12
J �H� PLG12 �MIN + 1� �LGFigure 1.12: Some of the quantities in the latti
e gas and their equivalents in theIsing model.magnetization [Yang 52℄ 3.The equivalen
e of the latti
e gas and the Ising models means that the thermody-nami
s of the two models are equivalent, and exa
t ties 
an be found [YLee 52℄. Forexample, the magneti
 �eld variable is equivalent to the 
hemi
al potential variablein the latti
e gas, the magnetization is equivalent to the density, and the sum ofthe free energy and the �eld strength (in proper units) is equivalent to the pressure.It 
an be shown that the zero �eld Ising model is equivalent to the latti
e gas inthe transition region below the 
riti
al temperature [YLee 52, Path 86℄, so that theOnsager solution 
an be used to 
hara
terize the phase boundary 
urve on the phasediagram of the latti
e gas. The equivalen
e of the two models is summarized in Table1.12.3Histori
ally it was Onsager who �rst found this expression in 1948 and demonstrated it duringa 
onferen
e on phase transitions as a 
hallenge to the audien
e to �nd the derivation. However,he never published the derivation himself. Later Yang took the 
hallenge and found the derivationin 1952. See [Brus 67℄. This histori
al review has many useful referen
es on the subje
t.



571.10 Model ClustersThe latti
e gas and Ising models naturally allow 
lusters as groups of parti
les orspins. For example, in Figure 1.11 the latti
e gas 
on�guration of parti
les 
reates�ve 
lusters of size one, one 
luster of size two, one 
luster of size three, and one
luster of size four. The equivalent Ising 
on�guration has the same 
lusters, whi
hare formed by the spins of the same orientation.These 
lusters are the simplest that 
an be 
reated on the latti
e, and are 
alledgeometri
 
lusters. The only requirement ne
essary to de�ne a geometri
 
luster isthe requirement of proximity of parti
les in spa
e. Any two parti
les are 
onsideredto belong to the same 
luster if they are lo
ated next to ea
h other, or there is anuninterrupted 
hain of nearest-neighbor parti
les in between them. Single parti
lesare also 
onsidered as geometri
 
lusters in whi
h the only parti
le has no neighbors.Geometri
 
lusters 
an be 
hara
terized by their size and outer surfa
e. The sizeis the number of latti
e sites that �t inside a 
luster, and the surfa
e is the numberof links a 
luster has with neighboring empty sites (the latti
e gas) or with spins ofopposite dire
tion (the Ising model).In regard to their shape on the latti
e geometri
 
lusters are exa
tly equivalentto self-avoiding polygons or polyhedra (SAP) (also 
alled polyominoes) dependingon dimensionality [Gutt 00, Jens 00, Gutt 01℄, whi
h 
an be pun
tured and non-pun
tured. For example, if a 
luster in the two-dimensional Ising model is equivalentto a non-pun
tured polygon, it is possible to draw a 
urve around a group of like
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Figure 1.13: Equivalen
e of a geometri
 
luster of the two-dimensional Ising modelto a non-pun
tured self-avoiding polygons (SAP).

" " " # " # " # " "" # # # " # # # " "" " # " " # " # # "" " # # # # " # # "# # # " # " " # " "# # " " # # # # # #" # # " # " # # " #" # # # # " # " " "
Figure 1.14: Equivalen
e of a geometri
 
luster of the two-dimensional Ising modelto a pun
tured self-avoiding polygons.



59spins in su
h a way that it passes along the border separating sites of opposite spins,and the resulting 
ontour forms a polygon whose fa
ets do not interse
t (Figure 1.13).Pun
tured polygons by de�nition have internal voids in the shape of non-pun
turedpolygons and 
orrespond to those 
lusters that embed spins of opposite dire
tioninside their bulk. These spins are like \holes" in the body of the 
luster that 
reateadditional surfa
e. Thus in addition to the outer 
ontour, the equivalen
e is enabledby drawing internal non-interse
ting 
ontours around the holes of the 
luster (Figure1.14).SAP are also 
hara
terized by their size and outer surfa
e (in
luding holes). Thesize is the number of unit volumes that �t inside SAP's volume, and the surfa
e isthe number of sides. Within ea
h SAP size a the surfa
es s vary from a minimum,
orresponding to a 
ompa
t non-pun
tured shape, to a maximum, whi
h representsa string. The minimum perimeters do not have a 
lear dependen
e on the polygonsize. For example, in two dimensions they roughly follow the square-root dependen
esmin = 4pa, whi
h is exa
t only for the square SAP of size a = 1; 4; 9; 16; 25; :::. Themaximum surfa
es are always exa
tly determined as linear fun
tions of the SAP size:in two dimensions smax = 2a + 2 and in three dimensions smax = 4a + 2. Betweenthe minimum and the maximum the surfa
es vary as even numbers.The equivalen
e of geometri
 
lusters to SAP is very useful. It allows the exa
t
ounting of geometri
 
lusters by size and surfa
e to obtain the numbers gSAP (a; s).Knowledge of these numbers is very important for testing 
luster analysis te
hniques.



60Obtaining gSAP (a; s) analyti
ally is an unsolved 
ombinatorial problem whi
h is be-ing worked on by several resear
h groups [Brak 90, Lin 91, Bous 96℄. In the meantime numbers of SAPs 
an be obtained numeri
ally [Jens 03℄ up to the size a = 50in two dimensions and up to the size a = 17 (only gSAP (a) and non-pun
tured)[Flam 03℄ in three dimensions. It should be emphasized, however, that the sub
lassof pun
tured polygons is relatively small 
ompared to the 
lass of non-pun
turedshapes. For instan
e, polygons of size a = 20 are only about 1% pun
tured. As the
luster size grows, the relative number of the pun
tured 
lusters in
reases to rea
habout 50% at a = 50. Latti
e 
on�gurations 
ontaining large 
lusters do not signif-i
antly 
ontribute to the overall behavior of the Ising model. As a result, a

uraterepresentation of geometri
 
lusters 
an be a

omplished by 
onsidering them to beequivalent to the non-pun
tured polygons only, disregarding the e�e
ts of pun
tures.Geometri
 
lusters are of primary attention in this work due to their simpli
ityand a 
lear physi
al pi
ture of 
luster formation, whi
h they portray.1.11 Computer SimulationsThe use of the latti
e gas model as a test ground for the 
luster te
hniquesis a

omplished through simulating it on a 
omputer with Monte Carlo methods.Many 
on�gurations, like in Figure 1.9, should be stepped through in a random ordersimulating the behavior of the gas. Of 
ourse, only a limited number of most probable
on�gurations 
an be realized this way, sin
e their total number even for a relatively



61small system is astronomi
ally large. Clusters in the reprodu
ed 
on�gurations 
anbe identi�ed and 
ounted to build the distributions, whi
h then 
an be used tore
onstru
t thermodynami
s of the model and 
ompared to the a

urately knownvalues. However, numeri
al implementation of the latti
e gas in a state on the phaseboundary, or in other lo
ations of the phase diagram requires the 
ontrol over the
hemi
al potential. Te
hni
ally, it is mu
h easier to deal with the Ising latti
e, and
hange the magneti
 �eld to simulate a parti
ular state of the latti
e gas. Therefore,numeri
al simulations of the latti
e gas are usually done using the Ising model, and
al
ulations for the phase boundary region are a

omplished with the Ising model atzero magneti
 �eld.Numeri
al Monte Carlo (MC) simulation of the Ising latti
e at a �xed tempera-ture is a

omplished using 
lustering algorithms. Clustering algorithms are rigorousinstru
tions, programmable on a 
omputer, of updating latti
e realizations in an un-biased random order. Clusters here are portions of the latti
e that are subje
t to
hange from realization to realization, and are not to be mixed with the model 
lus-ters. The larger the di�eren
e between su

essive 
on�gurations, the more stable thealgorithm is in the vi
inity of the 
riti
al temperature with respe
t to 
riti
al slowingdown. Criti
al slowing down is the time ne
essary to a
hieve thermal equilibrium(latti
e energy on the average does not 
hange in time) on the latti
e starting withan initial non-equilibrated state, say all spins up. Three major 
lustering algorithmshave been developed to date [Land 00℄.



621.11.1 Metropolis AlgorithmThis pro
edure was invented by Metropolis et al. in 1953 for sampling an ar-bitrary probability distribution. In the Metropolis algorithm, new 
on�gurations ofthe system are found by moving through all the latti
e sites and updating the spinvariables. A new 
on�guration is generated by updating a single variable in the old
on�guration and 
al
ulating the 
hange in energy of the latti
e �E. If �E � 0, the
hange is a

epted. Otherwise, the 
hange is a

epted with probability exp(���E).This represents a 
omplete Metropolis MC 
y
le. Therefore, the Metropolis algo-rithm is 
onsidered a lo
al method for reasons that it does not involve multispin
lusters. As a result it is found to be very ineÆ
ient around the 
riti
al point due to
riti
al slowing down.1.11.2 Swendsen-Wang AlgorithmSwendsen-Wang is a true 
luster algorithm, where 
lusters are identi�ed by estab-lishing bonds between pairs of neighboring spins. Building the appropriate 
luster
on�gurations and updating whole multispin 
lusters at a time, this algorithm ap-pears to be mu
h less sensitive to 
riti
al slowing down as 
ompared to the Metropolisalgorithm.The steps of the Swendsen-Wang algorithm are the following:1. Initialize the latti
e to the �rst realization.



632. Examine every pair of neighboring spins in the system. If they are not parallel,do nothing. Otherwise, establish a bond between the two spins with probabilityp = 1 � exp(�2�J). In this way a bond 
on�guration is obtained. Two spinsbelong to the same 
luster if they are 
onne
ted through a sequen
e of bonds.If a spin has no bond with any of its neighbors, it forms a 
luster by itself.3. Identify all 
lusters in the system. For ea
h 
luster. 
ip all its spins withprobability 1=2. In this way a new 
on�guration is obtained.4. Repeat steps 2 and 3 (
omplete Swendsen-Wang MC 
y
le) until the desirednumber of 
on�gurations have been obtained.1.11.3 Wol� AlgorithmThe Wol� algorithm is similar to the Swendsen-Wang algorithm. The majordi�eren
e is that the Wol� algorithm 
ips the spins of one parti
ular 
luster withprobability 1 in every Wol� MC 
y
le, as 
ompared to 
ipping all 
lusters with theprobability 1=2 in the Swendsen-Wang algorithm.The steps of the Wol� algorithm are:1. Initialize the latti
e to the �rst realization.2. Chose a spin at random to be the seed of a 
luster. Examine all its neighbors,and add the parallel ones to a list 
alled a perimeter list.



643. Remove a spin from the perimeter list. For ea
h of the neighbors that alreadybelong to the 
luster, a bond is established between the perimeter spin and theneighbor (e�e
tively adding the perimeter spin to the 
luster) with a probabilityp = 1� exp(�2�J). If within the same Wol� MC 
y
le an earlier attempt wasmade to establish a bond between the perimeter spin and a neighbor, theneighbor is skipped in this step.4. If the perimeter spin is not added to the 
luster, repeat step 3. Otherwise,inspe
t its neighbors with parallel spins. If a parallel neighboring spin is neitherin the 
luster nor in the perimeter list, add it to the perimeter list. If it isalready in the perimeter list or in the 
luster, do nothing.5. Repeat steps 3 and 4 until no spin remains in the perimeter list, then 
ip allthe spins in the 
luster.6. Repeat steps 3 through 5 until the desired number of 
on�gurations have beenobtained.The Wol� algorithm eliminates the problem of 
riti
al slowing down 
ompletely,whi
h makes it the most preferred method to implement Ising MC simulations.1.11.4 A

umulation of Cluster Con
entrationsClusters are a

umulated after the system is allowed to equilibrate. Cluster iden-ti�
ation on the latti
e realizations 
an be done with various methods, like the stan-



65dard Hoshen-Kopelman te
hnique found in textbooks [Land 00℄. As a 
omputer stepsthrough latti
e realizations, 
lusters are identi�ed, sorted by their size and surfa
e,and 
ounted. After a desired number of latti
e realizations have been rea
hed, 
lus-ter numbers in every size and surfa
e bin are divided by the total number of latti
erealizations and the total latti
e size N to get the 
on
entrations. This way repeat-ing the MC Ising simulation at various temperatures (the magneti
 �eld is zero),
luster 
on
entrations n(a; s; T ), whi
h 
orrespond to the phase boundary region ofthe latti
e gas, 
an be found and used for testing purposes.1.12 Goals of Proje
tWhen modeling physi
al 
luster behavior on the latti
e, the obvious questionarises regarding the 
hoi
e of a model 
luster that best re
e
ts the properties of aphysi
al 
luster in a Van der Waals 
uid. In this study geometri
 
lusters are 
hosenas model 
lusters in an attempt to demonstrate their elegan
e, simpli
ity and dire
tanalogy to Stillinger's 
lusters. Therefore, this thesis deals with one model 
lusterde�nition and sets as one of its goals to show appli
ability of Stillinger's theory togeometri
 
lusters using MC Ising simulations at zero magneti
 �eld. In 
ontrast,inadequa
y of the ideal-
luster-gas approximation to des
ribe geometri
 
lusters is
learly shown.In no way 
laims are being made that Stillinger's 
lusters are the only \good"
lusters to study nu
lear 
uid. They are 
on�gurational 
lusters with no internal



66degrees of freedom that 
annot fully re
e
t properties of nu
lear liquid droplets.These properties have to be fully known in order to 
ompletely understand observednu
lear 
luster distributions. However, Stillinger's 
lusters point to an opportunityof developing a new analysis te
hnique on the basis of intera
ting-
luster gas. Thisopportunity 
an be justi�ed referring to the work of LBA, who found little e�e
tof pre
ise physi
al 
luster de�nition on the free energy of a 
luster. Therefore, these
ond goal of this study is to develop a 
luster analysis te
hnique using Stillinger'stheory in hopes that it may better des
ribe nu
lear 
lusters and a

ount for theirinterferen
e primarily due to the ex
luded volume. To gain more 
on�den
e in thete
hnique, its testing is planned with SAP 
ombinatori
s, whi
h is equivalent tothe 
ombinatori
s of geometri
 
lusters. In addition, systemati
 failure of the ideal-
luster-gas approximation is presented to 
ontrast the results of the new method.Analysis of in
omplete nu
lear 
luster distributions is impossible without a 
lustermodel, like Fisher's, that analyti
ally parameterizes the distributions. Therefore,the new intera
ting-
luster te
hnique should also be merged with Fisher's model,introdu
ing a modi�ed version of it. Design of a 
omputer 
ode that implements aleast-squares �tting pro
edure for the analysis of 
luster distributions using modi�edFisher's model is the third goal of this work.By itself the new 
luster analysis te
hnique 
annot manifest any improvement.It has to be 
ompared with the results of the ideal-
luster-gas analysis. Using geo-metri
 
lusters, it is possible to observe 
ertain spe
i�
 signatures distinguishing the



67two analyses. On the other hand, it is possible to generate mo
kup distributions ofgeometri
 
lusters using SAP 
ombinatori
s as if they were not intera
ting. Chara
-teristi
 signatures 
an also be observed in this 
ase. Overall, the hope is to �nd thesesignatures in the future analysis of nu
lear 
luster distributions. Therefore, the forthgoal is to develop strategies to look for 
luster intera
tion e�e
ts in nu
lear 
lustergas, whi
h are mostly due to the ex
luded volume, whi
h may manifest if nu
lear
lusters are similar to Stillinger's 
lusters.If Stillinger's 
lusters are similar to nu
lear 
lusters, then there is an expe
ta-tion to substantially improve the nu
lear liquid-vapor phase diagram obtained byMoretto's group using the ideal-
luster-gas methodology.
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Chapter 2Geometri
 Clusters of the IsingModel as Model ClustersIn this 
hapter, the properties of geometri
 
lusters are studied from the pointof view of Stillinger's theory, and the results are 
ompared to the predi
tions of theideal-
luster-gas approximation. In Se
tion 2.1 geometri
-
luster 
on
entrations arestudied exa
tly using the Ising model, and then the ideal-
luster-gas and Stillinger-based approximations are introdu
ed. Se
tion 2.2 shows how to obtain the latti
egas thermodynami
s using geometri
 
lusters a

ording to various approximations.An alternative approa
h to 
onne
t 
luster 
on
entrations with the pressure at 
o-existen
e, not used previously in 
luster analyses, is presented for the 
ase of theStillinger-based approximation. Numeri
al Monte Carlo Ising simulations and theiruse to obtain 
luster 
on
entrations are dis
ussed in Se
tion 2.3, while Se
tion 2.4



69presents a detailed 
omparison of simulated geometri
-
luster 
on
entrations and thelatti
e gas thermodynami
s obtained from them with the 
orresponding predi
tionsof the theoreti
al approximations.2.1 Geometri
-Cluster Con
entrationsGeometri
 
lusters were dis
ussed at length in the introdu
tory part of this the-sis. They are 
on�gurational 
lusters that are de�ned a

ording to the 
ondition ofproximity in spa
e: two or more spins (or atoms) form a 
luster if they o

upy near-est neighbor latti
e sites in an uninterrupted order so that every spin of the 
lusteris a nearest neighbor to at least one other spin of the same 
luster.The Ising model provides an unpre
edented opportunity to study geometri
 
lus-ters. Within the model, geometri
-
luster 
on
entration, i.e the average number of
lusters per latti
e site, 
an be related to the latti
e gas thermodynami
s in a 
learand rigorous way [YLee 52℄. At zero magneti
 �eld the Ising model is equivalentto the latti
e gas at the liquid-vapor phase boundary as a result of the one-to-one
orresponden
e between the Ising �eld strength and the latti
e gas 
hemi
al poten-tial. Only at zero �eld reversing the dire
tion of spins in the Ising latti
e realizationsdoes not 
hange the energy of these realizations. On the other hand, the equiva-lent pro
edure of reversing the latti
e gas realizations at 
onstant 
hemi
al potential
orresponds to a 
hange of phases. The 
ondition of two phases having the sameenergy and 
hemi
al potential below the 
riti
al temperature unambiguously points



70to phase 
oexisten
e, i.e. a region in the thermodynami
 P -v-T -spa
e, in whi
hpressure, temperature and 
hemi
al potential of the liquid phase are equal to thoseof the gas phase.In what follows below, geometri
-
luster 
on
entrations on the zero-�eld Isinglatti
e are obtained as an example of 
luster produ
tion at liquid-gas phase 
oex-isten
e. Adopting Stillinger's approa
h to a latti
e [Stil 63℄, a probability p 
an beintrodu
ed that a geometri
 
luster of size a (the number of spins in the 
luster),surfa
e s (the number of links with the neighboring spins of opposite dire
tion) andshape k (relative arrangement of spins within the 
luster) 
an form in a parti
ularlo
ation j of the latti
e. The shapes of geometri
 
lusters are equivalent to thoseof self-avoiding polygons or polyhedra (SAP) depending on the dimensionality (seeIntrodu
tion for more details). For every parti
ular size a and surfa
e s of SAP, theremay be many possible shapes, whi
h 
an be 
ounted and are denoted by gSAP (a; s),so that the 
ounter k varies between unity and gSAP (a; s). All the 
luster lo
ationsj on the latti
e are distin
t and also 
an be numbered. When moving from lo
a-tion j to a lo
ation j + 1, say to the right, every spin of the 
luster moves to itsnearest-neighbor position to the right. Depending on the latti
e boundary 
ondi-tions, the total number of lo
ations may di�er. Two types of boundary 
onditionsare distinguished: open and periodi
. In the 
ase of open boundary 
onditions, thelatti
e has �nite boundaries and is not 
losed on itself. The spins on the edge arenot 
ompletely surrounded by nearest neighbors. As a result, the number of 
luster



71lo
ations depends on the 
luster size and shape. On the other hand, periodi
 bound-ary 
onditions 
orrespond to a latti
e whi
h is 
losed on itself, e.g in two dimensionsa re
tangular (or square as a parti
ular 
ase) latti
e forms a torus. All the spinsin su
h a latti
e have the same number of nearest neighbors, and, as a result, thenumber of 
luster lo
ations is independent of 
luster 
hara
teristi
s. In this 
ase, ifa latti
e is of total size N, there are N of su
h lo
ations to pla
e a 
luster, so that the
ounter j goes from one to N. Thus periodi
 boundary 
onditions help to eliminatethe unimportant edge e�e
ts on a �nite latti
e and to simplify its geometry. Onsagerused periodi
 boundary 
onditions in his solution of the two-dimensional Ising model.This thesis will also adhere to them. Therefore, re
alling that the total number ofpossible latti
e realizations is 2N, the probability isp(a; s; k; j; �;N) = 2NPi=1 Æa;s;k;j(i) exp[��Ei℄2NPi=1 exp[��Ei℄ (2.1)where the index i is the latti
e realization 
ounter. In Equation 2.1 Æa;s;k;j(i) is thevariable indi
ating the presen
e or the absen
e of the 
luster of size a, surfa
e s, andthe shape k in the lo
ation j of the latti
e realization i, and it 
an only take thevalues 0 or 1; Ei is the total energy of the realization i. The energy Ei 
onsists ofall the energies of 
lusters present in the parti
ular realization i plus the energy ofthe ground state (all spins are parallel), sin
e the total interfa
e between the up anddown spins is the sum of 
luster surfa
es. This property of the zero-�eld Ising model
an be easily understood looking at the following mental exer
ise. The energy of the



72ground state of the latti
e is �1=2
JN (it 
an be readily 
he
ked using Equation 1.54for the Ising latti
e energy, whi
h is the sum over all the spin pairs), where J is theintera
tion strength, and 
 is the number of nearest neighbors. Suppose a 
lusterof spins is 
ipped in the middle of a two-dimensional square latti
e, say a square
luster of size a = 4 (two by two). The energy of this new latti
e state will 
onsistof three 
omponents: the energy of four parallel spin pairs inside the 
luster, theenergy of eight antiparallel spin pairs on the surfa
e of the 
luster, and the energy of2N� 4� 8 parallel spin pairs outside the 
luster. Clearly, the energy of parallel spinpairs inside and outside the 
luster are of the same negative sign totaling �2JN+8J ,whereas the interfa
e energy 8J is positive. Therefore, the total energy of the newlatti
e realization is �2JN + 16J , whi
h is 16J above the ground state. As it 
anbe seen, this energy above the ground state is interfa
e-only dependent, and 
ippingmore spins to 
reate other 
lusters will in
rease the energy above the ground statein proportion to the in
reasing interfa
e. This dependen
e of the latti
e energy onthe surfa
e of geometri
 
lusters at 
oexisten
e is possible be
ause geometri
 
lustersdo not share their surfa
e between ea
h other. They are 
learly separated one fromanother and 
annot tou
h, for otherwise a larger 
luster is formed.Noti
e also that the energy above the ground state is always 2J times the totalsurfa
e (number of antiparallel spin pairs) irrespe
tive of dimensionality. The quan-tity 2J , denoted as 
, is the surfa
e energy 
oeÆ
ient (surfa
e tension). Therefore, inthe zero-�eld Ising model the 
luster energy E(a; s) (energy above the ground state



73to form a 
luster) is proportional to the surfa
e s of a 
luster:E(a; s) = 
s = 2Js: (2.2)For those realizations where a 
luster of size a, surfa
e s and shape k is present,it is always possible to separate the energy of the 
luster E(a; s) from the energy ofthe remaining 
lusters E 0i, whi
h also in
ludes the ground state energy:Ei = E(a; s) + E 0i (2.3)Then the probability p 
an be written in the following form:p(a; s; k; j; �;N) = exp[��E(a; s)℄ 2NPi=1Æa;s;k;j(i) exp[��E 0i℄2NPi=1 exp[��Ei℄ ; (2.4)where the Boltzmann fa
tor of the 
luster energy 
an be fa
tored out be
ause of Æ,whi
h automati
ally eliminates all the terms in the sum not satisfying the required
ondition. The quantityw(a; s; k; j; �;N) = 2NPi=1 Æa;s;k;j(i) exp[��E 0i℄2NPi=1 exp[��Ei℄ (2.5)
an be understood as the probability that other 
lusters around the spe
i�ed 
lusterdo not a�e
t its formation. If other 
lusters were not present in any 
on�guration(hypotheti
ally), then all the latti
e realizations 
ontained only the spe
i�ed 
luster,and w = 1. This assumption, also 
alled dilute limit, is a typi
al hypothesis of theideal 
luster gas approximation. Clusters are believed to be so far apart in their phase



74spa
e that their traje
tories never 
ross ex
luding the possibility of interferen
e. Inthe opposite extreme situation, the spe
i�ed 
luster 
an never be formed, and w = 0.Su
h 
ondition may be observed in a 
old liquid when 
ondensed 
uid forms one giant
luster the size of the volume of the liquid. In this 
ase formation of smaller 
lustersis absolutely prohibited. At intermediate densities w a
ts as a weight fa
tor loweringthe 
luster formation probability in the midst of interferen
e (intera
tion) with other
lusters.The 
on
entration n of geometri
 
lusters of size a and surfa
e s (number of
lusters per site of the latti
e) 
an be found as a sum of probabilities p over all thepossible shapes gSAP (a; s) that a 
luster of size a and surfa
e s 
an have, and overall the latti
e lo
ations divided by the total latti
e size:n(a; s; �;N) = exp[��E(a; s)℄N NXj=1 gSAP (a;s)Xk=1 w(a; s; k; j; �;N) = g(a; s; �;N) exp[�
�s℄;(2.6)where g(a; s; �;N) = 1N NXj=1 gSAP (a;s)Xk=1 w(a; s; k; j; �;N) (2.7)
an be interpreted as the average number of shapes for the 
luster of size a and surfa
es, whi
h 
an form on the Ising latti
e at temperature T = 1=�. This number is lessthan the 
orresponding number gSAP (a; s) of all the possible shapes be
ause of thepresen
e of other 
lusters and the resulting interferen
e. This interferen
e is entirelyof geometri
 origin and 
omes from the fa
t that the freedom of a 
luster to 
hangeits shape on the latti
e is limited by the temperature dependent presen
e of other



75
lusters that for
e the 
luster in 
onsideration to \squeeze" in between them. This
auses the mutual suppression of geometri
-
luster produ
tion on the Ising latti
e.Therefore, it may be possible to understand geometri
-
luster distributions of theIsing model if it is possible to determine average 
luster-shape numbers, whi
h arenot 
onstants, like gSAP (a; s), but vary with temperature and the size of the latti
e.The quantity Nn(a; s; �;N) is the partition fun
tion of a 
luster of size a andsurfa
e s: q(a; s; �;N) = Nn(a; s; �;N) = exp[��F (a; s; �;N)℄; (2.8)where F (a; s; �;N) = E(a; s)� TS(a; s; �;N) (2.9)is the 
luster free energy withS(a; s; �;N) = ln [Ng(a; s; �;N)℄ (2.10)being the 
luster entropy a

ording to the Boltzmann law. Equations 2.8, 2.9, and2.10 are in
luded here to emphasize that the e�e
ts of 
luster intera
tion (interfer-en
e) enter the individual-
luster thermodynami
s through the entropi
 part of the
luster free energy. These equations will be useful later when applying Stillinger'smethodology to geometri
 
lusters.



762.1.1 Geometri
 Clusters as an Ideal GasIt has been shown in the previous se
tion that geometri
 
lusters may not be
onsidered as non-intera
ting. The 
ombinatorial fa
tor g entering the 
luster dis-tributions varies with temperature and latti
e size as a result of 
luster interferen
e.Nevertheless, it may still be bene�
ial to assume the 
ondition of dilute limit so thatgeometri
 
lusters may be thought of as an ideal gas with the goal to estimate theextent of their intera
tion.Appli
ation of the ideal-
luster-gas approximation renders geometri
 
lusters freeto take all the possible shapes gSAP (a; s) in any position j on the latti
e without beingrestri
ted by the surrounding 
lusters. Su
h an assumption may be good enough fordilute systems, but be
omes quite unrealisti
 at high densities or near the 
riti
alpoint. It is equivalent to taking all the values w in Equation 2.6 to be unity. The
on
entration of 
lusters in su
h an ideal gas be
omesn(a; s; �) � exp[��E(a; s)℄N NXj=1 gSAP (a;s)Xk=1 1 = gSAP (a; s) exp[�
�s℄; (2.11)whi
h is no longer a fun
tion of N, and is 
hara
terized by the temperature indepen-dent 
ombinatorial fa
tor (number of 
luster shapes).2.1.2 Geometri
 Clusters A

ording to StillingerThe analogy between geometri
 and Stillinger's 
lusters has been noted in theIntrodu
tion. It seems reasonable to apply to geometri
 
lusters the same arguments



77Stillinger used in his theory. Stillinger's 
lusters of size a are shown to have a two-fa
tor formation probability pa[r℄ in a 
ontainer lo
ation r:pa[r℄ = p0a exp(��W [a; r℄); (2.12)where r is an array of radius-ve
tors of individual parti
les in the 
luster, p0a is thelo
ation independent formation probability of a 
luster in the absen
e of intera
tion,andW [a; r℄ is the free energy needed to form a 
avity around a 
luster in the mediumof other 
lusters to a

ount for the intera
tion. This free energy is due to the 
hangein entropy of the whole system owing to the formation of su
h a 
avity, whi
h restri
tsthe available spa
e for other 
lusters and 
reates room for the new 
luster. TheBoltzmann fa
tor of the 
avity formation free energy exp(��W [a; r℄) is, in fa
t, aprobability that the new 
luster will not intera
t with other 
lusters: in ideal-gas-likesystems it is unity, while in dense environments it tends to zero. The variation inshape of Stillinger's 
lusters is implied by radius-ve
tors r, sin
e in any lo
ation ofthe 
ontainer, whi
h is �xed by the 
ondition of 
onstant 
enter of mass of a 
luster,there are many possibilities for individual radius-ve
tors to satisfy this 
ondition.Now 
onsider a geometri
 
luster of size a, surfa
e s and shape k in the latti
elo
ation j. By analogy with Equation 2.12, the 
luster formation probability 
an bewritten as p(a; s; k; j; �;N) = exp(�
�s) exp[��W (a; s; k; j; �;N)℄; (2.13)



78where it 
an be noti
ed thatw(a; s; k; j; �;N) = exp[��W (a; s; k; j; �;N)℄ (2.14)a

ording to Equations 2.4 and 2.5. In other words, the 
onstraining e�e
t of other
lusters on the formation probability of the 
luster in 
onsideration 
an be attributedto the free energy of 
reating a 
avity on the latti
e. This free energy 
omes as a resultof redu
ed entropy of other 
lusters whi
h is due to restri
ting their 
on�gurationalspa
e. Then the 
on
entration 
an be written asn(a; s; �;N) = gSAP (a; s) exp[�
�s℄NgSAP (a; s) NXj=1 gSAP (a;s)Xk=1 exp[��W (a; s; k; j; �;N)℄ (2.15)A

ording to Stillinger, the 
avity formation free energy 
an be 
al
ulated and
onsists of two 
ontribution (
f. Equation 1.38):�W (a; s; k; j; �;N)℄ = �Pv(a; s) + f(a; s; k; j; �;N; �) (2.16)where P is the latti
e gas pressure, v(a; s) is the volume of a 
avity around the 
lusterof size a and surfa
e s, and f is a position and 
luster dependent fun
tion of thelatti
e gas density �. Therefore, the 
luster 
on
entration be
omesn(a; s; �;N) = gSAP (a; s) exp[�
�s℄ exp[��Pv(a; s)℄ hexp[��f ℄i (a; s; �;N; �);(2.17)where hexp[��f ℄i (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 exp[��f(a; s; k; j; �;N; �℄)NgSAP (a; s) (2.18)



79The quantity hexp[��f ℄i (a; s; �;N; �) 
an be expressed in terms of hfi (a; s; �;N; �):hexp[��f ℄i = exp[�� hfi℄+ 12 �2�f2 exp[��f ℄����hfi �2f+: : : = exp[�� hfi℄(1+�2�2f+: : :)(2.19)Equation 2.19 is the in�nite moment expansion 1 of the average fun
tion in termsof its average argument. Only even-order moments appear 2 in the expansion. The�rst two moments shown here 
an be 
al
ulated as follows:hfi (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 f(a; s; k; j; �;N; �)NgSAP (a; s) (2.20)is the zeroth moment, and�2f (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 [f(a; s; k; j; �;N; �)� hfi (a; s; �;N; �)℄2NgSAP (a; s) (2.21)is the se
ond moment. It is important to noti
e, that f is averaged over positionson the latti
e and shapes of the 
avity. For a large enough latti
e, various positionstend to be
ome equally probable, i.e. the distribution of f with j is 
at. Similarsituation 
an be 
onje
tured regarding the distribution of f with the shapes k, sin
ethe 
avity volume does not appre
iably 
hange with the shape (it depends on thethi
kness of the surfa
e). These arguments lead to a reasonable approximation:hexp[��f ℄i � exp[�� hfi℄; (2.22)1The methodology of the statisti
al moment expansion and its derivation are thoroughly pre-sented in the se
ond part of this thesis. See Se
tion 5.2 for more information.2As demonstrated in Se
tion 5.2 of Part 2 of this thesis, the odd-order statisti
al moments of theexpansion do not survive the averaging operation sin
e the positive and negative deviations fromthe average 
an
el ea
h other in the in�nite limit of the number of individual deviations. Obviously,this does not o

ur to the even-order moments.



80whi
h yields the following 
luster 
on
entrations:n(a; s; �;N) = gSAP (a; s) exp[�
�s℄ exp[��Pv(a; s)℄ exp[�� hfi (a; s; �;N; �)℄(2.23)Geometri
-
luster 
on
entration in Equation 2.23 may not be further simpli�edwithout introdu
ing more approximations due to extreme 
omplexity of the quantityhfi (a; s; �;N; �). Ea
h of the approximations will now be dis
ussed in turn.First of all, the size of the latti
e N does not signi�
antly a�e
t the 
lusterprodu
tion unless the 
lusters are of size 
omparable with N. As N tends to in�nity,the dependen
e 
ompletely disappears in the thermodynami
 limit. Therefore, forlarge enough latti
es the �nite-
ontainer e�e
ts 
an be safely disregarded.Se
ondly, the quantity hfi (a; s; �;N; �) 
an be approximated using the RFLtheory of the 
uid of spheres (disks in two dimensions or rods in one dimension)[Lebo 65℄. In the words of Stillinger, \... if the 
luster almost always had a smoothspheri
al surfa
e, ... the Reiss-Fris
h-Helfand-Lebowitz theory of spheri
al 
avityformation work in real 
uids would apply" [Stil 63℄. If Stillinger's 
lusters are 
on-strained to form spheri
al 
avities, and attra
tion is negle
ted, Stillinger's theoryshould approximately redu
e to RFL des
ription. Therefore, the density dependentpart of the 
avity free energy 
an be adopted from RFL. They derived the followingexpressions for the quantity hfi in one, two and three dimensions [Lebo 65℄:1D: � hfi (�) = � ln(1 � �)



812D: � hfi (R; �) � � ln(1 � �) + �s1� �R (2.24)3D: � hfi (R; �) � � ln(1 � �) + �s1� �R + � 2�
1 � � + 3�2s(1� �)2�R2;where R = R(a) is the radius of the sphere, and�
 = Xa 2�R(a)n(a; �) in 3D only�s = 8>>><>>>: Pa 2�R(a)n(a; �) in 2DPa 4�R(a)2n(a; �) in 3D (2.25)� = 8>>>>>>><>>>>>>>: Pa ln(a; �) in 1DPa 4�R(a)2n(a; �) in 2DPa 43�R(a)3n(a; �) in 3Dare 
ir
ular, surfa
e, and volume densities, respe
tively, and n(a; �) is the 
on
entra-tion of spheri
al 
lusters of size a. Their interpretation depends on dimensionality.In three dimensions the volume density � is the density in its usual meaning as afra
tion of the 
ontainer volume taken up by the volume of all the spheres. In twodimensions it is a fra
tion of the 
ontainer surfa
e o

upied by the surfa
e of all the
ir
les, and in one dimension it is just the fra
tional length of all the rods of length lon the 
ontainer string. The surfa
e density �s in three dimensions is the total spheresurfa
e per 
ontainer volume with a similar de�nition in terms of a 
ir
umferen
ein two dimensions. The 
ir
ular density �
, whi
h appears only in three dimensions,
an be interpreted as the average density of spheri
al 
luster's linear measure (
ir-
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umferen
e if a 
ut through the 
enter is made). All these densities are intri
atelyintertwined to a

ount for the volume, surfa
e and 
urvature e�e
ts in the 
avityformation.Depending on the dimensionality of the problem, 
orresponding approximationsfor hfi 
an be introdu
ed to des
ribe geometri
-
luster 
on
entrations. In this work,however, the simplest one-dimensional form will be employed and tested with ge-ometri
 
lusters. No 
lear reason 
an be o�ered at this time to justify the 
hoi
eex
ept that of empiri
al validity for geometri
 
lusters of the two-dimensional Isingmodel. It will be shown later in this 
hapter that the simulated 
on
entrations ofgeometri
 
lusters very a

urately follow the one-dimensional form of hfi, and noneed exists to introdu
e more 
omplex approximations. Some spe
ulations, however,
an be 
onsidered as to why the one-dimensional form of hfi works well to a

ountfor 
luster interferen
e. This form is a part of hfi in all dimensions of interest (one,two, and three), and represents the zeroth-order e�e
t of pla
ing a sphere in the
ontainer (a point sphere e�e
t). This is the e�e
t of having something in 
ompar-ison with nothing, a sharp transition from no e�e
t to �nite e�e
t. On the otherhand, the other terms des
ribe spe
i�
 properties of the newly pla
ed sphere (surfa
e,
urvature) and only modify the extent of the already existing e�e
t. These modi�-
ations may not be signi�
ant. As an example, 
onsider Fourier transformation of afun
tion. If the fun
tion is smooth and not dramati
ally varying with its argumentin the range of 
onsideration, the zeroth-order Fourier 
oeÆ
ient is by far the most



83dominant and 
an reasonably well approximate the fun
tion with a 
onstant. Theless important higher-order 
oeÆ
ients only improve upon the approximation anddetermine the extent of the deviation from the 
onstant.When applied to Equation 2.23, the one-dimensional form of hfi yields an elegantpressure and density dependent approximation for 
luster 
on
entrations, that 
an bereadily 
al
ulated analyti
ally in one and two dimensions for whi
h the Ising modelis solved exa
tly. The 
on
entrations are:n(a; s; �) � gSAP (a; s) exp[�
�s℄ exp[��Pv(a; s)℄(1� �) (2.26)Thirdly, the issue of the geometri
-
luster 
avity volume needs to be addressed.On the Ising latti
e the volume of a 
avity v(a; s), whi
h is formed to 
ontain the
luster of size a and surfa
e s, 
onsists of two 
ontributions. The �rst 
ontributionis from the size a of the 
luster itself, whi
h forms the 
ore of the 
avity volume.The se
ond 
ontribution is from the 
luster surfa
e of �nite thi
kness. For a 
lusterto maintain its identity, there has to be a shell of sites around the 
ore that is in-a

essible to other 
lusters, sin
e otherwise they would join the 
luster. This shell
onsists of a maximum of s sites for 
ompa
t or small 
lusters, but may 
ontainless then s if a 
luster has stringy parts with bends in the string. The bends 
ausethe number of sites around the 
luster to be less then the number of links to them,whi
h 
onstitute the 
luster surfa
e. In this 
ase the shell is not exa
tly related tothe surfa
e. For example, two-dimensional geometri
 
luster of size three and surfa
e(perimeter) eight 
an have two irredu
ible shapes (whi
h 
annot be transformed into



84ea
h other by rotation): a string and an angle. The string-shaped 
luster has eightnearest-neighbor sites around it, whereas the angle-shaped 
luster has only seven.Nevertheless, as a good approximation, it will be assumed in this work that the shellalways has s sites, sin
e 
ompa
t or small 
lusters appear more frequently on thelatti
e due to the less energy requirements. Therefore, in addition to a 
ore sitesof the 
luster the 
avity should 
ontain s shell sites around the 
ore, whi
h repre-sent the 
luster surfa
e of �nite thi
kness. The shell thi
kness ts should ne
essarilybe introdu
ed for generality yielding the following approximate form for the 
avityvolume: v(a; s) � a+ tss; (2.27)whi
h is exa
t for 
ompa
t and some small 
lusters. The shell thi
kness is equal to thelatti
e spa
ing, i.e. the distan
e between the sites of the latti
e. If the 
avity volumeis measured in units of latti
e sites, the shell thi
kness is unity. Su
h de�nition of the
avity volume provides for an elegant way to introdu
e surfa
e deformation e�e
tsinto an otherwise spheri
al des
ription of the �nite volume e�e
ts in Equation 2.26.Clearly, the geometri
-
luster surfa
e shell 
ontribution to the 
avity volume is asigni�
ant fra
tion of the total, that 
an be the largest for small or strongly deformed
lusters re
alling that s varies between about 4pa and 2a+2 in two dimensions, andeven more radi
ally in three dimensions.Thus the 
on
entration of geometri
 
lusters on the Ising latti
e to be explored



85in this work may be approximated by the following expression:n(a; s; �) � gSAP (a; s) exp[�
�s℄ exp[��P (a+ sts)℄(1� �); (2.28)in whi
h the temperature dependen
e of 
ombinatorial fa
tors has been fa
tored out.For simpli
ity Equation 2.28 will be referred to as the �nite volume approximation(FVA) throughout this thesis.2.2 Coexisten
e Latti
e Gas Thermodynami
s withGeometri
 ClustersAs mentioned earlier in the Introdu
tion, thermodynami
s of a system are ob-tainable through 
lusters using a 
luster model. In the following, two formalisms arepresented to extra
t thermodynami
s of the latti
e gas at the liquid-vapor 
oexis-ten
e using geometri
 
lusters as an ideal gas and as a gas of Stillinger's 
lusters.In the 
ase of Stillinger's 
lusters, the theory is modi�ed to suit the requirements at
oexisten
e, and the 
luster 
on
entrations are assumed to obey the �nite volumeapproximation a

ording to Equation 2.28.2.2.1 Ideal Cluster GasIn the framework of the ideal 
luster gas approximation the latti
e gas pressureand density below the 
riti
al temperature 
an be evaluated using Equations 1.18 as



86applied to geometri
 
luster 
on
entrations:P � TXa;s n(a; s; �)� � Xa;s an(a; s; �) (2.29)Criti
ality of the latti
e gas at 
oexisten
e 
an in prin
iple be observed in thebehavior of the heat 
apa
ity at 
onstant volume CV , whi
h 
an be 
al
ulated frompressure using standard thermodynami
 relations:
V = CVV = 1V �E�T ����VEV = T �P�T ����� � P = T 2 ��T �PT ������ (2.30)where E is the energy of the latti
e gas, and � is the 
hemi
al potential, V is thevolume of a system, and 
V is the heat 
apa
ity per unit volume. At the 
riti
alpoint 
V is in�nite in the thermodynami
 limit, whi
h is a 
hara
teristi
 signatureof the se
ond order phase transition. 3 If the latti
e size is �nite, the heat 
apa
ityis expe
ted to have a peak of �nite hight at the 
riti
al temperature. This peak mayallow determination of the 
riti
al temperature for �nite systems. The latti
e gasheat 
apa
ity per one latti
e site within the ideal 
luster gas approximation is
V = ��T T 2 ��T �PT �����N;� � 2TXa;s ddT n(a; s; �) + T 2Xa;s d2dT 2n(a; s; �)� 
2�2Xa;s s2gSAP (a; s) exp[�
�s℄; (2.31)whi
h 
an be easily derived using Equations 2.29 and 2.30.3Criti
al phenomena are quali�ed as se
ond order phase transitions, whi
h are parti
ularly 
har-a
terized by the in�nite dis
ontinuity in the se
ond derivative of 
uid's free energy with respe
t totemperature. Heat 
apa
ity 
ontains su
h a derivative, as it 
an be seen in Equation 2.30 re
allingthat the free energy is proportional to the pressure.



872.2.2 Non-Ideal Cluster GasStillinger's 
luster theory 
an be used to obtain the latti
e gas pressure and den-sity from geometri
 
lusters using Equations 1.37. If, however, 
luster 
on
entrationso� 
oexisten
e are not available 4, they 
annot be integrated over the 
hemi
al po-tential to obtain the pressure. This problem 
an be over
ome by performing the
al
ulation of the 
oexisten
e pressure and other thermodynami
s using the energyof the system as a fun
tion of temperature. In the Ising model geometri
-
luster
on
entrations 
an be used to 
al
ulate the average latti
e energy exa
tly due totheir dire
t relation to the energy of a single latti
e realization i:Ei = 
Si� 12
JN; (2.32)where Si is the total surfa
e between the up and down spins (the number of opposite-spin pairs) in a realization. The energy 
Si is above the latti
e ground state energy�1=2
JN, where 
 = 2J is the surfa
e energy 
oeÆ
ient, N is the total number ofspins on the latti
e, J is the intera
tion 
onstant, and 
 is the number of the nearestneighbors of a spin on the latti
e. Geometri
 
lusters have a well de�ned surfa
e,not shared between the 
lusters, whi
h is the number of links with opposite spins4A somewhat arti�
ial diÆ
ulty for geometri
 
lusters, sin
e non-zero �eld MC simulations 
anbe easily performed. This made up problem, however, is raised to solve a real problem with nu
lear
lusters, for whi
h experimental distributions are assumed to pertain only to the 
oexisten
e ofliquid and gas due to the exponential fall-o� of the 
luster's abundan
e with their size (numberof nu
leons). If the system were in the gas-only region, only monomers 
ould be observed. In theliquid-only region, the 
luster abundan
e would in
rease exponentially with the 
luster size. As it is,however, the limited presen
e of multimers supports the assumption of 
oexisten
e. At 
oexisten
e,standard Stillinger's approa
h 
annot be used, sin
e the 
hemi
al potential is not an independentfun
tion of temperature.



88bordering the 
luster. Therefore, the total surfa
e of a realization Si is 
omposed ofa sum of surfa
es of all the geometri
 
lusters present in this realization:Si =Xa;s sNi(a; s); (2.33)where Ni(a; s) is the number of 
lusters of size a and surfa
e s in a realization i.Then the average energy per spin of the Ising latti
e uI 
an be 
al
ulated as follows:uI = 2NPi=1Ei exp(��Ei)N2N 2NPi=1 exp(��Ei)= 
Xa;s s 2NPi=1Ni(a; s) exp(��Ei)N2N 2NPi=1 exp(��Ei) � 12
J 2NPi=1N exp(��Ei)N2N 2NPi=1 exp(��Ei)= 
Xa;s sn(a; s; �) + ug; (2.34)where ug = �1=2
J is the Ising ground state energy per spin.The average energy above the ground state u is related to the latti
e gas pressureat 
oexisten
e through a standard thermodynami
 relation:u = 
Xa;s sn(a; s; �) = T �P�T ����� � P (2.35)Therefore, the knowledge of the geometri
-
luster 
on
entrations as fun
tions of tem-perature obtained at 
oexisten
e is suÆ
ient to determine the pressure. The �rst-order di�erential equation with the initial 
ondition P (T = 0) = 0 
an be solved inorder to get the PT 
oexisten
e line.



89Using the approximate form for the 
luster 
on
entrations, the pressure and den-sity of the latti
e gas 
an be evaluated using SAP 
ombinatori
s. Sin
e the 
on
en-trations are density and pressure dependent quantities, they 
an be written in thefollowing way:n(a; s; �; P; �) � gSAP (a; s) exp(�
�s) exp[��(a+ sts)P ℄(1� �) (2.36)A system of equations T �P�T ����� � P � 
Xa;s sn(a; s; �; P; �)� � Xa;s an(a; s; �; P; �) (2.37)
an be de�ned, that enables the latti
e gas pressure and density 
al
ulation in therange of validity of Equation 2.36. For 
on
ise referen
e this methodology will be
alled di�erential equation te
hnique (DET) in the rest of the thesis.In Equations 2.37 the density 
an be expressed as a fun
tion of the pressure:� � Pa;s an0(a; s; �; P )1 +Pa;s an0(a; s; �; P ); (2.38)where n0(a; s; �; P ) � gSAP (a; s) exp(�
�s) exp[��(a+ sts)P ℄ (2.39)is the density independent part of the geometri
 
luster 
on
entrations. Then anapproximate �rst-order di�erential equation
Pa;s sn0(a; s; �; P )1 +Pa;s an0(a; s; �; P ) � T �P�T ����� � P (2.40)
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an be written to de�ne the pressure as a fun
tion of temperature and 
luster 
om-binatorials. This di�erential equation is of 
entral importan
e in this thesis, sin
ewithin the validity of Equation 2.36 it allows the 
onstru
tion of a liquid-vapor phasediagram if interferen
e e�e
ts are not negle
ted.Criti
al properties of the latti
e gas 
an be evaluated in a standard way 
al
u-lating the heat 
apa
ity at 
onstant volume as a fun
tion of temperature along thephase separation line 
V = �u�T ����V (2.41)and �nding its peak at the 
riti
al point. Using Equations 2.35 and 2.36, the latti
egas heat 
apa
ity 
an be expressed in terms of the geometri
-
luster 
on
entrationsin the following way:
V � 
2T 2 "Xa;s s2n� tsXa;s snXa;s s2n � 2Xa;s snXa;s asn+ (Xa;s sn)2Xa;s a2n+ ts(Xa;s sn)2Xa;s asn# (2.42)If 
luster 
on
entrations are known beyond the 
riti
al temperature, the �nite volumeapproximation may be a

urate enough to display the peak whose lo
ation 
an bedetermined with Equation 2.42 to estimate the 
riti
al temperature 5.5At and beyond the 
riti
al temperature 
oexisten
e of phases is lost. However, it does notmean that 
lusters 
ease to exist and their 
on
entrations 
annot be found. Equation 2.36 o�ers apredi
tion to 
luster distributions on a 
ertain traje
tory in the P -V -T spa
e in the super
riti
alregion. This traje
tory ne
essarily passes through the 
riti
al point and is determined only bythe fundamental properties of SAPs (numbers of self-avoiding polygons or polyhedra gSAP (a:s)).Therefore Equation 2.42 is not a priori bound to fail in the super
riti
al region, but rather is openfor testing to determine its range of validity.



912.3 Obtaining Geometri
 Cluster Con
entrationsSimulated geometri
-
luster 
on
entrations are obtained from the Ising MC 
om-puter runs at di�erent preset temperatures. In this work the two-dimensional zero-�eld square-latti
e Ising model was simulated at temperatures between Tmin = 1:5and Tmax = 2:25 (J = 1) below the 
riti
al temperature T
 � 2:269 using the Wol�algorithm with a 
omputer 
ode 
ourteously provided by Dr. Larry Phair. Thetemperature points were equidistant with the gap between them �T = 0:05.
Figure 2.1: Con
entration of a geometri
 
luster at di�erent temperatures. The errorbars are too small to be seen.In the 
ode, Phair employed his own 
luster identi�
ation routine to tag geometri

lusters on every latti
e realization to distinguish them as separate 
lusters. Among



92other data, the output of the 
ode 
ontained listings of numbered latti
e realizations,ea
h of whi
h provided a tagged list of spin 
oordinates. These listings were thenused to re
onstru
t individual 
lusters on every realization, and to sort them by sizeand surfa
e (perimeter). After sorting, numbers of 
lusters in every size and surfa
ebin were divided by the latti
e size and the number of simulated latti
e realizationsto get the 
on
entrations. An example of a 
luster 
on
entration as a fun
tion oftemperature is shown in Figure 2.1.2.4 Numeri
al Analysis of Geometri
 ClustersTo test appli
ability of a formalism to geometri
 
lusters, theoreti
al and simu-lated 
luster 
on
entrations, as well as system's thermodynami
s, need to be inde-pendently obtained and 
ompared.2.4.1 Ideal Cluster GasAppli
ability of the ideal-
luster-gas approximation to geometri
 
lusters is pre-sented in Figure 2.2, whi
h shows several simulated 
on
entrations as fun
tions oftemperature as 
ompared to equivalent 
on
entrations 
al
ulated with Equation 2.11.Comparison of the two data sets reveals reasonable a

ura
y of the ideal-gas des
rip-tion at low temperatures far below the 
riti
al temperature T
 � 2:269. However, asthe temperature of the latti
e is in
reased, Equation 2.11 starts failing and eventu-
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Figure 2.2: Comparison of some geometri
-
luster (GC) 
on
entrations with the
orresponding theoreti
al predi
tions based on the ideal-
luster-gas approximation(Point-Parti
le).ally displays large deviations from the simulated data in the vi
inity of the 
riti
alpoint. Quantitatively the dis
repan
y between simulated and theoreti
al 
on
entra-tions 
an be estimated in terms of the 
luster-averaged relative deviation, expressedin per 
ent: �nn = 100N Xa;s jn(a; s; �)� nsim(a; s; �)jn(a; s; �) ; (2.43)where nsim(a; s; �) indi
ates 
luster 
on
entrations from the simulation, and N isthe number of 
luster types of di�erent size a and surfa
e s used to evaluate thequantity. This statisti
 is spe
i�
ally intended to put equal emphasis on large and



94little 
lusters alike. Though large 
lusters are mu
h less numerous than monomersand little 
lusters, like trimers, and do not play mu
h of a role in overall thermo-dynami
 behavior of the latti
e (or 
uid in general), they a
quire mu
h importan
ein nu
lear 
luster analysis appli
ations. As it has been shown in the introdu
tion,only large nu
lear 
lusters 
an be trusted to 
onvey reliable thermodynami
 infor-mation. Therefore, when testing properties of geometri
 
lusters as model 
lusters,large 
lusters are of primary 
on
ern, sin
e their properties determine appli
abilityof analysis te
hniques to build the phase diagram.

Figure 2.3: The average relative deviation of geometri
-
luster 
on
entrations fromthe predi
tions of the ideal-
luster-gas model. Clusters up to and in
luding the sizea = 15 were used.



95Unfortunately, the statisti
 in Equation 2.43 is 
awed at low temperatures, where
luster produ
tion is predominantly suppressed. The rare multispin 
lusters, that doform in a limited number of simulated latti
e realizations, appear in very smallnumbers whi
h deviate substantially from the expe
ted averages. As a result, the
luster-averaged relative deviation is dominated by statisti
al noise, i.e. the devia-tions due to several events (or even one event) of large 
luster formation. This 
anbe seen in Figure 2.3 whi
h demonstrates �n=n for a set of 
lusters with the sizeup to and in
luding a = 15, N = 64 in all. The unexpe
tedly large deviations inthe �rst three temperature points of Figure 2.3 are dominated by these statisti
allyunreliable data, and should not be paid attention to. Only the data that fall on astraight line should be taken into 
onsideration, and 
orrespond to sampling abovethe noise.Overall, at low temperatures Figure 2.3 predi
ts a small 
umulative e�e
t ofinterferen
e for geometri
 
lusters. However, as the temperature rises, the deviationsin
rease with the temperature to rea
h 80% around the 
riti
al point. This in
reasingbehavior may be explained as a result of in
reasing pressure of gas in the two-phasemixture. As the temperature in
reases along the phase boundary 
urve as shownin Figure 1.10, the amount of liquid de
reases, and the amount of gas in
reasesat 
onstant total 
ontainer volume. The larger the pressure of the gas phase, thestronger the intera
tion between the gas 
lusters due to the ex
luded volume e�e
t.Using the approximation in Equation 2.28 and keeping only the dominant exponential



96part 
ontaining the pressure, the 
luster-averaged relative deviation 
an be roughlyestimated as follows:�nn � 100N Xa;s 1 � exp[��P (a+ sts)℄ � 100PNT Xa;s (a+ sts) / PT ; (2.44)whi
h in
reases roughly as a sum of 
luster 
on
entrations a

ording to Equations2.29.Another unbiased test of the approximation 
an be 
arried out by 
omparing theexa
t SAP 
ombinatorial fa
tors with those obtained by �tting simulated 
on
en-trations with Equation 2.11 as a fun
tion of temperature. In the �tting of everyparti
ular 
luster 
on
entration, only g(a; s) is used as a variable parameter. Ifthe �tting formula 
orre
tly re
e
ts the properties of the 
lusters, it is expe
ted toreprodu
e 
ombinatorial fa
tors of geometri
 
lusters just as they are known fromSAP 
ounting. However, in
orre
t or insuÆ
ient models would yield 
ombinatorialfa
tors that systemati
ally deviate from the expe
ted exa
t numbers. Figure 2.4demonstrates 
ombinatorial fa
tors for 64 
lusters up to and in
luding a = 15, ob-tained using the aforementioned pro
edure, plotted against the exa
tly known SAPfa
tors. If the re
overed numbers were a

urate, the plot would show a one-to-one
orresponden
e eviden
ed by a straight y = x-line. As it is, however, the deviationsfrom the y = x-line are fairly large and follow a systemati
 trend. All the 
ombina-torial fa
tors, that were obtained by �tting, underestimate the exa
t quantities, andfall on a straight line, indi
ating the model's failure to reprodu
e the same propertyfor all the 
lusters 
onsidered. The fa
t that the extra
ted 
ombinatorial fa
tors



97are smaller than those expe
ted from SAPs indi
ates that the freedom of 
lusters totake various shapes is suppressed by the presen
e of other 
lusters, an e�e
t that the
urrent model 
annot a

ount for.
Figure 2.4: Comparison of several SAP 
ombinatorials with the 
orresponding geo-metri
 
luster 
ombinatorials extra
ted by �tting their 
on
entrations with Equation2.11.There is an intriguing possibility of simple linear mapping the wrong 
ombinato-rial fa
tors to the right ones. Sin
e the deviations are systemati
, and the in
orre
t
ombinatorials follow an approximately linear dependen
e on the true SAP numbers,this dependen
e 
an be empiri
ally parameterized by the linear fun
tion y = kx+ b,where k and b are some 
oeÆ
ients. Doing this simple tri
k yieldsgSAP (a; s) � (3:96� 0:20)gideal(a; s)� (1:90 � 0:27); (2.45)
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ombinatorial fa
tors obtained from �tting simulated geometri
-
luster 
on
entrations with the ideal 
luster gas approximation. This mapping em-piri
ally a

ounts for the e�e
ts of 
luster intera
tion on the 
ombinatorial fa
torsof the Ising geometri
 
lusters and prompts the existen
e of a similar mapping innu
lear systems. Although the knowledge of 
orre
t 
luster 
ombinatori
s does nothelp �nding 
orre
t thermodynami
s without a proper attention to 
luster intera
-tion at every temperature, still these data are important on their own as an indi
atorof the extent of 
luster interferen
e.
Figure 2.5: The latti
e gas 
oexisten
e pressure in the limit of the ideal 
luster gas
al
ulated with geometri
-
luster 
on
entrations from simulations (solid 
ir
les), andusing Equation 2.11 (open 
ir
les), as 
ompared to the exa
t pressure (line). Thesolid stars depi
t the average of the two pressures. The mean-�eld Bragg-Williamspressure is also shown as open triangles.Thermodynami
s of the latti
e gas at the phase boundary 
an also be used to
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ura
y of the non-intera
ting-
luster method. As an example, pressure 
anbe found within the ideal-
luster-gas approximation using Equations 2.29. At thesame time, the exa
t pressure P 
an be found from the Onsager solution using theequivalen
e relations in Table 1.12. If the ideal-
luster-gas approximation is good forgeometri
 
lusters, it should yield the latti
e gas pressure just as Onsager predi
tsit or 
lose to it. Otherwise the poor 
orresponden
e would be indi
ative of an inad-equate methodology. In addition to that, the two possible independent methods to
al
ulate the pressure using an ideal gas of 
lusters should produ
e 
onsistent results.A

ording to the �rst method, 
luster 
on
entrations from MC simulations 
an besummed up at spe
i�ed temperatures using Equations 2.29. In the se
ond method,Equation 2.11 
an be used at the same temperatures to predi
t the 
on
entrations ofgeometri
 
lusters as if they were non-intera
ting, and then these 
on
entrations 
anbe a

ordingly summed up. Both methods are expe
ted to produ
e equal results,
omparable with the exa
t pressure. However, the expe
tations are not ful�lled, asthe results of the 
al
ulations are shown in Figure 2.5. The pressure a

ording tothe �rst approa
h is abbreviated GC (geometri
 
lusters), a

ording to the se
ondapproa
h the pressure is 
alled SAP, and the exa
t pressure is 
alled Onsager. Pre-di
tions of the zeroth order mean-�eld Bragg-Williams approximation are also shownin the �gure. Noti
e that the Bragg-Williams approximation is the worst among allshown in the �gure thereby giving a 
redit to the ideal 
luster gas approximation asof a higher order 
ompared to the mean �eld. Nevertheless, it 
an be observed with
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ertainty that the ideal-
luster-gas approximation still applies poorly to geometri

lusters unless the temperatures are low. At high temperatures and in the vi
in-ity of the 
riti
al temperature the deviations are of the order of 30% with the twomethods yielding in
onsistent results whi
h bend o� the exa
t pressure in oppositedire
tions. The Bragg-Williams approximation is more or less 
onsistent with the�rst method of 
al
ulating the pressure dire
tly from the simulated 
luster 
on
en-trations indi
ating that the non-intera
ting-
luster te
hnique is more than suÆ
ientto obtain rough estimation of mean-�eld thermodynami
s of the system. However,at 
ertain 
onditions these thermodynami
s 
an signi�
antly deviate from the exa
tvalues, and may not be very helpful. These deviations are the result of the 
lusterintera
tion, whi
h needs to be a

ounted for in order to 
orre
tly reprodu
e 
uid'sthermodynami
s from the observed 
luster distributions.An interesting result, shown in the same �gure, 
on
erns the pressure obtainedby averaging GC and SAP pressures. It 
an be seen that this average pressure 
omesfairly 
lose to the exa
t Onsager's 
al
ulation thus allowing for a simple re
ipe toestimate the true pressure and the extent of the �nite volume e�e
ts in the system.This is another empiri
al result that 
ombined with the empiri
al parameterizationin Equation 2.45 may provide a simple test pro
edure for probing a system on a
-
ount of 
luster interferen
e. Again one should have nu
lear 
lusters in mind forthe potential use of these simple tri
ks as preludes to the full-
edged Stillinger-likeanalysis methodology.
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Figure 2.6: The latti
e gas 
oexisten
e heat 
apa
ity in the limit of the ideal 
lustergas 
al
ulated with geometri
-
luster 
on
entrations from simulations (solid 
ir
les),and using Equation 2.31 (open 
ir
les), as 
ompared to the exa
t heat 
apa
ity (line).The heat 
apa
ity a

ording to Bragg-Williams is also plotted.Criti
al properties of the latti
e gas 
annot be obtained from geometri
 
lustersas an ideal gas using the heat 
apa
ity. The demonstration of this fa
t 
an beseen in Figure 2.6, whi
h o�ers a 
omparison of the exa
t latti
e gas heat 
apa
ityalong the phase boundary line with the approximate ideal-
luster-gas heat 
apa
ities
al
ulated using Equation 2.31 in two previously dis
ussed ways. In addition tothat, the heat 
apa
ity a

ording to Bragg-Williams mean-�eld approximation is alsopresented. To 
ondu
t this test, the temperature range of the Ising MC simulationswas extended to Tmax = 2:35. Not surprisingly, the �gure shows no 
onsisten
y ofthe results, and no result 
omes 
lose to the exa
t heat 
apa
ity depi
ted by the solid



102line. The heat 
apa
ity, designated SAP and 
al
ulated using self-avoiding-polygon
ombinatori
s, diverges qui
kly prompting the existen
e of a di�erent 
riti
al pointfor the hypotheti
al ideal gas of geometri
 
lusters lo
ated at about 2:06J , whi
his quite far from rea
hing the exa
t 
riti
al point of the latti
e gas at TC � 2:269.Without 
ertainty, this suggests that the 
riti
al temperature of the latti
e gas issigni�
antly in
uen
ed by 
luster interferen
e, and that without interferen
e, as isthe 
ase in the hypotheti
al ideal gas of geometri
 
lusters, the 
riti
al temperatureis redu
ed. On the other hand, the heat 
apa
ity 
alled GC is 
al
ulated usinggeometri
 
luster 
on
entrations obtained dire
tly from the MC simulations. Insteadof showing a peak in the positive range, this heat 
apa
ity dips toward the negativerange around the 
riti
al point and is, therefore, non-physi
al. In 
ontrast, theBragg-Williams heat 
apa
ity is relatively 
at in the 
riti
al region, indi
ating thela
k of the 
riti
al information.2.4.2 Non-ideal Cluster GasNumeri
al tests with geometri
 
lusters as a non-ideal gas 
an be 
arried out inthe same manner as the one o�ered to 
he
k appli
ability of the ideal-
luster-gasapproximation. Figure 2.7 presents a qualitative 
omparison of simulated geometri
-
luster 
on
entrations with the analyti
ally assessed predi
tions of the �nite volumeapproximation (FVA) in Equation 2.28. It 
an immediately be seen that the devi-ations are barely visible. A more thorough 
omparison is shown in Figure 2.8, in
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Figure 2.7: Comparison of some geometri
-
luster (GC) 
on
entrations with the
orresponding theoreti
al predi
tions by Equation 2.28.whi
h average relative deviation, 
al
ulated with Equation 2.43, is demonstrated inper 
ent as a fun
tion of temperature for 64 
lusters up to a = 15. No doubt, this�gure displays a dramati
 improvement over a similar plot in Figure 2.3, whi
h refersto the ideal-
luster-gas approximation. Apart from 
u
tuations at low temperaturesdue to poor statisti
s of large 
lusters, the deviations do not ex
eed 7-8% and arenot temperature dependent. Noti
e how the divergent temperature dependen
e isannulled using the �nite volume approximation, and the deviations stay 
onstantthroughout the whole temperature region under 
onsideration. These 
onstant de-
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Figure 2.8: The average relative deviation of geometri
-
luster 
on
entrations fromthe predi
tions of the �nite volume approximation.viations point to systemati
 errors due to insuÆ
ient a

ura
y of FVA. It must beemphasized, however, that the extreme simpli
ity of FVA, whi
h is based on the one-dimensional Reiss-Fris
h-Lebowitz (RFL) approximation, makes it quite surprisingto see deviations so insigni�
ant. Clearly, the more 
omplex two and three dimen-sional RFL approximations will be able to render the observed dis
repan
ies almostnon-existent.Pleasing results also 
ome when extra
ting SAP 
ombinatori
s 6 from simulated6This te
hnique of estimating numbers of SAP may be used as an alternative to exa
t 
ountingmethods in three and higher dimensions when the exa
t methods fail due to the limited 
omputerpower. Even with the power of modern super
omputers, SAP enumeration in two dimensions islimited by the size a = 50. In higher dimensions exa
t 
al
ulations 
annot break the a = 20 limit.
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Figure 2.9: Comparison of SAP degenera
ies with geometri
 
luster degenera
ies ex-tra
ted by �tting their 
on
entrations with �nite volume approximation in Equation2.28
on
entrations using Equation 2.28. Figure 2.9 shows almost one-to-one 
orrespon-den
e between the exa
t and 
al
ulated 
ombinatorial fa
tors spanning eight ordersof magnitude, with only small deviations appearing at large values. The in
onsis-ten
ies 
an better be seen in Figure 2.10, in whi
h relative deviations are plottedversus exa
t values. In the plot it may be noti
ed that up to the values in the �fthorder of magnitude the deviations from the exa
t numbers do not ex
eed several per
ent. These 
ombinatorials 
orrespond to small and/or relatively 
ompa
t 
lustersfor whi
h the surfa
e 
ontribution to the 
avity volume and free energy is approx-However, MC Ising simulations 
an be 
arried out fairly easily and qui
kly for very large latti
eswith high statisti
s. Using approximations to 
luster 
on
entrations, like FVA or better, reliableSAP 
ombinatori
s may be obtained with a small 
ost [Breu 04℄.
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Figure 2.10: Relative deviations of geometri
 
luster degenera
ies from exa
t SAPdegenera
ies. Finite volume approximation in Equation 2.28 has been used to �tgeometri
 
luster 
on
entrations obtained from MC Ising simulations.imated a

urately by FVA. On the other hand, large 
ombinatorials 
orrespond tostringy 
lusters that have extremely 
onvoluted surfa
es with many bends in thestrings. The estimation of the 
avity volume v(a; s) is impre
ise for these 
lusters,whi
h also require higher order of RFL approximation used to des
ribe the surfa
ee�e
ts on the 
avity formation free energy.The latti
e gas thermodynami
s 
an be obtained using FVA with the di�erentialequation te
hnique (DET) a

ording to Equation 2.37. The use of DET to analyzethe 
luster 
on
entrations obtained dire
tly from the simulations is bound to bea

urate, sin
e FVA is not needed, and the latti
e energy is a

urately 
al
ulatedas shown in Equation 1.54. The error is only due to the in
omplete set of latti
e
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Figure 2.11: The latti
e gas pressure 
al
ulated from SAP 
ombinatorial fa
torsassuming non-ideal 
luster gas (solid 
ir
les). The line represents Onsager's pressure.realizations and 
luster sizes explored in the simulations. Therefore, it is only ofinterest to learn how FVA 
an be used to des
ribe the latti
e gas with a �nite set ofSAP 
ombinatorials, sin
e in possible real-life appli
ation of this te
hnique to nu
lear
lusters the knowledge of 
ombinatorial fa
tors is of 
entral importan
e. First-orderdi�erential Equation 2.40 
an be solved numeri
ally to �nd the pressure from thelimited distributions gSAP (a; s). Matlab was employed to program the algorithm ona 
omputer. The 
ode is presented in Appendix A. Figure 2.11 shows the result ofthe 
al
ulation in two dimensions using 877 SAP 
ombinatorials up to and in
ludinga = 50. The agreement with the exa
t pressure is remarkable with the largestdeviation being 1.53% at T = 2:25.
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Figure 2.12: Heat 
apa
ity of the two-dimensional Ising model 
al
ulated using SAP
ombinatorials (solid 
ir
les) and from the Onsager solution.The 
riti
al point 
an be estimated from the peak in the heat 
apa
ity usingEquation 2.42. Again the 877 SAP 
ombinatorials are used to obtain the resultspresented in Figure 2.12 in 
omparison with exa
t Onsager's result. The expe
tationof non-divergen
e of the heat 
apa
ity is readily 
on�rmed in the �gure. A small but
learly visible peak o

urs that provides the estimation of the 
riti
al temperatureat T
 � 2:358. At �rst glan
e the deviations from the exa
t result seem to be fairlylarge. Nevertheless, the methodology should be given mu
h 
redit. Notwithstandingthe simpli
ity of FVA, and trun
ation of SAP distributions used for the 
al
ulation,there is a large improvement in 
omparison with the ideal-
luster-gas 
al
ulation. Inspite of weak 
omparison to the exa
tly known latti
e gas heat 
apa
ity, the �nite



109volume approximation 
orre
tly reprodu
es the expe
ted properties of the 
uid, whilethe estimation of 
riti
al temperature deviates from Onsager's only by 4%.2.5 Con
lusionsIt has been demonstrated on the basis of a simple RFL approximation, that ge-ometri
 
lusters of the Ising model behave like Stillinger's 
lusters, and are 
apableof a

urately re
overing thermodynami
s of the latti
e gas. On the other hand,the ideal-
luster-gas approa
h to geometri
-
luster analysis yields worse results 
om-pletely failing in the vi
inity of the 
riti
al temperature. Therefore, geometri
 
lustersmay be a

epted as proper model 
lusters to test and develop nu
lear 
luster analysiste
hniques if 
luster interferen
e is duly a

ounted for.The ultimate test for appli
ability of Stillinger's formalism to nu
lear 
lusters liesonly with the experiment. However, the observed su

ess of geometri
 
lusters as anon-ideal gas, espe
ially in the vi
inity of the 
riti
al point, to 
orre
tly reveal theproperties of the latti
e gas hints at the possibly similar properties of nu
lear 
lusters.If these expe
tations are true, then the failure of the ideal-
luster-gas approximationto 
orre
tly re
over the latti
e gas pressure from the geometri
-
luster gas 
asts adoubt on the previously 
ondu
ted nu
lear analyses, and produ
es a motivation tosear
h for alternative te
hniques.The �rst easy step in su
h a sear
h is to modify previously used Fisher's model toa

ommodate the e�e
ts of 
luster interferen
e and to employ the di�erential equa-



110tion te
hnique to analyze nu
lear 
luster distributions. In fa
t, to make a 
onne
tionbetween nu
lear and latti
e 
lusters, Fisher's model is only needed to parameterize
luster 
ombinatorials and surfa
es as fun
tions of 
luster size. Then the energy ofthe nu
lear gas phase at the phase boundary may be estimated as a sum over surfa
eenergies of individual 
lusters, and the pressure may then be inferred from the en-ergy by solving a di�erential equation similar to Equation 2.40. Sin
e experimental
luster distributions are in
omplete, the above te
hnique should be 
oupled with a�tting pro
edure to determine the best estimate of the parameters, and re
onstru
tthe missing 
luster distributions. The pressure, density and all the other thermo-dynami
 quantities 
an then be determined from the modi�ed Fisher-like analyti

on
entrations. The next 
hapter 
onsiders this methodology in detail.
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Chapter 3Intera
ting-Cluster Approa
h toNu
lear Cluster AnalysisThe su

ess of Stillinger's methodology in estimating the latti
e gas pressure at
oexisten
e prompts a question: 
an it be su

essfully 
arried over to Fisher's dropletsand eventually to nu
lear 
lusters? Apart from in
omplete nu
lear 
luster data, theneed to use Fisher's model is di
tated by the la
k of experimental information aboutthe parti
ular surfa
e area of a nu
lear 
luster at the moment of dete
tion. Se
tion3.1 will deal with these issues by introdu
ing the Modi�ed Fisher's model, whi
ha

ounts for e�e
ts of 
luster interferen
e and ni
ely avoids the need to use 
lustersurfa
e areas. Appli
ation of the modi�ed Fisher's model to data will be 
onsideredin Se
tion 3.2, and Se
tion 3.3 will present �nal 
on
lusions.



1123.1 The Modi�ed Fisher's ModelA modi�ed 1 Fisher-based analysis pro
edure, whi
h in
ludes 
luster interferen
ee�e
ts, 
an be obtained by substituting 
luster surfa
es and 
ombinatorial fa
torsin the Stillinger-based formalism with the 
orresponding Fisher's parameterizations.However, the original Fisher's parameterizations did not suÆ
iently a

ount for fra
-tality e�e
ts. Fra
tality is a property of some shapes to be self-similar with a 
hangeof s
ale. Fra
tals will be dis
ussed more thoroughly after this brief introdu
tion,but now it is important to say that fra
tality e�e
ts may play a signi�
ant role
omparable to or even larger than that of 
luster interferen
e. And sin
e the �nitevolume approximation (FVA) 
laims a signi�
ant improvement in a

ura
y over theideal-
luster gas methodology, avoiding 
onsideration of fra
tality 
an underminethe overall usefulness of Stillinger-based approa
h to 
luster analysis using Fisher'smodel.1Finite volume e�e
ts in Fisher's model have been 
onsidered in the past. Swaminathan andPoland [Swam 78℄ used the results of the three-dimensional RFL theory to 
ombine them withFisher's 
on
entrations. In addition to that they developed a methodology to predi
t individual
luster 
on
entrations from known Fisher's parameters. Their approa
h to introdu
e �nite volumee�e
ts into Fisher's 
on
entrations is essentially the same as the one in this work. However, theirmethodology to analyze a 
uid is more general and 
omplex involving a non-linear system of equa-tions, the number of whi
h is equal to the number of 
luster types, whereas this thesis 
onsidersa parti
ular 
ase of phase 
oexisten
e o�ering a rather simple and novel te
hnique, re�ned on thebasis of geometri
 
lusters. The modi�
ation of Fisher's model by Swaminathan and Poland wasnever used in nu
lear 
luster analysis.



1133.1.1 Fra
tality E�e
ts in Fisher's ParameterizationsFra
tality [Fede 88, S
hr 91℄ is the property of an obje
t to repeat its uniqueform and stru
ture in the form and stru
ture of the building blo
ks used to 
reatethe obje
t. In other words, the form and stru
ture of the bri
ks is repeated in theform and stru
ture of the building, whi
h is repeated in the form and stru
ture ofthe 
ity, and so on. In the words of Mandelbrot, who introdu
ed fra
tals into themodern physi
s [Mand 82℄, \a fra
tal is a shape made of parts similar to the wholein some way" [Fede 88℄.Fra
tal shapes are distinguished from non-fra
tal ones by the fa
t that their di-mensionality is di�erent from the dimensionality of the spa
e they form in. Fra
tality
an be 
hara
terized by a fra
tal dimension. For non-fra
tals it 
oin
ides with Eu-
lidean topologi
al dimension of the spa
e, whereas for fra
tals it is non-integer anddi�ers from the spa
e dimension. Fra
tal dimension is de�ned as a ratio of the log-arithm of the number of building blo
ks that 
an �t into a 
omposite obje
t, tothe logarithm of the 
hange of s
ale between the s
ales (magni�
ation fa
tor) of the
omposite obje
t and its building blo
ks. For example, the fra
tal dimension of asquare is 
al
ulated to be two, sin
e it 
an 
ontain four squares twi
e as small. Thefra
tal dimension of a 
ube is three. Therefore a square and a 
ube are not fra
tals.On the other hand, the fra
tal dimension of Sierpinski triangle, shown in Figure 3.1,is log 3= log 2 � 1:58, whi
h is quite di�erent from the topologi
al dimension of thetwo-dimensional spa
e. Sierpinski triangles are fra
tal obje
ts.
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Figure 3.1: Sierpinski triangle.Clusters also possess fra
tality due to irregularity of their shapes with the ex
ep-tion of 
ubes, squares, strings and some other non-fra
tal shapes that 
lusters 
antake on. Every one of those shapes is 
hara
terized by a unique fra
tal dimension, attimes ex
eedingly di�erent from the topologi
al dimension. As a result, fra
tality in
lusters strongly a�e
ts the relationship between the volume and surfa
e of 
lusters.In fa
t, for an arbitrary 
luster of a parti
ular size the relationship is not unique, likefor a 
ube or a sphere. Nevertheless, for a group of 
lusters of a parti
ular size, a
onne
tion between the volume and average surfa
e 
an be 
onje
tured, whi
h alsogives proper attention to fra
tality e�e
ts. In his original work [Fish 67, Fish 69℄,Fisher a

ounted for 
luster fra
tality introdu
ing a formula similar to the surfa
e-volume relationship of simple shapes, but with the exponent in
luding an e�e
tivefra
tal dimension of the 
luster surfa
e instead of its topologi
al dimension:s = �a�; (3.1)where s is the average surfa
e of a 
luster of size a, � is the ratio of an e�e
tive fra
taldimension of the average 
luster surfa
e to the topologi
al dimension of the 
luster



115volume, and � is a proportionality 
oeÆ
ient. This formula, however, is too mu
h ofan approximation. Stau�er [Stau 75, Stau 79℄ presented a 
onvin
ing argument thatthe average 
luster surfa
e on the latti
e splits in two parts. One part is proportionalto a power of the 
luster volume and the other part is proportional to the volumeitself. Though Stau�er did not mention fra
tality as a reason for su
h a relation,
learly this e�e
t must be due to fra
tality as the 
luster surfa
e may be extremely
onvoluted. In the extreme when the surfa
e �lls the whole 
luster volume in thespiral-like arrangement, the surfa
e area be
omes only proportional to the volume.As an example, imagine a sheet of aluminum foil, say 1 ft2. This fairly large sheet
an be wrinkled and pressed into a small sphere. Clearly, at 
onstant thi
kness ofthe foil, the mass (and the volume) of the sphere will be proportional to the a
tualsurfa
e area of the foil in the sphere (whi
h is 1 ft2), whereas the use of the standardsurfa
e-volume relationship of the sphere will yield grossly in
orre
t estimation ofthe foil's surfa
e. So it is with 
lusters. Two-dimensional geometri
 
lusters 
an bepresented as a simple example to 
larify the issue. The most 
ompa
t non-fra
tal
lusters are squares, whose surfa
e (perimeter) goes exa
tly as the volume to thepower 1=2. In the other extreme, geometri
 
lusters 
an form spirals and strings,whose surfa
e goes exa
tly linearly with the 
luster volume be
ause it �lls up thevolume (the fra
tal dimension of su
h a surfa
e approa
hes the topologi
al dimensionof the volume). All other 
lusters take some intermediate position with respe
t tothese two extremes and have both 
ontributions to their average surfa
e. Therefore,



116a

ording to Stau�er, it seems more �tting to express the average 
luster surfa
e asa superposition of the two extreme (
ompa
t and 
onvoluted) 
ontributions:s = �[a� + la℄; (3.2)where l is a 
onstant.

Figure 3.2: Comparison of the exa
t perimeter dependent SAP 
ombinatorial fa
torsto the �t with Fisher's asymptoti
 in Equation 3.3.Di�erent expressions for the average 
luster surfa
e as a fun
tion of the 
lustersize should ne
essarily a�e
t Fisher's parameterization of the 
ombinatorial fa
tor.Fisher's original parameterization for this quantity isg(s) � qs�x exp($s); (3.3)



117where g is the 
luster 
ombinatorial fa
tor, and q, x, and $ are some 
onstants. It isbased on an asymptoti
 empiri
ally found [Rush 59, Fish 59℄ in the 1950s for numbersof polygons and random walks on the latti
e and later 
on�rmed semi-analyti
ally[Fish 59℄. This asymptoti
 is extremely a

urate when applied to the number of self-avoiding polygons as a fun
tion of their perimeter (the analogy to the surfa
e area intwo dimensions). In Figure 3.2 the exa
t numbers of SAPs [Jens 03℄ are 
omparedto the �t with Equation 3.3. Over the range of thirty �ve orders of magnitudethe 
orresponden
e is blameless, and holds a promise to remain blameless for anyperimeter size. Re
ent studies [Brak 90, Lin 91, Bous 96, Gutt 00, Jens 00, Gutt 01℄
on�rmed the earlier work by analyti
ally 
al
ulating the numbers of a limited 
lassof self-avoiding polygons (
onvex and row-
onvex polygons), deriving the asymptoti
sand testing the results on modern 
omputers. They demonstrated that Equation 3.3is a good approximation to the true 
ombinatorial fa
tors.Fisher further assumes the validity of Equation 3.1 and postulates thatg(a) � q0a�� exp(ka�); (3.4)where q0 = q��x and k = $�. This parameterization, however, does not a

ountfor the proportionality of the average 
luster surfa
e to the volume of the 
luster.Therefore, it seems reasonable to improve upon Fisher's asymptoti
 in Equation 3.4by adopting Stau�er's parameterization of the average 
luster surfa
e and keepingthe general form of Equation 3.3 un
hanged:g(a) � q0[a� + la℄�x exp(k[a� + la℄) (3.5)



118This form is expe
ted to a

ount for the fra
tality e�e
ts of average 
luster surfa
esmore a

urately by separately 
onsidering the non-fra
tal surfa
e and volume 
ontri-butions. Sin
e Equation 3.5 implies � to be a non-fra
tal surfa
e part, the value ofthis quantity may be taken as a ratio of topologi
al surfa
e and volume dimensions.For example, in two dimensionsg(a) � q0[a1=2+ la℄�x exp(k[a1=2 + la℄) (3.6)In the rest of this work � will no longer be 
onsidered as a parameter, but will be�xed a

ording to the dimensionality of the problem.3.1.2 The Modi�ed Fisher's Droplet Con
entrationsIn Chapter 2 it was demonstrated that geometri
 
lusters of the Ising modelobey Stillinger's theory. An approximation was introdu
ed to des
ribe 
luster 
on-
entrations in the limit of RFL (Reiss, Fris
h, Lebowitz) spheres in one dimension,whi
h produ
ed very good agreement with the results obtained from two-dimensionalMonte Carlo Ising simulations. This en
ouraging out
ome prompts a development ofa similar Fisher-based methodology to analyze nu
lear 
luster data with its inherentlimitations of in
ompleteness and la
k of surfa
e information. The starting point inthis endeavor is the �nite volume approximation adopted in Chapter 2:n(a; s; �; P; �) � g(a; s) exp(�
�s) exp[��P (a+ tss)℄(1� �); (3.7)



119where here g(a; s) will denote 
ombinatorial fa
tors of nu
lear 
lusters. In order toobtain the modi�ed Fisher's 
on
entrations, Equation 3.7 must be �rst summed upover the 
luster surfa
es to yield the size dependent 
on
entrations:n(a; �; P; �) � exp[��Pa℄(1� �)Xs g(a; s) exp(�
�s) exp[��Ptss℄ (3.8)

Figure 3.3: The basis for Fisher's 
onje
ture in Equation 3.10 using the exampleof SAP. In this example T = 2. The pressure dependent part does not 
hange theoverall pi
ture, and was omitted in this 
al
ulation.A

ording to Fisher's arguments, the sum in Equation 3.8 is strongly dominatedby one term, and 
an approximately be substituted by this term, whi
h 
orrespondsto the most probable surfa
e s[�℄:s[�℄ = Ps sg(a; s) exp(�
�s) exp[��Ptss℄Ps g(a; s) exp(�
�s) exp[��Ptss℄ (3.9)
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Figure 3.4: The basis for Fisher's 
onje
ture in Equation 3.12 regarding the temper-ature. SAPs of size a = 20 are used as an example. The pressure dependent partdoes not 
hange the overall pi
ture, and was omitted in this 
al
ulation.Therefore, the sum isXs g(a; s) exp(�
�s) exp[��Ptss℄ � g(s[�℄) exp(�
�s[�℄) exp[��Ptss[�℄℄ (3.10)This approximation has a good 
on�rmation in the properties of self-avoiding poly-gons. Figure 3.3 depi
ts the summand (without the pressure dependent part, whi
hdoes not alter the pi
ture) for various SAP sizes at a �xed temperature below the
riti
al Ising temperature as a fun
tion of SAP surfa
es (perimeters). The peaks are
learly seen. Therefore, the size dependent 
luster 
on
entrations may be written asn(a; �; P; �) � g(s[�℄) exp(�
�s[�℄) exp[��P (a+ tss[�℄)℄(1� �); (3.11)where g(s[�℄) is the 
ombinatorial fa
tor of a 
luster of size a at the most probable



121surfa
e 
orresponding to an inverse temperature �. Fisher argues that this tempera-ture dependen
e is not strong and is dominated by the maximum temperature in theinterval of 
onsideration. This point 
an be demonstrated by writing the temperatureaveraged most probable surfa
e of a 
luster of size a:s = �2R�1 s[�℄g(s[�℄) exp(�
�s[�℄) exp[��Ptss[�℄℄�2R�1 g(s[�℄) exp(�
�s[�℄) exp[��Ptss[�℄℄ � s[�2℄ (3.12)The integrals in Equation 3.12 are also expe
ted to be strongly peaked at a temper-ature 
orresponding to the maximum temperature in the range [�1 : �2℄. Therefore,the most probable surfa
e s 
an be assumed to be a fun
tion of the maximum tem-perature in the range being explored: a 
onstant as far as the range is �xed. The
on�rmation to this assumption is readily furnished by SAPs. In Figure 3.4 surfa
earea distributions for a polygon of a �xed size are shown at di�erent temperatures.Clearly, the peaks of these distributions are separated by orders of magnitude, withthe peak at the highest temperature being about �fteen times higher than the peakat a temperature di�erent only by ten per 
ent. Therefore, the Æ-fun
tion approxi-mation for the integrals in Equation 3.12 seems quite �tting.With the most probable surfa
e s assumed to be a 
onstant within the 
hosentemperature range, the modi�ed Fisher's 
on
entrations at 
oexisten
e 
an be ex-pressed a

ording to Equations 3.2, 3.3, and 3.5 as follows:n(a; �; P; �) � q0[a�+ la℄�x exp([k�
0��ts��P ℄[a�+ la℄) exp(��Pa)(1��); (3.13)



122where 
0 = 
�. Equation 3.13 represents the form, that may be further used in theanalysis of experimental data.3.1.3 The Coexisten
e Condition and the Linear TermsIntrodu
tion of the linear terms la in the parameterization of the average 
lustersurfa
e s demands a justi�
ation at the liquid-gas 
oexisten
e. The matter is thatat 
oexisten
e the transfer of 
lusters between the phases is not 
hara
terized bythe 
hange of the volume part of the free energy (
hange of the 
hemi
al potentialis zero), and for that reason the volume dependent terms in the exponential partof Equation 3.13 are expe
ted to vanish. This 
riti
ism is valid, and no rigorousjusti�
ation for retaining the linear terms is o�ered at this time. Nevertheless, some
omments 
an be o�ered to alleviate the problem.It is important to say that the 
oexisten
e 
ondition is not enfor
ed in the method-ology des
ribed in this thesis. When 
luster intera
tion is introdu
ed through thefree energy 
ontribution ��W due to the 
avity formation, this 
ontribution also
hanges with the 
hemi
al potential di�eren
e �� of the phases. Therefore, with in-tera
tion in
luded, modi�ed Fisher's 
on
entrations 
an be written in the followinggeneral form:n(a; �) � q0[a� + la℄�x exp(ka� � 
0�a� + kla� 
0�la) exp(���a) exp(��W [��℄);(3.14)for whi
h enfor
ing the 
oexisten
e 
ondition �� = 0 requires the expli
it knowledge



123of the W [��℄ dependen
e. In the formalism presented in this thesis, 
oexisten
e isimplied by putting �� = 0 in the ideal part of Equation 3.14 and 
onsidering thetemperature-only dependen
e of all the quantities involved in the analysis, so thatthe thermodynami
 quantities are evaluated with the relationu = T ��P�T �� � P; (3.15)whi
h is used to 
al
ulate the pressure through the average energy per parti
le u ofthe system. The ��-dependen
e of the 
avity free energy, however, is not identi�ed,but rather it is expe
ted to be inferred from the experimental 
luster distributions.The simple approximation for 
avity formation free energy��W [�� = 0℄ � ��P [�� = 0℄v
avity + ln(1� �[�� = 0℄); (3.16)adopted in this work, where v
avity is the volume of the 
luster 
avity, is general in asense that it is not restri
ted to 
oexisten
e and does not easily avail itself to su
h arestri
tion without the expli
it knowledge of the expressions P (��) and �(��). As aresult, it is possible that the intri
ate unknown dependen
e of the 
luster intera
tionon �� may 
ause linear terms la to stay in a way not yet 
learly investigated.Nevertheless, it 
an be shown, that in the limit of low density Equation 3.14 prop-erly redu
es to Fisher's non-intera
ting 
luster 
on
entrations. At low densities, theideal gas law Pv1 = �T 
an be used to 
onne
t the pressure with the fra
tional vol-ume density � of the 
lusters, where v1 is the volume of one parti
le. Combined withthe Taylor expansion of the logarithm (one term retained), the ideal gas 
ondition



124simpli�es the 
luster intera
tion as follows:exp(��P (��)v
avity + ln(1� �(��))) � exp��v
avityv1 �(��)� �(��)�� 1� �(��)�v
avityv1 + 1� : (3.17)Therefore, at low densities the e�e
t of 
luster intera
tion is small, and in 
ase of
oexisten
e no linear terms survive (ex
ept for the la-terms in the 
ombinatorialfa
tor).It is also important to mention, that the linear terms are expe
ted to vanish atlow temperatures at 
oexisten
e for a di�erent reason. As it is seen from Equation3.12, the average 
luster surfa
e area is a fun
tion of the upper temperature limit �2,so that the 
onstants �(�2) and l(�2) are also fun
tions of this temperature. As thetemperature goes to zero (�2 !1), the 
lusters stop having 
onvoluted surfa
es dueto the la
k of energy in the system to a�ord a large total liquid-vapor interfa
e. Asa result, the 
lusters that form at low temperatures are mostly spheri
al (minimalsurfa
e area) or nearly so with the surfa
e-volume relationship s(�2) = �(�2)a�approa
hing that of a perfe
t sphere. In other words, the 
lusters stop being fra
tal,and the linear volume dependen
e of the 
luster surfa
e area disappears (l(�2)! 0),while �(�2) tends to �1 of a geometri
al sphere. Exa
t fun
tional forms for �(�2)and l(�2) are extremely 
omplex and require the knowledge of 
luster 
ombinatori
sand all the interferen
e e�e
ts in the system. A more 
omplete analysis of 
lusterfra
tality as a fun
tion of temperature using a restri
ted set of SAP 
ombinatori
s
an be found in the work of Elliott et al. [Elli 04℄.



1253.1.4 Thermodynami
sWith Equation 3.13 des
ribing 
luster 
on
entrations, thermodynami
 analysisof 
luster data at 
oexisten
e 
an be performed using the methodology des
ribed inChapter 2. The di�erential equation te
hnique (DET) introdu
ed in that 
hapterfor Stillinger-like geometri
 
lusters 
an be easily 
arried over to apply to Fisher'sdroplets with a minimum of Fisher-spe
i�
 
hanges. Similar to the modi�
ation of
luster 
on
entrations, the surfa
e summation in Equation 2.40 has to be dropped,and the 
luster surfa
es must be repla
ed by the most probable values at �xed 
lustersizes. Again SAPs are very handy and 
an be used to justify this approximation. InFigure 3.5 the surfa
e area distributions of self-avoiding polygons of di�erent sizes aremultiplied by the 
orresponding surfa
es to mimi
 the summand in the numeratorof the Equation 2.40. The presen
e of peaks is 
learly observed and supports theapproximation of the surfa
e sum by the largest term. Therefore, the Fisher-modi�eddi�erential equation 
an be written as:T �P�T ����� � P � 
Pa sn0(a; �; P )1 +Pa an0(a; �; P ); (3.18)wheren0(a; �; P ) � q0[a� + la℄�x exp([k � 
0� � ts��P ℄[a� + la℄) exp(��Pa) (3.19)is the density independent part of the 
luster 
on
entrations. Substituting the mostprobable 
luster surfa
e with the appropriate dependen
e on the 
luster size, the
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Figure 3.5: The basis for Fisher's 
onje
ture in Equation 3.18 using the example ofSAP. In this example again T = 2, and the pressure dependent part was not in
luded.
oexisten
e pressure of the 
uid 
an be found as a solution of the equationT �P�T ����� � P � 
0Pa [a� + la℄n0(a; �; P )1 +Pa an0(a; �; P ) (3.20)with the initial 
ondition P (T = 0) = 0, if Fisher's exponents and other parametersof the model are known. On
e the 
oexisten
e pressure is determined, the density ofthe 
uid 
an be evaluated as � � Pa an0(a; �; P )1 +Pa an0(a; �; P ); (3.21)and other thermodynami
 quantities 
an be 
al
ulated from the pressure in a stan-dard way. For example, the 
uid's energy isu � 
0Xa [a� + la℄n(a; �; P; �); (3.22)



127and the heat 
apa
ity is
V = �u�T ����V � 
2T 2 "�2Xa [a� + la℄2n� ts�3Xa [a� + la℄nXa [a� + la℄2n� 2�2Xa [a� + la℄nXa a[a� + la℄n+ �2 Xa [a� + la℄n!2Xa a2n+ ts�3 Xa [a� + la℄n!2Xa a[a� + la℄n35 (3.23)3.2 How the Modi�ed Fisher's Model Can Be Usedin Data AnalysisThe appli
ation of the modi�ed Fisher's model to experimental nu
lear 
lusterdistributions 
an be a

omplished similarly to the methodology employed to analyzethese 
lusters with the original version of the model. The main goal of the analysisis to �nd a set of Fisher's parameters that 
hara
terizes the available 
luster dis-tributions in the best possible way. This is a

omplished through �tting the modelto all the data simultaneously (global �tting) by minimizing the total �2. However,the use of the modi�ed Fisher's model 
annot be redu
ed to mere �tting due tothe pressure and density dependen
e of 
luster 
on
entrations. Therefore, on ea
hiteration of the �2-minimization pro
edure, the best estimates of the pressure anddensity must also be found. This 
an be done using Equations 3.20 and 3.21 forthe intermediate values of Fisher's parameters. In these equations the summationhas to go to in�nity, though in pra
ti
e summing up to the 
luster size of several



128thousand parti
les should be suÆ
ient to rea
h the required a

ura
y. Therefore,a self-
onsistent �tting pro
edure 
an be set up to analyze the experimental dataand to determine thermodynami
s of the system with a few �tting parameters: q0,l, x, k, �. The value of � should be �xed a

ording to the dimensionality of theproblem, 
0 
an be found independently, sin
e 
0 = 
�, and the surfa
e tension 
is approximately known from the liquid drop model. The skin thi
kness ts 
an alsobe given a reasonable estimate based on 
harge density pro�les obtained in ele
trons
attering experiments. On
e the minimization su

essfully 
onverges, the pressureand density obtained at the last iteration provide the best estimates of the nu
learthermodynami
 quantities at 
oexisten
e as fun
tions of temperature and enable the
onstru
tion of the liquid-vapor phase diagram in an alternative way that takes intoa

ount 
luster interferen
e.3.2.1 Numeri
al Testing with Geometri
 ClustersThe modi�ed Fisher's methodology, as outlined above, is ready to be appliedto nu
lear 
luster distributions if 
are is taken to �lter out Coulomb and quantume�e
ts in a standard way. However, the methodology 
annot be relied upon unlessit passes the test with geometri
 
lusters of the latti
e gas (Ising model). To realizethe test, 
luster 
on
entrations from two-dimensional Ising simulations 
an be folded



129in the surfa
e degree of freedom to be
ome the fun
tions of 
luster size:n(a; �; P; �) =Xs n(a; s; �; P; �); (3.24)thus resembling a nu
lear-
luster data set. These 
on
entrations 
an be �tted dire
tlywith the modi�ed Fisher's pres
ription to obtain the phase diagram of the latti
egas. A Matlab pro
edure has been developed to implement the ne
essary 
oding.Five independent �tting parameters were used to minimize the �2: q0, l, x, k, and
0. The value of � = 1=2 was �xed by the dimensionality of the problem. Parameter� = 
0=
 was de�ned by the Ising surfa
e tension 
 = 2. The skin thi
kness ts isunity for geometri
 
lusters on the latti
e if thermodynami
 quantities in questionare determined per latti
e site. The entire listing of the 
ode is provided in AppendixA. A �nite set of medium-size 
lusters a 2 (10 : 25) has been 
hosen for �tting tomimi
 the restri
tions on the nu
lear data. The temperature range was T 2 (1:5 : 2:2)with a gap �T = 0:05. The lower temperature boundary was determined by therequirement of suÆ
ient statisti
s for the 
lusters in 
onsideration, and the upperboundary was set to be below the 
riti
al temperature T
 � 2:269, as it is a typi
alsituation for nu
lear 
lusters.The �2-minimization su

essfully 
onverged and yielded the best set of parame-ters shown in the left half of Table 3.1. With these parameters, the resulting �ts aredisplayed in Figure 3.6 for several sample 
on
entrations. The �gure displays a rathera

urate �tting of the 
on
entration, espe
ially taking into a

ount the fa
t that the
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Figure 3.6: Geometri
-
luster 
on
entrations extra
ted from a two-dimensional Isingsimulation (symbols) with �ts by the modi�ed Fisher's model (solid lines).pro
edure was global. Deviations are observed at low temperatures mostly for larger
lusters due to poor statisti
s. However, statisti
s are not the only 
ause for thedeviations. It 
an be seen that there are systemati
 deviations at low temperaturesthat show the limitations of the many approximations involved.The pressure of the latti
e gas as a fun
tion of temperature 
an be obtainedat the last iteration of the �tting routine solving Equation 3.20 with the best setof the �tting parameters. Figure 3.7 exhibits the result of the 
al
ulation. It isvery pleasing to see that ex
ept for low temperature region the extra
ted pressure isalmost indistinguishable from the exa
t 
oexisten
e pressure of the latti
e gas. Theerror bars are about one per 
ent (estimated from the parameter errors), and 
annot
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Figure 3.7: Comparison of the two-dimensional latti
e gas 
oexisten
e pressure ob-tained from the analysis of geometri
 
lusters (solid 
ir
les) with the exa
t pressure(line).be seen on the plot. The varying length of the intervals between the temperaturevalues is due to the automati
 step 
ontrol me
hanism in the numeri
al pro
edurethat integrates the di�erential equation.The 
riti
al temperature of the latti
e gas 
an be determined by the peak inthe heat 
apa
ity, 
al
ulated using Equation 3.23. It is expe
ted that the modi�edFisher's model is valid beyond the 
riti
al temperature. Again this expe
tation 
an bejusti�ed resorting to the analogy with SAPs. In Chapter 2 it has been demonstratedthat the �nite volume approximation (FVA) and SAP 
ombinatori
s together providea very a

urate des
ription of simulated geometri
 
luster 
on
entrations below the
riti
al temperature of the latti
e gas (as a reminder see Equation 3.7). At the
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Figure 3.8: Comparison of the two-dimensional Ising heat 
apa
ity obtained fromthe analysis of geometri
 
lusters (solid 
ir
les) with Onsager's exa
t heat 
apa
ity(line).same time, no 
ondition exists that would require this approximation to fail at andabove the 
riti
al temperature: 
lusters 
ontinue to exist and interfere, the systemis 
hara
terized by a parti
ular pressure, and the 
ombinatori
s of the 
lusters isthe same SAP 
ombinatori
s. On the opposite, the heat 
apa
ity 
al
ulated withthis approximation 
learly shows a meaningful peak and allows estimation of thelatti
e gas 
riti
al temperature with four per 
ent a

ura
y. When merging the�nite volume approximation with Fisher's model, the only major 
hange is the useof an analyti
 expression to des
ribe 
ombinatorial fa
tors. But the 
ombinatorialfa
tors remain the same no matter what the temperature is. Therefore, the modi�edFisher's model should not a priori be limited by the sub
riti
al region and may work



133in the super
riti
al region just as well till it may somehow fail. When applied togeometri
 
lusters the sensitivity of Fisher-based pro
edure 
an be even better thanthat based on SAPs due to parameter 
exibility and plausibility of a more 
ompletesummation, that runs up to the 
luster size of a thousand in the present 
al
ulationthe results of whi
h are shown in Figure 3.8. The �gure 
ompares the heat 
apa
ityfrom �tting simulated geometri
 
luster data with the exa
t heat 
apa
ity from theOnsager solution. The 
riti
al temperature is estimated at T
 � 2:293�0:007, whi
hdeviates from the true 
riti
al temperature by about one per 
ent.The su

ess of the aforementioned te
hnique to 
onstru
t the phase diagram ofthe two-dimensional latti
e gas and a

urately determine its 
riti
al temperature isen
ouraging, and suggests appli
ation of this methodology to experimental data.3.2.2 A Possible Way of Testing Cluster Con
entrations forNon-idealityUnlike geometri
 
lusters of the Ising model, it is not a priori known whether thenu
lear 
luster gas is non-ideal. It may be, however, that during the 
luster formationin the nu
leus just prior to the emission there is a 
ompetition between various
luster forms that are mutually ex
lusive. And if one form is su

essful in emission,it pre
ludes other forms from leaving the nu
leus thereby 
reating a possibility of
luster interferen
e. For example, an analogy of the ex
luded volume e�e
t 
an bevisualized as follows. Suppose a 
luster of a 
ertain size a forms on the nu
lear



134interfa
e and is emitted. At the moment of emission, the fragment blo
ks an area ofthe nu
lear interfa
e equal to the fragment's 
ross se
tional area �a. Multiplied bythe fragments velo
ity va and the 
hara
teristi
 nu
lear time �nu
, the 
ross se
tion �ayields a volume Va in the immediate vi
inity of the emitting nu
leus (
ompare to thenotion of the 
luster 
avity) whi
h is blo
ked from 
ontaining fragments (
lusters) ofany other size but a: Va = �ava�nu
 (3.25)Therefore, the phase spa
e available to all other possible fragments is redu
ed 
aus-ing the e�e
t of fragment interferen
e. Be it as it may, e�e
ts of 
luster interferen
ein nu
lear 
luster distributions 
an only be tested experimentally by 
omparing theresults of traditional Fisher's analysis with the results obtained using the modi�edFisher's model: both methods will produ
e the pressure and �2-values, whi
h need tobe 
ompared to draw the 
on
lusions. This 
omparison is helpful to answer the ques-tion whether it is ne
essary to invoke a more 
omplex 
luster analysis methodology,or the ideal-
luster-gas approximation is enough.In the following, a 
omparison pro
edure is 
onje
tured on the basis of geometri

lusters and SAPs. Geometri
 
lusters form a non-ideal gas that 
an su

essfullybe analyzed with the modi�ed Fisher's model. On the other hand, a hypotheti
alideal gas of geometri
 
lusters 
an be 
reated using SAP 
ombinatori
s with the



135Modi�ed Fisher �2=D = 2:85 Original Fisher �2=D = 109:86Parameter Value Error Parameter Value Errorq0 0.0279 0.0003 q0 0.0278 0.0050l 0.1382 0.0002 l 0.0411 0.0171x 3.5530 0.0032 x 3.7147 0.3525k 3.6937 0.0026 k 3.3560 0.1310
0 7.3077 0.0065 
0 7.4204 0.4084Table 3.1: The best set of the �tting parameters obtained from the analysis ofgeometri
 
lusters of the two-dimensional Ising model. D is the number of degreesof freedom in the �t.
Modi�ed Fisher �2=D = 76:05 Original Fisher �2=D = 19:23Parameter Value Error Parameter Value Errorq0 0.0036 0.0006 q0 0.0364 0.0002l 0.0650 0.0075 l 0.0595 0.0001x 0.4405 0.2697 x 4.0177 0.0013k 3.7671 0.0946 k 4.3507 0.0011
0 8.8818 0.2355 
0 8.7929 0.0018Table 3.2: The best set of the �tting parameters obtained from the analysis of SAPgas 
lusters. D is the number of degrees of freedom in the �t.
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Figure 3.9: Comparison between the values of the pressure obtained by �tting ge-ometri
 
lusters of the two-dimensional Ising model with original and the modi�edFisher's models.
orresponding 
on
entrations 
al
ulated in the dilute limit asn(a; �) =Xs gSAP (a; s) exp(�
�s); (3.26)where as before gSAP (a; s) is the total possible number of SAPs of size a and surfa
es. Su
h a gas mimi
s a nu
lear 
luster vapor that is inherently ideal in 
omparisonwith a non-ideal gas modeled by geometri
 
lusters. Appli
ation of the two Fisher'ste
hniques to these gases may reveal relative 
hara
teristi
 signatures identifying thepresen
e and extent of the interferen
e e�e
ts in 
luster distributions.In order to realize a fair 
omparison, a modi�
ation due to fra
tality must beintrodu
ed to original Fisher's model. In other words, the only di�eren
e between
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Figure 3.10: Comparison between the values of the pressure obtained by �tting SAPgas 
lusters with original and the modi�ed Fisher's models.original and the modi�ed Fisher's models used for testing must be solely due to
luster interferen
e. Therefore, the original Fisher's 
on
entrations must 
ontainparameters l, x, and k as they were de�ned for the modi�
ation:n(a; �) � q0[a� + la℄�x expf[k � 
0�℄[a� + la℄g (3.27)The following results emerged from the 
al
ulations. In the �rst 
ase the 
lustergas was non-ideal represented by geometri
 
lusters. Appli
ation of the modi�edFisher's model produ
es a mu
h better �2, while the parameters of the two modelsdo not di�er substantially, as shown in Table 3.1. The pressure obtained from themodi�ed Fisher's model is only several per 
ent higher than that of the original, asFigure 3.9 depi
ts it.



138Quite di�erent situation o

urs when the 
luster gas is ideal, like the hypotheti
alSAP gas. For
ing modi�ed Fisher's model to �t su
h distributions leads to an utterfailure in 
omparison with original model, as demonstrated by the �2 and the valuesof the �tting parameters in Table 3.2. In addition to that, the pressure extra
ted fromthe modi�ed Fisher's model is suppressed several times as 
ompared to the pressureof original Fisher's model. The observation of these symptoms indi
ates the la
kof the interferen
e e�e
ts in 
luster 
on
entrations. Therefore, the original versionof Fisher's model is expe
ted to provides a better estimate of the phase diagram,sin
e it does not rigidly impose fun
tional forms due to 
luster interferen
e whi
hthe 
on
entrations do not support. Figure 3.10 demonstrates the 
omparison of thepressures below the 
riti
al temperature of the SAP gas, found to be about 2J .3.3 Con
lusionsThe pro
edure presented in this 
hapter o�ers a general Fisher-model-basedmethodology to analyze nu
lear 
luster distributions at thermodynami
 phase 
o-existen
e and 
onstru
t a phase diagram. The pro
edure makes an assumption thatnu
lear 
lusters, as 
omplex as they are, may still 
ontain 
hara
teristi
 signaturesof Stillinger's 
on�gurational 
lusters. If so, the methodology may approximatelya

ount for Stillinger's 
luster interferen
e and produ
e thermodynami
 results morea

urate than those obtained with the ideal-
luster-gas approximation. Geometri

lusters of the Ising model, representing Stillinger's 
lusters on the latti
e, 
learly



139demonstrated the superiority of the new intera
ting-
luster-gas approa
h in 
ompar-ison with the traditional treatment of 
lusters as an ideal gas.The new analysis pro
edure opens an opportunity to look for 
luster intera
tione�e
ts (mostly due to ex
luded volume) in nu
lear 
luster produ
tion. Combiningthe pro
edures with and without 
luster intera
tion in
luded, it may be possible toanswer the question whether the e�e
ts are there, and what their extent is. Char-a
teristi
 signatures of the two possible out
omes have been demonstrated using theexample of geometri
 
lusters.
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Part IIMultiple-Chan
e E�e
ts in�-Parti
le Evaporation
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Chapter 4Introdu
tion4.1 Theoreti
al ConsiderationsEvaporation-like pro
ess in hot nu
lei and its thermodynami
 representation havebeen thoroughly dis
ussed in the previous part of this thesis. Regardless of the wayenergy is delivered to a nu
lear system, the resulting ex
ited nu
leus pro
eeds todeex
ite by emission of fragments in a wide range of masses beginning with neutronsand protons and rea
hing drops half the size of the de
aying system (�ssion). Thefragments are emitted in a statisti
al way, the rate of emission being 
ontrolled bythe average bulk binding energy of the fragment.Equilibrium thermodynami
 
hara
terization of nu
lear matter, mu
h like that ofordinary 
uids, 
ompletely eliminates any memory of events between the phases. Inother words, when drops form, no information about the history of a parti
ular drop



142in the liquid phase is expe
ted to pass to the gas phase. Kineti
ally, the statisti
alemission of fragments implies their random formation on the nu
lear interfa
e.Statisti
al emission of fragments from thermalized nu
lear systems has been
learly 
on�rmed experimentally to be the dominant mode of de
ay of hot nu
lei[More 97℄. Nevertheless, there has been an expe
tation that kineti
s of the fragmentemission may somehow be in
uen
ed by the quantum e�e
ts of fragment formationinside the parent nu
leus prior to the emission from the nu
lear interfa
e [More 97b℄.This preformation may be espe
ially noti
eable for su
h a tightly bound fragment asthe �-parti
le. If �-parti
les are indeed present in the nu
leus before emission, theirpresen
e may manifest itself in a 
ertain way in the evaporation pro
ess.
Figure 4.1: S
hemati
 representation of the states of a fragment in a nu
lear potentialwell.The logi
 is as follows. Suppose that a fragment preexists in a nu
leus before it



143is emitted. As the fragment readies itself to leave the nu
leus, it senses the well-likenu
lear potential and a
quires the quantum states, whi
h possess a 
ertain widthdue to their 
oupling with the 
ontinuum and the many-body degrees of freedomof the nu
leus. This point is illustrated in Figure 4.1. The states of the fragmentinside the well are the shell-model-like states, while the states above the well arethe opti
al-model resonan
es whi
h may appear if a 
ompound nu
leus is formed.Therefore, when the kineti
 energy spe
trum of su
h a fragment is a

umulated,the statisti
al-emission-only ba
kground of the spe
trum may be modulated by astrength fun
tion, whi
h arises due to the quantum states of the fragment in thepotential well of the parent nu
leus. These quantum e�e
ts may introdu
e a biasin the emission spe
trum of fragments, sin
e some energies are preferred over theothers.Experimental observation of the modulations may be made possible if a

uratetheoreti
al des
ription of the statisti
al ba
kground is a
hieved. Then the experi-mental high-statisti
s spe
trum (dis
ussed later) 
an be 
ompared to a theoreti
alform to reveal the modulations.The statisti
al ba
kground of the kineti
 energy evaporation spe
trum 
an inprin
iple be estimated using detailed balan
e of the initial (before emission) a and�nal (after emission) b states of a nu
lear system a

ording to Fermi's Golden Rule:�a�a!b = �b�b!a; (4.1)where �a!b and �b!a are the dire
t and the inverse de
ay widths, and �a, �b are the
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orresponding nu
lear level densities. The inverse width 
an be expressed in termsof the \inverse" 
ross se
tion �inv:�b!a = ~�invvV ; (4.2)where v is the velo
ity of the fragment, and V is the normalization spa
e volume.Equations 4.1 and 4.2 
an be 
ombined to yield the di�erential de
ay width withrespe
t to the fragment's kineti
 energy � in the dire
t rea
tion:�(�)d� / �inv��(E �B � �)d�; (4.3)where E is the initial energy of the hot nu
leus, and B is the fragment's bindingenergy. Expanding the logarithm of the level density to the �rst order in the frag-ment's kineti
 energy, an approximate expression for the kineti
 energy spe
trum ofa fragment 
an be obtained:�(�)d� / �inv� exp�� �T � d�; (4.4)where T is the temperature of the hot parent nu
leus. Equation 4.4 is the theoreti
albasis for 
onventional models to understand the statisti
al part of the fragment'skineti
 energy spe
trum obtained in the evaporation of ex
ited nu
lei. Additionalmodels and empiri
al formulae are used to des
ribe the inverse 
ross se
tion �inv toyield an analyti
 expression for the kineti
 energy spe
trum. As a result generalityis forfeited. In addition to that, 
onventional models do not in
orporate thermalshape 
u
tuations of the emitting nu
leus, whi
h leads to poor performan
e of thesemodels when analyzing experimental data.
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Figure 4.2: Top: Normal modes at the saddle point. Bottom: Total potential energyVT and Coulomb energy VCoul as a fun
tion of the deformation 
oordinate Z.



146An alternative general approa
h is due to Moretto [More 75, More 87℄ whoseun
onventional fragment emission theory is based on the saddle point approximationwith additional 
onsideration of nu
lear deformation. The theory takes into a

ountonly statisti
al degrees of freedom at the saddle of the transition state and assumesno knowledge of the entran
e 
hannel and preexisting stru
tures in the nu
leus.In addition to the usual saddle degrees of freedom the theory also in
ludes shapepolarizations of the emitting nu
leus.When a de
aying nu
leus rea
hes the s
ission point (de
ay mode) there are ad-ditional degrees of freedom or modes that the system 
an take. As shown in the toppanel of Figure 4.2, Moretto 
lassi�ed the modes as amplifying and non-amplifying.The mode is amplifying if the relative 
ontribution from Coulomb and surfa
e energyto the system's potential energy 
hanges widely with deformation. The deformationof the residual nu
leus 
an be des
ribed with a deformation 
oordinate Z, whi
h isde�ned as a 
hange in distan
e between the 
enters of the fragment and the residualnu
leus relative to the undeformed distan
e, the fragment being in 
onta
t with thenu
leus. In
reasing of Z leads to the prolate deformation of the nu
leus in the di-re
tion of emission and thereby to lowering the Coulomb barrier. On the opposite,de
reasing Z results in oblate deformation and elevated Coulomb barrier. Therefore,a fragment 
rossing over the saddle point a
quires a kineti
 energy at in�nity smalleror greater than the Coulomb barrier asso
iated with a spheri
al 
on�guration. Su
han emission is not 
lassi�ed as subbarrier emission in the sense of quantum barrier



147penetration, but rather it is a purely 
lassi
al e�e
t.Thermal 
u
tuations along the deformation 
oordinate Z lead to large 
u
tua-tions in the Coulomb intera
tion energy, as shown in the bottom panel of Figure 4.2.While the total potential energy VT has a minimum at some prolate deformation, thefragment-nu
leus Coulomb intera
tion VCoul is a monotoni
ally de
reasing fun
tionof the deformation 
oordinate. Therefore, the total potential and the Coulomb in-tera
tion energies 
an be expanded in series of Z in the vi
inity of the saddle point.Retaining only the �rst terms of the expansion, the expressions areVT = V 0T + kZ2VCoul = V 0Coul � 
Z (4.5)If the shape of the emitting nu
leus is allowed to 
u
tuate involving an energy of theorder of the temperature T , the 
orresponding 
u
tuations of the Coulomb energyare �VCoul = 2r
2k T = 2ppT ; (4.6)where the parameter p is 
alled the ampli�
ation parameter, whi
h 
hara
terizes therelative properties of the total and Coulomb potentials with respe
t to deformationin the amplifying mode. The parameter p itself is not expe
ted to depend on thedeformation, at least in the se
ond order, but rather indi
ates the amplitude ofthe Coulomb barrier 
u
tuations as a fun
tion of the amplitude of the total energy
u
tuations. The 
u
tuations of the Coulomb barrier strongly a�e
t the width of
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 energy spe
trum.When the potential energy varies almost ex
lusively from the Coulomb energy, themode is non-amplifying, sin
e the deformation-dependent Coulomb energy 
hangeis relatively small in the absen
e of the surfa
e energy 
hange. For instan
e, theos
illation of a fragment about the tip of a prolate emitting nu
leus 
an be 
onsidereda non-amplifying mode. As the fragment rolls away from the tip, the Coulomb energyin
reases due to the de
reasing distan
e between the 
enters of the fragment and thenu
leus, while the surfa
e energy of the system 
hanges only in higher order termsof the deformation 
oordinate series and 
an be 
onsidered approximately 
onstant.Non-amplifying modes are not expe
ted to a�e
t the width of the kineti
 energyspe
trum as mu
h as the amplifying mode and will not be 
onsidered in this thesis.Moretto derived several analyti
 expressions for the kineti
 energy spe
trum ofa fragment P (�) taking into a

ount various 
ombinations of amplifying and non-amplifying modes. The simplest and the most su

essful approa
h in
luded only theamplifying mode and yielded the following result:P (�) / exp��xT � erf
�p � 2x2ppT � ; (4.7)where x = ��V 0Coul. More 
omplex expression was used by Kexing Jing, whose workwill be mentioned in more detail later. Overall, these analyti
 results bypassed theproblem of modeling the inverse 
ross se
tion in 
onventional statisti
al models andprovided a way to dire
tly analyze experimental spe
tra for any tra
es of residualquantum e�e
ts in nu
lear fragment evaporation.
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Figure 4.3: The 
enter-of-mass energy spe
trum of �-parti
les emitted from the3He+natAg rea
tion at 65-MeV beam energy.



1504.2 Experimental Evaporation Spe
traExperimental fragment-evaporation spe
tra are usually obtained by bombardingvarious target nu
lei with light 
harged parti
les. The most abundant fragmentsthat evaporate from the resulting 
ompound nu
leus are �-parti
les. Due to highprobability of emission, �-parti
les 
an be dete
ted in very large numbers, and high-statisti
s kineti
 energy spe
tra 
an be a

umulated. The experimental spe
tra usedin this thesis were obtained at the 88-In
h Cy
lotron of the Lawren
e Berkeley Na-tional Laboratory by Kexing Jing [Jing 99℄ who used two position-sensitive �E-Equad teles
opes to dete
t the parti
les emitted in the rea
tions. Jing used 3He beamof energies 55, 65, 75, 85, 95, 110, 125, 140 MeV to bombard the targets made of197Au, 181Ta, natAg, natCu, 27Al and 12C. A typi
al spe
trum is shown in Figure 4.3.The data sets used for analysis in this thesis in
lude only the spe
tra from the3He+natAg rea
tion at 55, 65, 75, 95, 110, and 125 MeV beam energies. Sin
e thegoal of the study is to look for �ne e�e
ts in the spe
tra, the maximum errors areset at 1%, thereby 
utting the edges of the spe
tra at about 10000 
ounts. Doingso produ
es distributions 
onsisting of 61 energy points with the bin size of 200 keV
overing the range of kineti
 energies between 10 and 23 MeV.



1514.3 Apparent Eviden
e of Preexisting Parti
le Stru
-tures in �-EvaporationIn his attempt to investigate quantum e�e
ts in evaporation spe
tra, Jing usedMoretto's transition state formalism with the in
lusion of one de
ay mode, one am-plifying mode, and the barrier penetration [Jing 99℄. The resulting formula for theevaporation spe
tra P (�) was the following:P (�) / e�x=T� erf�(2V 0Coul + p)=2ppT�� erf�(p � 2x)=2ppT�+12e�(p�2x)2=4pTh e(p�2x�
pT )2=4pT�1 + erf�(p� 2x� 
pT )=2ppT���e(p�2x+
pT )2=4pT�erf�(2V 0Coul + p + 
pT )=2ppT�� erf�(p� 2x+ 
pT )=2ppT��i�; (4.8)where again x= ��V 0Coul and � is the kineti
 energy of evaporated parti
le; V 0Coul is theCoulomb barrier; T is the temperature of the residual nu
leus; p is the ampli�
ationparameter, and 
 is a parameter representing the barrier penetrability.In the 
ase where the temperature T is low and the Coulomb barrier V 0Coul is large(for � parti
les, for example), erf�(2V 0Coul + p)=2ppT� = 1, and erf�(2V 0Coul + p +
pT )=2ppT� = 1. Taking advantage of this fa
t, Equation 4.8 
an be rewritten as:P (�) / e�x=T� erf
�(p � 2x)=2ppT�+12e�(p�2x)2=4pTh e(p�2x�
pT )2=4pTerf
��(p� 2x� 
pT )=2ppT��e(p�2x+
pT )2=4pTerf
�(p� 2x+ 
pT )=2ppT�i�: (4.9)



152It should be noti
ed that Equations 4.8 and 4.9 do not 
ontain polynomials in � of2nd order or higher, and the (
omplementary) error fun
tions and the exponentialsare all smooth fun
tions. Therefore, the observation of spe
trum modulations shouldnot 
ome from spurious polynomial os
illations.Jing used the smooth fun
tion of Equation 4.9 to �t the alpha spe
tra and tosear
h the residuals for modulations. The extremely a

urate �ts he obtained indi-
ated the su

ess of Moretto's theory in a

ounting for the bulk properties of thespe
tra. In addition to that the �t residuals revealed the existen
e of the os
illationsthat were as
ribed to the preexisten
e of �-parti
les in the potential well of the parentnu
leus. Shown in the lower panel of Figure 4.4 are the measured alpha spe
tra andthe �t for the 3He + natAg rea
tion at various beam energies. The quality of the �t isremarkable. The ex
eedingly good quality of the �t indi
ates that, on the one hand,the bulk of the evaporation spe
trum is indeed statisti
al, and that, on the otherhand, the shape 
u
tuations at the saddle point indeed play a very important role.The per
ent di�eren
es between the experimental data and the �ts are shown in theupper panel of the �gure. The residuals of the �ts are of the order of 1% throughoutthe energy range, whi
h shows the goodness of the �tting fun
tion. The residuals
learly show a statisti
ally signi�
ant modulation with an amplitude of about 1.5%.The important feature to noti
e is the la
k of dependen
e of the modulations onbombarding energy. However, the shape of the modulations is strongly dependenton the type of the 
ompound nu
leus formed in the rea
tion, as indi
ated in Figure
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Figure 4.4: Lower panels: The experimentally measured � spe
tra ( Æ ) from 3He +natAg rea
tions at 55, 65, 75, 85, 95, 110 MeV beam energies, and the 
orresponding�ts (|) with Equation 4.9. Upper panels: The per
ent di�eren
e between theexperimental data and the �ts with Equation 4.9 are shown in the lower panels. Theerror bars represent the statisti
al errors of the experimental data.



1544.5 for the rea
tion 3He + 197Ag.The dis
overy of the os
illations raised several important questions:� Are the modulations physi
al, as those expe
ted for residual quantum e�e
ts?� Could the modulations be introdu
ed by departures from linearity of ADCs,ampli�
ation ele
troni
s, dete
tors, et
.?� Could the os
illations be the result of the �tting problem asso
iated with therigidity in the �tting fun
tion?In answering these questions Jing demonstrated that the instrumental e�e
ts 
ouldnot have been possible, sin
e the same modulations were observed in several indepen-dent dete
tor-ele
troni
s 
hains. In addition to that the the same modulations havebeen 
on�rmed in di�erent follow-up experiments using di�erent dete
tors, ADCs,and di�erent 
hains of ampli�
ation ele
troni
s. However, answering the questionabout physi
ality of the e�e
t has not been 
learly provided in his thesis. The mainproblem of distinguishing between arti�
ial �tting fun
tion rigidity e�e
ts and ob-servation of a true phenomena was very diÆ
ult. It may be possible that there isa slight mismat
h between a smooth �tting fun
tion and a true statisti
al evapora-tion spe
trum whi
h is also smooth that produ
es the os
illations. Jing used severaladvan
ed methods (orthogonal polynomial analysis and Strutinski smoothing) toseparate the os
illations from the ba
kground and identify their uniqueness. Unfor-tunately, in 
on
lusion he wrote that \the sear
h for eviden
e for the existen
e of
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Figure 4.5: Lower panels: The experimentally measured � spe
tra ( Æ ) from 3He +197Au rea
tions at 75, 85, 95, 110 MeV beam energies, and the 
orresponding �ts (|) with Equation 4.9. Upper panels: The per
ent di�eren
e between the experimentaldata and the �ts with Equation 4.9 are shown in the lower panels. The error barsrepresent the statisti
al errors of the experimental data.
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omplex parti
les as independent parti
les inside a nu
leus is still an ongoing e�ort: : : The spe
tral shape used in the �tting is shown to represent alpha spe
tra to anex
ellent pre
ision, although this is not suÆ
ient to 
onvin
e that the modulations,whi
h appear in the residuals of the �ts, are physi
al : : : It seems still a long way torea
h de�nite 
on
lusion regarding the physi
al reality of the observed modulations,thus the existen
e of 
omplex parti
les as independent parti
les inside a nu
leus".
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Chapter 5The New Look at the Os
illations:Myth or Reality?The 
hallenge presented by the duality of the os
illations: their possible originin the dis
repan
ies between the otherwise smooth fun
tional forms of experimentaland theoreti
al spe
tra, or in true quantum phenomena, seemed unsurmountable.Nevertheless, the problem remained attra
tive and promising to yield the eviden
eof quantum properties surviving thermalization of hot nu
lear liquid. Many moreweeks went into the analysis of the puzzle until one day an unexpe
tedly simple andordinary answer put an end to the lofty expe
tations.
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Figure 5.1: The quality of �tting experimental data with Equation 5.1. The 
ir
lesrepresent the data, and the solid line is the �t.5.1 Mundane Solution to an Intriguing PuzzleThe best results for the des
ription of experimental �-spe
tra are a

laimed byMoretto [More 75, Jing 99℄, who developed a single-
han
e emission theory and de-rived several analyti
 expressions for the kineti
 energy spe
trum of a fragment. Al-though Jing employed a 
omplex version of Moretto's theory (one amplifying mode,one non-amplifying mode and quantum barrier penetration) to �t the spe
tra anddis
over the os
illations [Jing 99℄, the simplest version of the theory, whi
h in
ludesonly one amplifying mode, produ
es very good data �tting results as well, although
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Figure 5.2: An example of os
illations observed in �tting data with Equation 5.1.at a 
ost of fewer �tting parameters. A

ording to the theory, the evaporation spe
-trum 
an be represented by the simple formula:P (�) = A exp����BT � erf
�p � 2(��B)2ppT � ; (5.1)where A is a proportionality 
onstant, � is the kineti
 energy of dete
ted fragments,Bis the Coulomb barrier at equilibrium deformation, p is the ampli�
ation parameter,and T is the temperature of the parent nu
leus. The quality of �tting the data byEquation 5.1 is shown in Figure 5.1, whi
h manifests only small deviations. Sureenough, the residuals display the familiar os
illations, analogous to those observed



160by Jing. Figure 5.2 shows the os
illations. The os
illations are about 1.5% abovethe ba
kground and 
learly stand out beyond the statisti
al noise.In this thesis, an old and simple explanation will be o�ered to a

ount for theos
illations in the �-spe
tra. Being straightforward and unattra
tive, this approa
hwas hoped to be the last to 
ome true. The pervasive idea of residual quantume�e
ts surviving beyond the thermal emission too mu
h 
aptivated the minds ofresear
hers, as it surely did the author's until an unexpe
tedly simple tri
k unlo
kedthe true reality of the puzzle.Experimental evaporation spe
tra 
annot be expe
ted to be �rst-
han
e only.If, for example, �-emission is 
onsidered, the �-parti
le 
an be emitted from a hotnu
leus after the emission of a nu
leon. At temperatures when evaporation takespla
e, emission of a proton or a neutron is the dominant 
hannel of deex
itation, andindividual emissions do not remove a large fra
tion of the ex
ess energy from thenu
leus 
ausing multiple-
han
e �-emission to remain quite probable. As a result,experimental spe
tra, whi
h are not a
quired on the event-by-event basis, but rather
onsist of all the parti
les emitted from the target, end up being 
omprised of �-parti
les emitted from di�erent parent nu
lei.A very simple 
al
ulation 
an be used to demonstrate this point. Consider theexample of the 65 MeV 3He + natAg rea
tion, whi
h produ
es 112In 1 at the tem-perature about 2.5 MeV. If the �-parti
le is emitted se
ond 
han
e after a neutron,1Natural silver 
onsists of 51.84 atom % of isotope 107Ag and 48.16 atom % of isotope 109Ag.Produ
tion of 112In is 
onsidered here only as an example, sin
e 110In is produ
ed in abundan
e aswell.
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h an event relative to the �rst-
han
e emission is not far fromunity, sin
e neutron emission is by far the most probable pro
ess in 
omparison withthe other modes of de
ay and removes an insigni�
ant part of the nu
lear ex
itationof the order of 2T . The proton emission is suppressed in 
omparison to the neu-tron emission roughly by pp � exp(�BCoul=T ), where BCoul is the proton's Coulombbarrier, and T is the temperature. For 112In BCoul is of order 5 MeV, whi
h givespp �13%. In other words, the se
ond-
han
e post-proton �-emission is only about 8times less probable than the post-neutron emission.The third-
han
e and higher modes of �-evaporation may already be signi�
antlysuppressed due to 
ooling of the emitting nu
leus. However, the multiple-
han
eemission 
hains are numerous, and their number in
reases with the order of theemission mode. For example, the third-
han
e �-emission 
an be realized in fourways of nu
leon emission sequen
es pre
eding the emission of the �-parti
le, whereasthe forth-
han
e event is nine-fold degenerate.So far, there has not been a mention of the emission of light 
harged parti
les otherthan protons that 
an pro
eed evaporation of �-parti
les. For example, emission ofdeuterons and tritons is a probable pro
ess 
ompeting with the proton emission.These 
hannels of deex
itation, although being less probable than nu
leon emission,add to the variety of possible emission modes pre
eding �-evaporation and enri
hthe total multiple-
han
e 
omponent in �-spe
tra.Almost equal abundan
e of two isotopes in natural silver 
an also add to the



162variety of independent emitters that 
ontribute to the experimental spe
trum. Both110In and 112In �-emitters are �rst-
han
e whose properties are not the same.Overall, the 
on
lusion 
an be drawn that the kineti
 energy �-evaporation spe
-tra may not be 
onsidered �rst-
han
e single-parent only, but, rather 
ontrary, mixedisotopi
 
ontent of the target and the presen
e of the multiple-
han
e 
omponent 
anhave a signi�
ant e�e
t on the shape of the spe
trum, the multiple-
han
e 
omponentbeing largely dominated by the se
ond-
han
e mode. Therefore, sin
e �-parti
les areemitted from di�erent nu
lei, the Coulomb barriers are slightly di�erent for everyparent nu
leus (due to shrinkage and loss of 
harge when nu
leons and other parti
lesare emitted), and so are the temperatures sin
e the multiple-
han
e emission o

ursfrom 
ooled nu
lei. The variation in deformation between various parent nu
lei is notexpe
ted to be large, and for simpli
ity it will be disregarded in the present analysis.Mathemati
ally, these ideas 
an be written in the following form:Ptot(�) =Xi wiPi(Bi; Ti; �); (5.2)where Ptot(�) is the observed total spe
trum of all types of �-parti
les, i is the 
ounterof emitting parent nu
lei, and wi, Bi, Ti are the weight, Coulomb barrier, and temper-ature of a parti
ular mode of �-emission. Therefore, no single Coulomb barrier andtemperature 
an be as
ribed to an experimental spe
trum. Rather these quantitiespossess a distribution folded into the spe
trum a

ording to Equation 5.2.The aforementioned 
on
lusion did not 
ome as a well thought out result, butwas found unexpe
tedly in the 
ourse of data analysis. It was suggested that if



163Eb, B1, B2, T1, T2, p, Rel. Prob.,MeV MeV MeV MeV MeV MeV w2=w155 12.77�0.15 12.36�0.03 2.71�0.04 1.28�0.09 2.49�0.18 0.83�0.3265 12.74�0.09 12.38�0.02 2.88�0.03 1.31�0.08 2.29�0.12 0.60�0.3275 12.95�0.15 12.41�0.03 3.06�0.05 1.41�0.09 2.48�0.15 0.94�0.2495 13.02�0.19 12.44�0.04 3.34�0.09 1.61�0.13 2.37�0.16 0.89�0.31110 12.92�0.17 12.49�0.05 3.34�0.07 1.48�0.18 2.36�0.20 0.58�0.43125 13.35�0.18 12.65�0.03 3.57�0.07 1.68�0.08 2.73�0.15 1.27�0.43Table 5.1: Fitting parameters obtained from the two-spe
tra de
omposition analysisof the �-spe
tra from the rea
tion 3He+natAg at various beam energies Eb.the multiple-
han
e hypothesis were to be right, the observed �-spe
tra 
ould bepresented using Moretto's formula in the following way a

ording to Equation 5.2:Ptot(�) =Xi wi exp����BiTi � erf
�p � 2(��Bi)2ppTi � (5.3)Empiri
ally, at least two average 
ontributions must show up in �tting the dataas a superposition of two single-
han
e spe
tra, whose weights, temperatures andbarriers must di�er. The 
ontributions are average sin
e they represent many possible
omponents mu
h in the way like two-point Gaussian quadrature represents an entireintegral. Thus, it 
an be written thatP (�) � w1 exp����B1T1 � erf
�p � 2(��B1)2ppT1 �+ w2 exp����B2T2 � erf
�p � 2(��B2)2ppT2 � ; (5.4)where the indexes 1 and 2 refer to the two 
ontributions.The te
hnique of two-spe
tra de
omposition turned out to be very su

essful inanalysis of experimental data. When �tting the data with the two spe
tra de
ompo-sition method, seven variables have been used as parameters of the �t: w1, w2, B1,
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Figure 5.3: Fitting the data with the two spe
tra de
omposition te
hnique is shownto a

ount for the os
illations. The 
ir
les represent the relative residuals of thesingle-
han
e �t, while the solid line stands for the relative di�eren
e between themultiple-
han
e and single-
han
e theoreti
al formulae.B2, T1, T2, and p. As an example of the �tting, the data set from the experiment at65 MeV beam energy is shown in Figure 5.3. In the �gure, the letter M stands forthe multiple-
han
e spe
tra both experimental and theoreti
al (Equation 5.4), whilethe letter S denotes the single-
han
e theoreti
al spe
trum of Equation 5.1 a

ordingto Moretto. The two spe
tra de
omposition �t yielded the �2 per degree of freedomat about 0:96 as 
ompared to about 5:23 when �tting the same spe
trum with the�rst-
han
e formula in Equation 5.1. More examples of �tting the data at di�erent
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Figure 5.4: Examples of �tting the data with the two spe
tra de
omposition te
h-nique at various ex
itation energies. The os
illations are seen to be 
ompletelya

ounted for. The 
ir
les represent the relative residuals of the single-
han
e �t,while the solid lines stand for the relative di�eren
e between the multiple-
han
eand single-
han
e theoreti
al formulae.



166beam energies are presented in Figure 5.4. The �2-values are all about unity.The su

ess of the two-spe
tra de
omposition �tting is quite reassuring, and leadsto a reasonable preliminary 
on
lusion that the os
illations in the �-emission spe
traare 
reated arti�
ially due to �tting the single 
han
e theory to the multiple-
han
espe
trum. In spite of the visual appeal and simpli
ity, �tting alone, however, isnot suÆ
ient to prove the point. Rigorous model 
onsiderations may be ne
essaryto further develop the topi
. Nevertheless, analysis of the �tting parameters maystrengthen the 
ase.Table 5.1 o�ers a list of the �tting parameters extra
ted from �tting data at dif-ferent beam energies. Parameters with the subs
ript 1 
an be attributed to the hightemperature mostly �rst-
han
e spe
trum of �-parti
les, whereas subs
ript 2 
olle
-tively refers to the multiple-
han
e group dominated by the se
ond-
han
e emission.Meaningful tenden
ies 
an be found in the behavior of the parameters as the ex
ita-tion energy is in
reased. First of all, attention should be paid to the temperatures ofthe spe
tra, whi
h progressively in
rease with ex
itation, as it undoubtedly shouldbe. With the Q-value of the rea
tion being 14.2 MeV, temperatures T1 
an reason-ably well be �tted with a Fermi gas formula for the ex
itation energy E�:E� = 112k T 2 + 
onst (5.5)to obtain the level density 
oeÆ
ient parameter k � 8:5. An additional 
onstant isused to approximately a

ount for the unknown temperature dependen
e of the leveldensity parameter.



167Temperatures T2 are generally twi
e as low in 
omparison with temperatures T1,indi
ating a large loss of energy between the �rst- and se
ond-
han
e �-parti
les.This result is not 
lear, and may not be physi
al at all in terms of absolute values.There may be an interplay between the parameters of the �t 
ausing the temperatureT2 to be for
ed low. At this point no 
on
lusive answer 
an be presented. However,the very fa
t that T2 is lower than T1 already indi
ates the right trend.The Coulomb barriers B1 of the predominantly �rst-
han
e emission display aslight growth with temperature whi
h is possibly 
aused by in
reasing the relativeabundan
e of the se
ond-
han
e 
omponent. Sin
e the barriers B1 are not purely�rst-
han
e, the in
reasing fra
tion of post-neutron se
ond-
han
e �-emission mayalter these barriers due to de
reased radius of 111In in 
omparison with 112In. In this
ase the barrier should 
hange in reverse proportion to the radius.The e�e
t of in
reasing the se
ond-
han
e 
omponent may also be marginallyinferred from the dependen
e of the ampli�
ation parameter p on the temperature.Remembering that p is de�ned as a ratio of the square of the Coulomb barrieramplitude and the total energy amplitude, the slight growth of this parameter hintsat growing the Coulomb barrier amplitude.A similar in
rease 
an be seen for the barriers B2 evidently 
aused by the samereason. More important, however, is the di�eren
e between B1 and B2, whi
h isindi
ative of the pro
esses pre
eding the �-emission. It 
an be seen that the barriersB2 are 
onsistently lower in 
omparison with the barriers B1. If the multiple-
han
e
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omponent in �-spe
tra were only due to neutron emission, the barriers B1 and B2would 
ompare in the opposite way: the sole neutron emission leads to redu
ing thesize of the emitting nu
leus without 
hanging its 
harge. As it is, however, the smallerbarriers B2 suggest a signi�
ant fra
tion of light 
harged parti
les 
ontributing tothe multiple-
han
e nature of �-evaporation.Not mu
h 
an be said about the relative 
ontribution w2=w1 of the two spe
tradue to the large un
ertainty. The errors are of the order of 50 and more per 
ent.Nevertheless, with the ex
eption of 125 MeV rea
tion, the trend is a

ording tothe expe
ted pattern of the multiple-
han
e 
omponent being smaller then the �rst-
han
e 
omponent. As the temperature is in
reased, the data are also 
onsistent withthe anti
ipated in
rease of the multiple-
han
e emission 
ompared to the �rst-
han
e.Altogether, it should be emphasized that the te
hnique of two-spe
tra de
ompo-sition is only meant to demonstrate the possible 
ause of os
illations qualitatively,and no a

urate des
ription of physi
al parameters should be anti
ipated. The a
-tual stru
ture of evaporation spe
tra is expe
ted to be very 
omplex with s
ores ofmultiple-
han
e 
ontributions whose probabilities 
an vary widely. Nevertheless thesimple assumption of the two average spe
tra does well in doing away with the os
il-lations and demonstrating the 
orre
t trends in extra
ted physi
al parameters thattogether reinfor
e the belief that the multiple-
han
e nature of fragment evaporationis indeed the reason for the observed os
illations and not a residual quantum e�e
t.In order to further 
on�rm the suggested explanation for the os
illations, multiple-
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han
e modi�
ation of Moretto's theory needs to be introdu
ed and tested on exper-imental data. One way to implement this task is through the statisti
al moment ex-pansion of the spe
trum to a

ount for the distribution of temperatures and Coulombbarriers.5.2 Moment Expansion of Evaporation Spe
traThe idea to use the statisti
al moment expansion of evaporation spe
tra was re-
ently o�ered by Moretto in response to the su

ess of the two-spe
tra de
ompositionte
hnique [Breu 00℄. The moment expansion method 
an be introdu
ed in the fol-lowing way. It is always possible to expand the temperature and Coulomb barrierdependent spe
trum fun
tion P (�;B; T ) in Taylor series about the average valuesor the zeroth moments B and T of these quantities. Up to the se
ond order theexpansion is P (�;B; T ) = P (�;B; T )+ �P�B ����B;T (B �B) + 12 �2P�B2 ����B;T (B �B)2+ �P�T ����B;T (T � T ) + 12 �2P�T 2 ����B;T (T � T )2+ �2P�B�T ����B;T (B �B)(T � T ) + : : : (5.6)In integral form, the observed spe
trum 
an be written asP (�) = ZB ZT w(B;T )P (�;B; T )dBdT; (5.7)



170where w(B;T ) is the normalized probability distribution fun
tion in 
oordinates oftemperature and the Coulomb barrier. ThereforeP (�;B; T ) = P (�;B; T )+ 12 �2P�B2����B;T �2B+ 12 �2P�T 2 ����B;T �2T+ �2P�B�T ����B;T Cov(B;T )+ : : :(5.8)where �2B = ZB ZT w(B;T )(B �B)2dBdT�2T = ZB ZT w(B;T )(T � T )2dBdT (5.9)Cov(B;T ) = ZB ZT w(B;T )(B �B)(T � T )dBdTare se
ond moments or varian
es. The �rst moments in Equation 5.8 are zeros sin
eby assumption they do not survive the averaging operation.Equation 5.8 elegantly introdu
es the multiple-
han
e e�e
ts into evaporationspe
tra as due to a distribution of temperatures and Coulomb barriers. However,the appli
ation of Equation 5.8 to data is hindered without using an analyti
 form forP (�;B; T ) and for the se
ond derivatives. The problem 
an be over
ome 
onsideringthe properties of the expansion. It is easy to see that when there is no distributionof temperatures and barriers, se
ond moments in Equation 5.8 be
ome zero, and allwhat is left is P (�;B; T ). On the other hand, zero se
ond moments mean that evap-oration is purely single-
han
e, whi
h is exa
tly when Moretto's formula in Equation



1715.1 is valid. Therefore, it is an obvious step to assume thatP (�;B; T ) = A exp����BT � erf
 p� 2(��B)2ppT ! ; (5.10)whi
h is also 
on�rmed by the good quality of �ts this formula provides for �-spe
tra(ex
ept for the os
illations).While P (�;B; T ) des
ribes the average ba
kground of the spe
tra as if it weresingle-
han
e, the se
ond derivatives in Equation 5.8 refer to the e�e
ts of variousmultiple-
han
e 
omponents. Formally, they are the derivatives of the unknown fun
-tional form of the multiple-
han
e spe
trum. However, to a very good approximation,Moretto's formula in Equation 5.1 
an still be used to determine these derivatives,sin
e the fun
tional form it provides is suÆ
ient to des
ribe experimental spe
trumup to 1.5% (os
illations). Altogether, the following analyti
 expression 
an be derivedas an extension of Moretto's theory to in
lude multiple-
han
e evaporation:P (�;B; T ) = A exp����BT � erf
 p � 2(��B)2ppT !�1 + �2B2T 2 + �2B(��B)2T 3 ���BT � 2�+ Cov(B;T )T 2 ���BT � 1��+ Ap�(pT )3=2 exp����BT � exp0�� p � 2(��B)2ppT !21A���2B(p � 2(� �B)) + �2T16T 2 ((p� 2(��B))2 � 6pT )(p � 2(��B))+ pT � (��B)p� 2(��B)2T Cov(B;T )� (5.11)Equation 5.11 
an be used dire
tly to �t experimental data. It has seven unknown�tting parameters: A, B, T , p, �B, �T , and Cov(B;T ). The results of the �tting



172are shown in Figure 5.5, in whi
h, as before, M stands for multiple-
han
e spe
traboth experimental and theoreti
al, whereas S is single-
han
e spe
trum a

ording toMoretto's theory. The parameters obtained from the �tting are summarized in Table5.2. The �2's per degree of freedom of the �ts are all of order unity.

Figure 5.5: Examples of �tting the data with the moment expansion methodologyat various ex
itation energies. The os
illations are 
ompletely des
ribed. The 
ir
lesrepresent the relative residuals of the single-
han
e �t to the data, while the solidlines stand for the relative di�eren
e between the multiple-
han
e and single-
han
e�ts.The parameters reveal a steady and 
onsistent 
hange with the ex
itation energyof the rea
tion, the errors being small. This 
hange 
an �nd a reasonable explanationon the basis of the multiple-
han
e emission pi
ture. As the ex
itation energy is



173Eb, B, T , p, �B, �T , Cov(B;T ),MeV MeV MeV MeV MeV MeV MeV255 12.62�0.02 2.01�0.04 2.28�0.07 0.59�0.07 0.71�0.03 0.15�0.0265 12.68�0.01 2.16�0.03 2.25�0.06 0.58�0.06 0.75�0.02 0.18�0.0175 12.71�0.02 2.26�0.04 2.39�0.10 0.46�0.12 0.77�0.03 0.25�0.0295 12.77�0.02 2.51�0.06 2.25�0.10 0.55�0.10 0.83�0.03 0.27�0.02110 12.85�0.03 2.52�0.07 2.29�0.11 0.66�0.11 0.89�0.04 0.27�0.03125 12.94�0.02 2.59�0.05 2.56�0.12 0.46�0.13 0.89�0.02 0.30�0.02Table 5.2: Fitting parameters obtained from the moment expansion analysis of the�-spe
tra from the rea
tion 3He+natAg at various beam energies Eb.in
reased, the average temperature of the emitting system progressively grows, whilethe spread of the temperature distribution, tra
ked by the standard deviation �T ,also in
reases. The spread is fairly large in 
omparison with the absolute value ofthe average temperature and hints at the signi�
ant fra
tion of low temperatureemission. The growth of the spread with the temperature 
an be explained by theappearan
e of new modes of emission as the temperature is in
reased.The growth of the average temperature T 
auses the growth of the averageCoulomb barrier B, whi
h 
an reasonably be understood as due to in
reasing roleof the se
ond-
han
e post-neutron emission. The standard deviation �B stays aboutthe same and indi
ates a signi�
ant spread of the barriers of various �-emitting nu-
lei. The spread does not seem to 
hange appre
iably, sin
e the upper limit of thebarrier distribution fun
tion does not 
hange with temperature, whereas the shapeof the distribution may 
hange and a�e
t the average.In the 
urrent analysis, the ampli�
ation parameter p is assumed to be a 
onstant,



174independent on the identity of the emitting nu
leus. Although in general it is nottrue, insigni�
ant variations in mass between various emitters suggest that the am-pli�
ation parameter should not be expe
ted to 
hange widely. Fitting experimentalspe
tra well 
on�rms this expe
tation. The os
illations 
an be a

ounted for with theassumption of 
onstant p. In addition to that, within the range of errors the datain Table 5.2 indi
ate a 
onstant value of p with respe
t to 
hanging temperature.This observation demonstrates that the growing number of possible �-emitters haveabout the same ampli�
ation parameter. On the other hand, a slight growth of pmay still be 
onje
tured due to in
reasing presen
e of multiple-
han
e post-neutronemission. Marginally, the data may also be interpreted to support this assumption.Even if it is true, overall the data supports the expe
tation that the ampli�
ationparameter is very narrowly distributed with the mass of �-emitters.A very important parameter is the 
ovarian
e Cov(B;T ), whi
h indi
ates the
orrelation between the Coulomb barrier and temperature distributions as fun
tionsof the mass of the emitting nu
leus. As seen from the �tting parameter table, the
ovarian
e of these two distributions is positive at every investigated ex
itation. Thisfa
t vividly indi
ates the de
rease of Coulomb barriers with the mass of �-emitters asthe temperature goes down depending on the order of the multiple-
han
e emissionevent. In other words, as a nu
leus 
ools emitting various light parti
les, its Coulombbarrier toward �-emission on the average is redu
ed. This fa
t is 
ontrary to theexpe
tation of neutron-only pre-� emission and supports the idea of a signi�
ant



175fra
tion of light 
harged parti
les parti
ipating in forming pre-� emission 
hains.In 
losing this dis
ussion, it must be emphasized that the extension of Moretto'stheory presented here fully a

ounts for every slightest detail of the observed experi-mental �-spe
tra and produ
es the values of theoreti
al parameters that 
an well beexplained within the s
ope of the theory. Although alternative explanations for theos
illations 
annot be ruled out 
ompletely yet, the experimental eviden
e is strongin favor of the explanation o�ered in this thesis.5.3 Con
lusionsThe puzzle of kineti
 energy os
illations in evaporation �-spe
tra, whi
h was in-trodu
ed through the use of single-
han
e Moretto's theory and long 
onsidered asa manifestation of residual quantum e�e
ts, has been o�ered a simple and thoroughexplanation: the os
illations are the arti�
ial result of �tting a single-
han
e theoryto multiple-
han
e experimental data. This 
on
lusion was initially rea
hed with thedata analysis te
hnique of two spe
tra de
omposition, whi
h assumed the experi-mental spe
trum to 
onsist of at least two independent 
ontributions of �-parti
lesemitted from di�erent parent nu
lei. These nu
lei 
an be the result of pre-� emis-sion of parti
les from the initial 
ompound nu
leus, and they 
an be the result ofthe isotopi
 
ontent of the target. The te
hnique su

essfully a

ounted for theos
illations in experimental spe
tra and produ
ed meaningful �tting parameters in
omplian
e with the assumed physi
al phenomenon. However, the te
hnique had



176weaknesses and in itself was insuÆ
ient to strengthen the newly o�ered explanationof the os
illations.Moretto worked out an extension of his single-
han
e emission theory to allowfor multiple-
han
e properties of the emitting system. Due to a variety of �-emitters
ontributing to the observed spe
trum, the otherwise 
onstant physi
al parameterslike Coulomb barrier and temperature a
quire a distribution, whose attributes ex-pressed in statisti
al moments like varian
e and 
ovarian
e, 
an be added to theformalism by way of statisti
al moment expansion. Restri
ting the expansion upto and in
luding the se
ond moments, analyti
 expressions were obtained to �t ex-perimental spe
tra. Fitting produ
ed ex
ellent results with the physi
al parametersexhibiting meaningful values a

ording to the newly o�ered explanation of the e�e
t.Unfortunately, no absolute �nal answer 
an stri
tly be given at the time sin
eall the 
on
lusions were based on �tting with many parameters involved. Althoughexperimental eviden
e is very pressing toward validity of the suggested explanationfor the os
illations, no rigorous 
on
lusion 
an be made without setting a detailedmodel 
al
ulation to a

urately a

ount for all the possible modes of �-emission atall temperatures of interest. Then 
omparisons 
an be made between the experimentand the 
al
ulation, and the aforementioned te
hniques 
an a
t as mediators in theanalysis. Unfortunately, this 
al
ulation is extremely involved and was not attemptedin this thesis.
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Appendix AAnalysis CodesTo realize the 
al
ulations des
ribed in Chapters 2 and 3, the following Matlab
odes were involved. Se
tion A.1, presents a simple program to 
al
ulate the latti
egas pressure with SAP 
ombinatori
s a

ording to the methodology of Chapter 2.Se
tion A.2 details the appli
ation of the modi�ed Fisher's model to geometri
 
lus-ters in order to obtain the latti
e gas pressure and �nd 
hara
teristi
 signatures of
luster intera
tion.A.1 The Latti
e Gas Pressure from SAP%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Load Initial Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
lear;% SAP distributions by size and area.load SAP.dat% Onsager's pressure vs. temperature for 
omparison.



183load PTO.dat% Onsager's heat 
apa
ity vs. temperature for 
omparison.load CVO.dat% Onsager's pressure and temperature in separate ve
tors.T=PTO(:,1); P=PTO(:,2);% Heat 
apa
ity and temperature in separate ve
tors.TCV=CVO(:,1); CV=CVO(:,2);% SAP size, surfa
e and number in separate ve
torsA=SAP(1:877,1); S=SAP(1:877,2); g=SAP(1:877,3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Solve Differential Equation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Set ODE optionsoptions = odeset('RelTol',1e-8,'AbsTol',1e-8);% Solve the differential equation f (see below) to obtain an% approximation to the latti
e gas pressure PSOL vs. temperature% TSOL.[TSOL,PSOL℄=ode45(�f,[1e-50 3℄,0,options,A,P,g);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Additional Cal
ulations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cal
ulate an approximation to the latti
e gas heat 
apa
ity CVSOL.CVSOL = 
v(TSOL,PSOL,A,P,g);% Find the 
riti
al temperature TC and pressure PC.minoptions = optimset('TolX',1e-10);TC = fminbnd(�
vfun
,2,3,minoptions,TSOL,PSOL,A,P,g);PC = interp1(TSOL,PSOL,TC,'spline');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interpolating TSOL and PSOL to mat
h ve
tors T and P.PSOL=interp1(TSOL,PSOL,T,'spline');% Plotting.plot(TSOL,PSOL,'*',T,P,'-');



184%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fun
tions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Differential equationfun
tion dydt = f(t,y,A,P,g)
 = 2;sp = 
.*sum(P.*g.*exp(-
.*P./t-(A+P).*y./t));sa = sum(A.*g.*exp(-
.*P./t-(A+P).*y./t));dydt = (sp./(1+sa)+y)./t;% Heat 
apa
ityfun
tion CV = 
vfun
(t,tv,yv,A,P,g)y = interp1(tv,yv,t,'spline');
 = 2;sp = sum(P .*g.*exp(-
.*P./t-(A+P).*y./t));sa = sum(A .*g.*exp(-
.*P./t-(A+P).*y./t));sp2 = sum(P.^2.*g.*exp(-
.*P./t-(A+P).*y./t));sa2 = sum(A.^2.*g.*exp(-
.*P./t-(A+P).*y./t));sap = sum(A.*P.*g.*exp(-
.*P./t-(A+P).*y./t));sa = 1+sa;h
 = -
^2/t^2*(sp2/sa-sp*sp2/sa^2-2*sp*sap/sa^2+sp^2*sa2/sa^3+sp^2*sap/sa^3);% Heat 
apa
ity as an array.fun
tion CV = 
v(t,y,A,P,g)
 = 2;for j = [1:length(t)℄sp = sum(P .*g.*exp(-
.*P./t(j)-(A+P).*y(j)./t(j)));sa = sum(A .*g.*exp(-
.*P./t(j)-(A+P).*y(j)./t(j)));sp2 = sum(P.^2.*g.*exp(-
.*P./t(j)-(A+P).*y(j)./t(j)));sa2 = sum(A.^2.*g.*exp(-
.*P./t(j)-(A+P).*y(j)./t(j)));sap = sum(A.*P.*g.*exp(-
.*P./t(j)-(A+P).*y(j)./t(j)));sa = 1+sa;h
(j) = 
^2/t(j)^2*(sp2/sa-sp*sp2/sa^2-2*sp*sap/sa^2+sp^2*sa2/sa^3+sp^2*sap/sa^3);end



185A.2 Modi�ed Fisher's Code%*************************************%****** Data input *******************%*************************************
lear;% De
laration of global arrays.global data;global errors;global PTO;% Load data and error arrays. These are two-dimensional% arrays with geometri
 
luster 
on
entrations and statisti
al% errors to the 
on
entrations vs. temperature and 
luster size.load data;load errors;% Load Onsager's pressure and heat 
apa
ity vs. temperature.load PTO.datload CVO.dat% Rearrange Onsager's data into ve
tors.T = PTO(:,1); P = PTO(:,2);TCV = CVO(:,1); CV = CVO(:,2);% Set the range of 
luster sums.A=[1:1000℄;% Set the 
luster size fitting range.Afit=[10:25℄';%*******************************************%*** Original Fisher's Model Minimization **%*******************************************% Initial values of Fisher's parameters.q_0 = 0.032;l = 0.1;x = 3;k = 3;sig = 1/2;
_0 = 8;parmf0(1) = q_0;



186parmf0(2) = l;parmf0(3) = x;parmf0(4) = k;parmf0(5) = 
_0;% Fittingfitoptions = optimset('TolFun',1e-6,'TolX',1e-6,'MaxIter',100000, 'MaxFunEvals',100000,'LargeS
ale','off');[parmf,
hisqf,exitflag,output,grad,hessian℄ = fminun
(�ffit0,parmf0,fitoptions,Afit,T);parmf = abs(parmf);q_0 = parmf(1);l = parmf(2);x = parmf(3);k = parmf(4);
_0 = parmf(5);% Cal
ulating the latti
e gas pressure with the original% Fisher's model POF.for j = [1:length(T)℄POF(j) = T(j)*sum(nf(A,T(j),q_0,l,x,k,sig,
_0));end%*******************************************%******* Parameter errors ******************%*******************************************dparmf=sqrt(diag(inv(hessian)));fitparsf=[parmf',dparmf℄;%***********************************************%******** Modified Fisher's Model Minimization *%***********************************************% Initial parameter valuesq_0 = 0.032;l = 0.1;x = 3.6;k = 3.7;
_0 = 7.3377;



187parm0(1) = q_0;parm0(2) = l;parm0(3) = x;parm0(4) = k;parm0(5) = 
_0;% Fittingodeoptions = odeset('RelTol',1e-9,'AbsTol',1e-9);fitoptions = optimset('TolFun',5e-1,'TolX',5e-1,'MaxIter',100000,'MaxFunEvals',100000,'LargeS
ale','off');parm = fminsear
h(�ffit,parm0,fitoptions,odeoptions,T,A,Afit);fitoptions = optimset('TolFun',1e-6,'TolX',1e-6,'MaxIter',100000,'MaxFunEvals',100000,'LargeS
ale','off');[parm,
hisq,exitflag,output,grad,hessian℄ = fminun
(�ffit,parm,fitoptions,odeoptions,T,A,Afit);q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);
_0 = parm(5);sig = 1 / 2;kap = 
_0 / 2;%*******************************************%******* Parameter errors ******************%*******************************************dparm=sqrt(diag(inv(hessian)));fitpars=[parm',dparm℄;%*****************************************%********* Thermodynami
s ****************%*****************************************% An approximation to the latti
e gas pressure as a% solution to the differential equation fdiff with the% best set of Fisher's parameters.[TSOL,PSOL℄ = ode113(�fdiff,[1e-10 3℄,0,odeoptions,A,q_0,
_0,x,sig,k,kap,l);% Heat 
apa
ity.



188CVSOL = 
v (A,TSOL,PSOL,q_0,
_0,x,sig,k,kap,l)';%*****************************************%********* Density ***********************%*****************************************RSOL = rho (A,TSOL,PSOL,q_0,
_0,x,sig,k,kap,l)';%*****************************************%********* Sample Cluster Distributions **%*****************************************n10d = data(10,1:length(T));n15d = data(15,1:length(T));n20d = data(20,1:length(T));n25d = data(25,1:length(T));e10d = errors(10,1:length(T));e15d = errors(15,1:length(T));e20d = errors(20,1:length(T));e25d = errors(25,1:length(T));n10 = n(10,tv,pv,rv,q_0,
_0,x,sig,k,kap,l);n15 = n(15,tv,pv,rv,q_0,
_0,x,sig,k,kap,l);n20 = n(20,tv,pv,rv,q_0,
_0,x,sig,k,kap,l);n25 = n(25,tv,pv,rv,q_0,
_0,x,sig,k,kap,l);%*****************************************%********* Criti
al Point ****************%*****************************************minoptions=optimset('TolX',1e-9);TC = fminbnd(�
vfun
,2.1,2.4,minoptions,TSOL,PSOL,A,q_0,
_0,x,sig,k,kap,l);PC = interp1(TSOL,PSOL,TC,'spline');%*****************************************%********* Criti
al Point Error **********%*****************************************f1 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0+0.0001*q_0,
_0,x,sig,k,kap,l);



189f2 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0-0.0001*q_0,
_0,x,sig,k,kap,l);dt
dq0 = (f1-f2) / 0.0002 / q_0;f1 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x,sig,k,kap,l+0.0001*l);f2 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x,sig,k,kap,l-0.0001*l);dt
dl = (f1-f2) / 0.0002 / l;f1 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x+0.0001*x,sig,k,kap,l);f2 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x-0.0001*x,sig,k,kap,l);dt
dx = (f1-f2) / 0.0002 / x;f1 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x,sig,k+0.0001*k,kap,l);f2 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0,x,sig,k-0.0001*k,kap,l);dt
dk = (f1-f2) / 0.0002 / k;f1 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0+0.0001*
_0,x,sig,k,kap,l);f2 = fminbnd(�
vfun
,2,3,minoptions,t,p,A,q_0,
_0-0.0001*
_0,x,sig,k,kap,l);dt
d
0 = (f1-f2) / 0.0002 / 
_0;DTC = sqrt(dt
dq0^2*dparm(1)^2+dt
dl^2*dparm(2)^2+dt
dx^2*dparm(3)^2+dt
dk^2*dparm(4)^2+dt
d
0^2*dparm(5)^2);%*****************************************%****** Plotting *************************%*****************************************plot(TSOL,PSOL,TSOL,POF,'*',T,P,'-');%*****************************************%****** Fun
tions ************************%*****************************************% Heat 
apa
ity as an array.fun
tion CV = 
v(A,t,p,q_0,
_0,x,sig,k,kap,l)
 = 
_0 / kap;Asig = A.^sig + l.*A;



190for j = [1:length(t)℄sp = kap *sum(Asig .*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));sp2 = kap^2.*sum(Asig.^2.*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));sa2 = sum(A.^2 .*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));sap = kap *sum(A.*Asig.*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));sa = sum(A .*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));u = 
*sp/(1+sa);h
(j) = (
.^2.*sp2-
.*u.*(sp2+2.*sap)+u.^2.*(sa2+sap))./t(j).^2./(1+sa);end% Heat 
apa
ityfun
tion CV = 
vfun
(t,tv,pv,A,q_0,
_0,x,sig,k,kap,l)
 = 
_0 / kap;p = interp1(tv,pv,t,'spline');Asig = A.^sig + l.*A;sp = kap* sum(Asig .*np(A,t,p,q_0,
_0,x,sig,k,kap,l));sp2 = kap^2*sum(Asig.^2.*np(A,t,p,q_0,
_0,x,sig,k,kap,l));sa2 = sum(A.^2 .*np(A,t,p,q_0,
_0,x,sig,k,kap,l));sap = kap* sum(A.*Asig.*np(A,t,p,q_0,
_0,x,sig,k,kap,l));sa = sum(A .*np(A,t,p,q_0,
_0,x,sig,k,kap,l));u = 
*sp/(1+sa);h
 = -(
^2*sp2-
*u*(sp2+2*sap)+u^2*(sa2+sap))/t^2/(1+sa);% Differential equationfun
tion dydt = fdiff(t,y,A,q_0,
_0,x,sig,k,kap,l)Asig = A.^sig + l.*A;s1 = 
_0.*sum(Asig.*np(A,t,y,q_0,
_0,x,sig,k,kap,l));s2 = sum(A .*np(A,t,y,q_0,
_0,x,sig,k,kap,l));dydt = (s1./(1+s2)+y)./t;% Fitting fun
tion for the modified Fisher's model.fun
tion [
hisq,t,p℄=ffit(parm,odeoptions,tv,A,Afit);global data;global errors;global att;parm = abs(parm);



191q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);
_0 = parm(5);kap = 
_0 / 2;sig = 1 / 2;[t,p℄=ode113(�fdiff,[1e-30 3℄,0,odeoptions,A,q_0,
_0,x,sig,k,kap,l);pv = interp1(t,p,tv,'spline');rv = rho(A,tv,pv,q_0,
_0,x,sig,k,kap,l);
hisq=0;for j=[1:length(tv)℄n
 = n(Afit,tv(j),pv(j),rv(j),q_0,
_0,x,sig,k,kap,l);ss = sum((data(Afit,j)-n
).^2./errors(Afit,j).^2);
hisq = 
hisq + ss;end
hisq = 
hisq / (length(Afit)*length(tv)-length(parm));disp([parm,
hisq℄)% Fitting fun
tion for the original Fisher's model.fun
tion 
hisq = ffit0(parm,Afit,tv);global data;global errors;parm = abs(parm);q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);
_0 = parm(5);sig = 1/2;
hisq=0;



192for j=[1:length(tv)℄ss = sum((data(Afit,j)-nf(Afit,tv(j),q_0,l,x,k,sig,
_0)).^2./errors(Afit,j).^2);
hisq = 
hisq + ss;end
hisq=(
hisq)/(length(Afit)*length(tv)-length(parm));disp([parm,
hisq℄)% Modified Fisher's 
luster 
on
entrationfun
tion 
on
 = n(a,t,p,r,q_0,
_0,x,sig,k,kap,l);
on
 = np(a,t,p,q_0,
_0,x,sig,k,kap,l).*(1-r);% Modified Fisher's pressure-only dependent% 
luster 
on
entrationfun
tion 
on
 = np(a,t,p,q_0,
_0,x,sig,k,kap,l);asig = a.^sig + l.*a;
on
 = q_0.*asig.^(-x).*exp(k.*asig -(
_0.*asig + (a+kap.*asig).*p)./t);% Original Fisher's 
luster 
on
entrationfun
tion 
on
 = nf(a,t,q_0,l,x,k,sig,
_0);asig = a.^sig + l.*a;
on
 = q_0.*asig.^(-x).*exp(k.*asig - 
_0.*asig./t);% Density.fun
tion r = rho(A,t,p,q_0,
_0,x,sig,k,kap,l)for j=[1:length(t)℄s = sum(A.*np(A,t(j),p(j),q_0,
_0,x,sig,k,kap,l));r(j) = s./(1 + s);end


