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1AbstratI. Exluded Volume E�ets in Ising Cluster Distributions and NulearMultifragmentationII. Multiple-Chane E�ets in �-Partile EvaporationbyDimitry Eugene BreusDotor of Philosophy in Engineering-Nulear EngineeringUniversity of California at BerkeleyProfessor Stenley G. Prussin, ChairIn Part I, geometri lusters of the Ising model are studied as possible modellusters for nulear multifragmentation. These lusters may not be onsidered asnon-interating (ideal gas) due to exluded volume e�et whih predominantly isthe artifat of the luster's �nite size. Interation signi�antly ompliates the useof lusters in the analysis of thermodynami systems. Stillinger's theory is used asa basis for the analysis, whih within the RFL (Reiss, Frish, Lebowitz) uid-of-spheres approximation produes a predition for luster onentrations well obeyedby geometri lusters of the Ising model. If thermodynami ondition of phase oex-istene is met, these onentrations an be inorporated into a di�erential equation



2proedure of moderate omplexity to eluidate the liquid-vapor phase diagram ofthe system with luster interation inluded. The drawbak of inreased omplex-ity is outweighted by the reward of greater auray of the phase diagram, as it isdemonstrated by the Ising model.A novel nulear-luster analysis proedure is developed by modifying Fisher'smodel to ontain luster interation and employing the di�erential equation proe-dure to obtain thermodynami variables. With this proedure applied to geometrilusters, the guidelines are developed to look for exluded volume e�et in nulearmultifragmentation.In Part II, an explanation is o�ered for the reently observed osillations in the en-ergy spetra of �-partiles emitted from hot ompound nulei. Contrary to what waspreviously expeted, the osillations are assumed to be aused by the multiple-hanenature of �-evaporation. In a semi-empirial fashion this assumption is suessfullyon�rmed by a tehnique of two-spetra deomposition whih treats experimental�-spetra as having ontributions from at least two independent emitters.Building upon the suess of the multiple-hane explanation of the osillations,Moretto's single-hane evaporation theory is augmented to inlude multiple-haneemission and tested on experimental data to yield positive results.Professor Stenley G. PrussinDissertation Committee Chair
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Part IExluded Volume E�ets in IsingCluster Distributions and NulearMultifragmentation



2
Chapter 1Introdution1.1 Historial Bakground of the ResearhInitiated by the Bequerel's disovery of radioativity in 1896, the �rst quarterof the twentieth entury featured a series of important �ndings that showed theexistene of the atomi nuleus and its omplex struture and behavior. In 1911Rutherford demonstrated in his famous �-partile sattering experiment that theatom (he used gold) has a small massive dense harged nuleus, that ontained themajor part of the atomi mass. In 1913 Bohr on�rmed these experimental �ndings,introduing his quantized planetary atomi model, whih aurately desribed theeletroni levels in the hydrogen atom. Moseley determined the nulear harge in1914, and the same year Rutherford suggested that the nuleus of hydrogen wasthe fundamental positively harged partile, whih he alled proton. Later in 1917



3Rutherford proved the existene of protons in the nuleus by bombarding nitrogenwith �-partiles and observing the protons oming out. This was also the �rstobservation of a nulear reation. Around the same time Rutherford onjeturedthe existene of a neutral partile in the nuleus, whih was similar to the proton.However, it was not until the 1932 disovery of the neutron by Chadwik that theproton-neutron nulear model was developed by Heisenberg. Still it was not learhow protons and neutrons (olletively alled nuleons) were bound together in thenuleus. Aurate measurements of the proton mass as well as the masses of manynulei using the methods of mass spetrometry provided the lue. Sine the neutronand proton masses were known, it was possible to determine the di�erene betweenthe mass of the bound nuleus and the total mass of the individual nuleons thatformed the nuleus. First of all, it was found that the mass di�erene (also alledthe mass defet) was relatively large, almost 1% of the nulear mass. Aording toEinstein's mass-energy relation suh a mass di�erene orresponds to a large amountof energy needed to break the nuleus apart into individual nuleons. Seondly, itwas also found that the nulear binding energy divided by the number of nuleonsin the nuleus (also alled the binding energy per nuleon) did not hange muhfrom nuleus to nuleus, and utuated around the onstant value of 8 MeV. Thisobservation was equivalent to the nulear binding energies varying approximatelylinearly with the number of nuleons in the nuleus (the nulear mass number), andrevealed the short-range nature of the nulear interation.



4Another experimental on�rmation of the short-range nature of the nulear foresame through the measurement of nulear radii. By 1934 it was already understoodthat the hange of the nulear radius r with the nulear size obeyed the ubi rootdependene r = r0A1=3; (1.1)where r0 = 1:2 � 10�13 m was a onstant. This dependene was indiative of theonstant nulear density alulated as the ratio of the nulear mass number A andthe volume 4=3�r3.These two properties of onstant density and onstant binding energy per partileare the manifestation of saturating of nulear fores, harateristi of ordinary liquids,whose moleules also exhibit a short-range interation.The short-range fore auses a partile in a system to experiene interation onlywith its nearest neighbors, the number of whih is limited by the geometry of losepaking. When a partile is ompletely surrounded by its nearest neighbors, itsinteration is said to be saturated, sine the seond nearest neighbors are alreadybloked from approahing the partile lose enough to interat. Therefore the totalbinding in the bulk of the liquid Bv grows linearly with the amount of the liquid,and so it is proportional to the volume v of the liquid:Bv / v: (1.2)A �nite amount of liquid, like a drop, possesses an outer boundary or a surfae.The surfae moleules are not ompletely surrounded by nearest neighbors, and do



5not experiene omplete binding. As a result, the total binding energy in the dropis less than expeted on the basis of bulk binding energy. The redution in bindingenergy Bs is proportional to the number of moleules in the surfae layer, whih inturn is proportional to the surfae area s of the drop:Bs / s: (1.3)If a drop of liquid is harged, its binding energy dereases even more sine theharges repel eah other and destabilize the drop. This redution in binding energyBC , goes quadratially with the total harge Z on the drop and is inversely propor-tional to the radius of the drop rD. The exat alulation for a uniformly hargedsphere yields BC = 35 Z2rD : (1.4)Thus a nuleus may be thought of as a drop of harged liquid obeying the re-quirements of binding in lassial harged uids. This idea was formally employedby Weizsaker in 1935, when he introdued a semi-empirial formula for the nulearbinding energy B using the analogy with a spherial drop of harged liquid:B = avA� asA2=3� aC Z2A1=3 � asym (A� 2Z)2A + Æ; (1.5)where A2=3 follows from the relation of the surfae of a sphere to its volume, A1=3follows from the relation of the radius of a sphere to its volume, and av, as, aC,asym are proportionality oeÆients to be determined experimentally. In addition to



6

Figure 1.1: Suess of the liquid drop model. The solid irles are the experimentaldata for the stable isotopes. The solid line is the liquid drop model �t. Bindingenergies are per nuleon.the lassial terms the formula ontains two more quantum terms for symmetry andpairing energies. The symmetry term reets the tendeny of nulei to have equalnumber of neutrons and protons, and the pairing energy Æ arises as a result of likenuleons of opposite spin assuming a lower energy state if they ombine to form apair.The liquid drop formula, apart from the quantum terms, is a general harateristifeature displayed by �nite ondensed systems with short-range interation. Suh



7systems are alled leptodermous (thin-skinned) due to the presene of a thin outerlayer whose properties alter the properties of the whole system in omparison withthe in�nite bulk behavior. Eah geometri attribute of the �niteness, like volume,surfae or urvature, individually ontributes to a system's extensive property. Forexample, the binding energy of the partiles in the system an be presented as anexpansion in powers of A�1=3:B = A(1 + 2A�1=3 + 3[A�1=3℄2 + : : :); (1.6)where A is the system's size (or mass number, whih is proportional to the volumeof the system), and 1, 2, : : : are energy oeÆients. This series is generally referredto as the liquid drop expansion. As seen from Equation 1.6, �nite size e�ets inleptodermous systems beome small as A tends to in�nity, and the binding beomesproportional to the size A.The nulear liquid drop model turned out to be very suessful in desribingbinding energies of atomi nulei (see Figure 1.1). The average deviation for all theknown isotopes is only about 1%. Still there are utuations, espeially in the regionof small masses and for speial numbers (magi) of neutrons and protons. Theseutuations are the manifestation of the shell e�ets in the nuleus, whih arise dueto quantization of nuleon energies, and their degeneraies. Inside eah group (shell)nuleons have similar energies, whereas the energy gaps between the shells are of theorder of the shell thikness (di�erene between the maximum and minimum energiesin the shell). As a result, binding energies are also a�eted by these peuliarities



8ausing utuations depited in Figure 1.1.Nevertheless, the utuations are small, and the nulei exhibit an almost 99%-smooth liquid-like behavior. This important onlusion means that the study ofnulei may be greatly simpli�ed by onsidering them as drops of uniform liquid-likematter. In this approah the individual behavior of nuleons in the nuleus beomesirrelevant. What matters are their olletive properties in the nuleus as a whole.1.2 Nulear Thermodynamis and Phase Transi-tionThe desription of the ground-state nulei in terms of a liquid drop led to severalimportant onlusions. First of all, it beame lear that the Equation 1.5 desribes�nite harged drops of some bulk nulear matter. The volume term avA of the liquiddrop expansion, if taken alone, gives the bulk binding energy of the in�nite matter,unharged and symmetri in the sense that the masses of protons and neutrons areequal. This matter possesses some global properties that manifest the nature of the\pure" nulear binding, undisturbed by Coulomb and quantum e�ets. Sine thematter is in�nite, one is naturally led to study its properties thermodynamiallyusing suh marosopi variables as pressure and temperature.Seondly, a thermodynami study of in�nite nulear matter is a way to ondensethe knowledge of its physis into a onise desription. Then all the variety of nulei



9and nulear proesses may be understood by extrapolation of the properties of thein�nite system to the properties of �nite harged drops, like individual nulei. Thispoint an be illustrated using a simple example. Suppose we an only observe tinyharged droplets of water. The properties of water in the droplets depend on thesize and harge of the droplets. However, if we know the general properties of thebulk in�nite water, we an always predit the properties of eah of the small dropsusing the liquid drop expansion.Thirdly, nulear matter may have phases. Depending on the temperature andpressure, thermodynami systems generally an form di�erent phases. A phase of asystem is a homogeneous part of the system that is separated from other parts bya distint boundary. Phases an transform into eah other depending on the stateof the system. This transformation is alled phase transition. Sine nulei display aliquid-like behavior in their ground state, orresponding to zero temperature, thereis the expetation of a nulear vapor phase at higher temperatures.The simplest model of liquids in lassial thermodynamis is represented by theVan der Waals theory, whih desribes the properties of uids enompassing liquidand gas phases. Aording to this theory, these uids are omposed of partiles hav-ing a non-zero size and a pairwise attrative fore whih quikly drops to a negligiblevalue as the interpartile separation inreases. It was proposed by Van der Waals in1873 as a modi�ation to the ideal gas law. This theory desribes the behavior ofreal uids. In partiular, it exhibits a �rst-order phase transition between a liquid



10phase and a gas phase, as well as ritiality.First-order phase transitions our at pressure, temperature and hemial po-tential ommon to the two phases involved in the transition. Only the amounts ofthe phases hange, ausing the spei� volume (volume per unit mass) of the sys-tem to undergo a modi�ation, whih ours primarily due to the formation of gas.If the spei� volume of the system is intermediate between those of pure phases,the phases are said to be in oexistene. Sine thermodynami states of individualphases are not a�eted by eah other's presene, phase oexistene does not requirethe ontat of the phases.Van der Waals theory also predits ritiality as a harateristi property of theequilibrium liquid-gas systems. Above a ertain temperature, alled ritial temper-ature, the Van der Waals uid annot exist in the form of a liquid irrespetive of theapplied pressure. Therefore, liquid and gas annot oexist above this temperature,and only gas is present in the system. The transformation from the mixed-phase re-gion to the gas-only region, that happens at the ritial point, is alled seond-orderphase transition.The order of the transition has to do with a disontinuity in a derivative of theuid's free energy with respet to an intensive thermodynami variable that ontrolsthe transition (like temperature). In the liquid-vapor transition the �rst derivativeis disontinuous, at the ritial point disontinuity appears in the seond derivative.Nulear matter is expeted to manifest the properties of a Van der Waals uid.



11A nulear gas phase has been onjetured in the evaporation-like proess of deay ofexited nulei, whih may be thought of as a hot liquid. Exitation an be impartedto a ground-state nuleus, for example, by olliding it with a nuleon. If the nuleonor another projetile nuleus used for ollision unites with the target nuleus, andthe ollision energy gets evenly distributed over all the internal degrees of freedom(thermalization), a ompound nuleus is formed. Irrespetive of the way energygets transferred to a nuleus, the resulting hot nuleus emits protons, neutrons andomposite fragments. Protons and light omposites, like deuterons, tritons and �-partiles, are alled light harged partiles (LCP). The omposites of larger mass,like the isotopes of lithium and heavier fragments, are olletively alled intermediatemass fragments (IMFs). The emission of single nuleons, LCPs and IMFs from a hotnuleus suggests the ourrene of the nulear liquid-vapor phase oexistene, whihis identi�ed following the analogy of nulear and Van der Waals uids.However, the thermodynami ondition of phase equilibrium is not lear in nulearevaporation. First of all, it is not guaranteed that thermalization ours beforefragment emission. Seondly, the nulear vapor phase does not stay around thenuleus, leading to time dependent ooling of the drop.1.3 Nulear Kinetis and Phase TransitionKineti onsiderations are useful in larifying the equilibrium ondition of nulearevaporation. The rate of drop evaporation is the number of partiles (or fragments)



12per unit volume dn lost by the drop on the average per unit time dt. It is ontrolledby the liquid drop's average bulk binding energy B and the temperature T of theliquid. If the drop is thermalized, evaporation rates at di�erent temperatures followthe Arrhenius law: Rate = dndt = C(T ) exp�� BRT� ; (1.7)where C(T ) is a preexponential, whih may depend on the temperature, and R is thegas onstant. A typial Arrhenius plot looks like a straight line in the ln(Rate)-1=Toordinates.With a fully thermalized liquid drop, the phase equilibrium an always be de�nedby the initial rate of emission from the drop just after it is allowed to evaporate. Thisinteresting fat irumvents the problem of the missing vapor phase in nulear evap-oration. The �rst vapor partile emitted out of the drop (nuleus) after evaporationbegins de�nes the rate of emission at an equilibrium state of the liquid at some initialtemperature. Sine at equilibrium there has to be an equal ow of partiles from thegas bak into the liquid, it is always possible to de�ne a orresponding equilibriumstate of the gas around the drop with the relationRate = dndt = n(T )��; (1.8)where here n(T ) is the partile (or fragment) onentration in the gas, � is thepartile's (or fragment's) average veloity, and � is the inverse ross setion, hara-terizing the emission of a partile (or a fragment) from the nulear interfae. Sinethe ondition of phase oexistene does not require the phases to be in ontat, the



13vapor phase does not have to be present, and an be referred to as a \virtual va-por" [More 04℄. Of ourse, the partiles oming seond an no longer haraterizethe same equilibrium state, sine the temperature of the liquid hanges. Therefore,only the �rst nuleons or fragments emitted from the exited nuleus after its forma-tion, alled the �rst hane emission, an uniquely haraterize nulear equilibriumliquid-vapor oexistene. If these nuleons and fragments are found to obey the Ar-rhenius law, with proper analysis tehniques oexistene thermodynamis may beexperimentally extrated and summarized in a phase diagram.1.4 Phase DiagramsThe nulear liquid-vapor phase diagram de�nes the regions of pure phases in thethermodynami P -v-T -spae, and is a goal of experimental nulear thermodynamis,quite within the reah of modern detetor tehnology and skillful analysis tehniques.In fat, the onstrution of a �rst nulear liquid-vapor phase diagram has alreadybeen reported by one researh group [Elli 02, Elli 03℄. When �nally aomplished,the experimental phase diagram will provide a reliable hek for the muh moreinvolved nulear equation-of-state studies.Usually a phase diagram is displayed using its projetions onto the oordinateplanes, like the T -v and P -T projetions of water phase diagram shown in Figure1.2.In the T � v projetion the heavy-bell-shaped urve envelopes the two-phase



14
Figure 1.2: Various projetions of a phase diagram of water.liquid-vapor region. To the left of this zone is the ompressed-liquid single-phaseregion, and to the right of the envelope is the superheated vapor region. The left-hand and the right-hand boundaries of the two-state envelope orrespond to thestates of the saturated liquid and the saturated vapor, respetively. The maximumof the envelope is the ritial point, beyond whih there is no distintion betweenliquid and vapor. Several isobars are also shown in the �gure.The P �T projetion appears simpler than the T�v diagram sine the two-phaseenvelope is looked at on edge, and so is ollapsed onto a urved line. The line labeledL/V gives the temperature dependene of the vapor pressure of the liquid at theliquid-vapor oexistene.Diret marosopi measurements of nulear pressure and spei� volume to builddiagrams, like those in Figure 1.2, is not a feasible task, sine nulear matter is not



15available in large bulk quantities. Nevertheless, experimental determination of thenulear liquid-vapor phase diagram is possible indiretly with a method that employsvapor lusters.1.5 The Cluster Method in Nulear Thermody-namisVapor lusters are groups of individual vapor atoms or moleules bound togetherby the short-range attration. They express the tendeny of a non-ideal gas to on-dense and form liquid. In fat, lusters may be thought of as tiny drops of liquid,that preform in vapor prior to ondensation. Far from ondensation the formationof lusters is inhibited due to higher vapor pressure of the drops in omparison withthe pressure of gas. Any luster that oasionally forms quikly evaporates. On theopposite, reverse onditions favor the formation of lusters when the gas pressure be-omes omparable to the vapor pressure of little lusters. In this ase, larger lustersatually have lower vapor pressure, that promotes their further growth. Therefore,every state of a gas is haraterized by a temperature and density dependent distribu-tion of lusters aording to the number of partiles in them, also alled luster size.Away from ondensation in the thermodynami P -v-T spae of a gas the distributionis largely dominated by monomers, whereas at ondensation lusters of marosopisize beome more probable. The onset of ondensation is marked by an intermediate



16distribution still dominated by monomers, but having signi�ant fration of otherlusters as well.Clusters may be de�ned in a variety of ways depending on the distribution ofenergy over the internal degrees of freedom of a group of partiles. Di�erent lusterde�nitions produe di�erent size distributions for the same state of vapor. Therefore,luster de�nition is neessary to determine the state of the system that produed theobserved distribution. Sine it is a diÆult task to distinguish lusters by internaldegrees of freedom, usually the internal degrees of freedom are not onsidered in ahope that they do not ontribute very muh. Instead, lusters of simple de�nitionsare used, taking into aount but a few degrees of freedom, like the aforementionedluster size and the number of partiles that fae the outside of the luster (remi-nisent of luster surfae). Suh restrition leads to the introdution of the so-alledon�gurational lusters. One a de�nition of a luster is settled upon, the analysis ofa thermodynami system an be arried through with the onstrution of a lustertheory expressing a formal link between the loal properties of vapor, reeted inlusters, and the global properties of vapor, like the pressure P and density � (theinverse spei� volume 1=v). Di�erent luster de�nitions generally require di�er-ent luster theories, though for a partiular luster de�nition a luster theory maybe developed exatly. The main problem of a luster theory, however, is mathingtheoretial luster distributions with those experimentally observed.In nulear physis lusters an be observed diretly and ounted. They are the



17nulear fragments, inluding single nuleons as a partiular ase, that are emittedfrom the hot nuleus. Therefore, a thermodynami state of nulear matter may bedetermined from the experimental luster size distribution using the mediatory roleof a luster theory. The problem of luster de�nition, however, introdues an elementof unertainty in any alulation of this sort.1.6 Clusters and Cluster TheoriesCluster theories are developed using the mahinery of statistial mehanis toalulate the partition funtion of a uid [Path 86, Huan 87℄.A Van der Waals uid an be thought of as omposed of N strutureless partilesof mass m, interating through a short-range two-body potential u(rij), where rij isthe distane between partiles i and j. The Hamiltonian of the uid is the sum ofkineti and interation energies of the partiles:H (frig; fpig) = NXi=1 p2i2m +Xi<j u(rij); (1.9)where ri and pi are the position and momentum oordinates of the ith partile,rij = jri � rjj, and the seond sum is over all the partile pairs. In the anonialensemble, for a given volume V and temperature T , the partition funtion of theuid is given byQN(T; V ) = 1N !h3N Zfrig;fpig exp(��H (frig; fpig))dr1 : : : drNdp1 : : : dpN ; (1.10)



18where � = 1=T , h is Plank's onstant, and the integration runs over the oordinateand momentum spae of every partile within V . Integrations over the momentumoordinates an be arried out analytially to yieldQN(T; V ) = 1N !�3N ZN (T; V ); (1.11)where � = hp2�mT (1.12)is the thermal wavelength of a partile, that expresses the reiproal of the partile'skineti ontribution to the uid's partition funtion, andZN (T; V ) = ZV Yi<j exp(��u(rij))dr1 : : : drN (1.13)is the on�gurational integral of the partition funtion due to the pair potentialinteration. If the uid in V is free to exhange partiles with an outside reservoirat a given hemial potential � per partile, the relative probability of having Npartiles in V is QNzN , where z = exp(��) is a partile's fugaity. The grandpartition funtion for suh a system isL (z; T; V ) =XN�0 zNQN(T; V ) (1.14)From the grand partition funtion, the thermodynamis of the uid an be omputedin a standard way with the following relations:�P = 1V lnL (z; T; V )� = 1v = �� ln z 1V lnL (z; T; V ); (1.15)



19from whih the equation of state may be derived.Clusters an be introdued into the desription of the uid by rewriting the uid'sgrand partition funtion in terms of individual luster partition funtions. This anbe done assuming various degrees of approximation.1.6.1 Non-interating ClustersThe simplest approximate way to express the partition funtion of a uid throughlusters is to assume their independene. Clusters of given size a (number of parti-les) are haraterized by the luster partition funtion qa(T; V ), that reets all theluster's internal properties, and by a hemial potential �a = a�, that shows thehange in the system's free energy due to the introdution of the luster. The parti-tion funtion of the uid is then fatorizable in terms of luster partition funtions[Sato 03℄: L (z; T; V ) = 1Ya=1 exp(qa(T; V )za) (1.16)This assumption is alled the ideal-luster-gas approximation, in whih lusters areassumed to behave like an ideal gas. It an be demonstrated [Sato 03℄ that withinthe ideal-luster-gas approximation the pressure P , the density �, and the lusteronentration na of the system of the volume V are given by�P = 1V 1Xa=1 qaza;� = 1V 1Xa=1 aqaza;



20na(�; z) = 1V qaza (1.17)Eliminating z between the pressure and density equations leads to the equation ofstate of the system, whih is ompletely de�ned by the qa values. An importantonsequene of the theory is that the equation of state of a system an be expressedthrough sums over the luster onentrations na:�P = 1Xa=1 na� = 1Xa=1 ana (1.18)This result is valuable from the standpoint of nulear physis as it ompletely by-passes the problem of luster de�nition. Experimental luster distributions na andiretly yield the thermodynamis within the ideal-luster-gas approximation.Sine the de�nition of a luster as a drop of liquid, also alled physial luster,an mean many things and is not preise, it is not possible to alulate the partitionfuntion qa without speifying the de�nition of a physial luster. Suh spei�ationleads to ideal-luster-gas models, that an yield analyti results. The most prominentof them are due to Bijl [Bijl 38℄, Band [Band 39℄, Frenkel [Fren 39℄ (BBF) (who, infat, introdued the notion of the physial luster) and Fisher [Fish 67℄.1.6.1.1 BBF ModelIn 1938-1939 Bijl, Band and Frenkel independently introdued physial lusters,in whih they disregarded the internal degrees of freedom of a luster. In addition



21to that, the lusters were assumed to be ompat, haraterized by their size a andsurfae s. Therefore, the potential energy of the luster was written as the sum ofthe bulk and the surfae terms:El = �eaa+ esa2=3; (1.19)where the term with a2=3 follows from the relation of the surfae of the sphere to itsvolume, and ea and es are the bulk and surfae energy oeÆients, respetively.Sine the lusters were assumed to be ompat with a shape losest to the spher-ial (not exatly spherial sine they were made up of spherial partiles), no surfaeentropy of the lusters was taken into aount. The partition funtion was derivedby integrating the position and momentum oordinates of the enter of mass of theluster over the phase spae of the system:qa = V�3a3=2 exp(�[eaa� esa2=3℄); (1.20)where �=pa is the thermal wavelength of a luster of size a. The onentration oflusters of size a follows from the partition funtion aording to Equations 1.17:na = qazaV = a3=2�3 exp(�[eaa� esa2=3℄)za = a3=2�3 yaxa2=3; (1.21)where y = z exp(�ea) and x = exp(��es).The funtion y depends on the temperature and density (through z). The funtionx is independent of the density and is always less than unity. For a given temperatureT , x is �xed, and the luster size distribution na depends on density only through y.



22When y < 1, na dereases exponentially with inreasing a: there is no marosopiluster, whih orresponds to the gas phase. For y > 1, na inreases exponentiallywith inreasing luster size: a marosopi luster appears, indiating the formationof the liquid phase. At the moment when ondensation sets in (oexistene) y =yond = 1 so that �ond = �ea, where ond stands for ondensation. Therefore, atoexistene the energy of the luster formation depends only on the luster surfae,and noexa = a3=2�3 exp(��esa2=3) (1.22)The BBF model was the �rst phenomenologial model that introdued a learand intuitive interpretation of ondensation with physial lusters and gave analytiresults, sine the sums in Equation 1.17 an be evaluated at any � and T . However,this model did not allow one to loate the ritial point, and was bound to fail at highdensities, sine the real lusters annot be regarded as point partiles in lose-pakingon�gurations of the system.1.6.1.2 Fisher's Droplet ModelAnother very suessful luster model was introdued by Fisher in 1967. As theBBF model, Fisher's droplet model is based on the ideal gas of lusters approxima-tion. However, Fisher writes the partition funtion of the lusters of size a with thehelp of additional features. He allows for the entropy of the lusters. Clusters are notassumed to be ompat. A drop may deviate from the spherial shape and deform.



23Deformation is assoiated with the luster's surfae entropy due to the fat that adrop of the same volume may possess many possible shapes.The mean energy and entropy of a Fisher's droplet of size a, with a mean surfaes, are written as a sum of the surfae and bulk terms:El = �eaa+ essSl = s0aa+ s0ss; (1.23)where ea and s0a are the volume energy and entropy oeÆients, respetively, and esand s0s are the surfae energy and entropy oeÆients.Sine the lusters are not ompat, Fisher introdues the parameter � to relatethe surfae and volume of a luster: s = a0a�; (1.24)where a0 is a onstant. For a perfet sphere � = 2=3, for a string � = 1, for anaverage luster surfae � should be somewhere in between.Instead of the luster potential energy, like in BBF model, Fisher writes the freeenergy of the luster of size a as�Fl = ��(ea + s0aT )a+ �a0(es � s0sT )a� + � ln a� ln q0V; (1.25)in whih he introdues an additional orretion to the luster free energy:��Fl = � ln a� ln q0V (1.26)



24The term � ln a omes from the topologial onsiderations of surfaes that loseon themselves with � being a harateristi onstant. The term proportional tolnV is the result of the integration over the position of the luster's enter of mass(translational motion), in whih q0 is a onstant, so that the thermal wavelengthsare assumed weakly dependent on the temperature and buried in q0.The luster partition funtion isqa = exp(��Fl) = q0V a�� exp(�(ea+ s0aT )a� �a0(es � s0sT )a�); (1.27)from whih the pressure, density and luster onentrations an be inferred usingEquations 1.17 if T , �, and the model-spei� onstants are known.In the spirit of BBF model, the luster onentration an be written asna = q0a��yaxa�; (1.28)where y = z exp(�[ea+s0aT ℄) and x = exp(��a0[es�s0sT ℄). The ondensation beginswith the appearane of a marosopi luster. Aording to the value of x, two asesare possible. If x < 1, as in BBFmodel, the ondensation point (oexistene) is givenby yond = 1, so that �ond = �[ea + s0aT ℄. On the other hand, if x � 1 the lustersize distribution na exponentially inreases when y > 1 leading to divergene of thepressure and density series in Equations 1.17. Therefore, ondensation only happenswhen x < 1, that is for T < T = es=s0s. This upper limit on the ondensationtemperature is interpreted as the ritial temperature, and Fisher's model is notvalid above T.



25Like in BBF model, at oexistene formation of Fisher's droplets is ontrolled bytheir surfae energy only. As a result the luster onentrations simplify:na = q0a�� exp(��a0(es � s0sT )a�) = q0a�� exp(��0�a�); (1.29)where 0 = a0es, and � = 1�T=T is a onvenient measure of how far away from theritial temperature the system is loated.Fisher's model is a remarkable model. Being simple, it aptures all the propertiesof a Van der Waals vapor. The unknown parameters an be readily determined froma thermodynami experiment with a real vapor. As a result, a omplete desriptionof a system an be obtained using Equations 1.17. In spite of many approximationsthat enter the model, it possesses muh exibility to hide inonsistenies in theparameters without loss of the general physial-luster piture. Nevertheless, theomplete disregarding of luster interation may render the model inaurate whenevaluating thermodynami variables at high uid densities, espeially in the viinityof the ritial point.1.6.2 Interating ClustersAll the ideal-luster-gas models are fundamentally awed. Notwithstanding thesimpliity, usefulness and lear physial intuition that these models display, they arebound to be impreise or even wrong under ertain onditions, like at the ritialpoint or other high density regimes. The ideal-luster-gas theory appeals to unreal-isti approximations, like the non-interation of lusters and their point-partile-like



26behavior, that is never true at lose paking. For example, at ondensation maro-sopi lusters may appear. In the words of Stillinger [Stil 63℄, sine \suh largeaggregates use up muh of the available vessel volume, leaving onsiderably less forothers, it is lear that only by taking luster noninterpenetration into aount ana proper theory of phase transitions be onstruted". Unlike the weak attrationthat the partiles in a Van der Waals uid exert on eah other, the repulsion dueto �nite volume is very strong. The need to aount for the e�ets of repulsion andattration between lusters led to the developing of interating luster theory in the1950s. Until then only Band attempted to introdue �nite volume e�ets into hismodel [Band 39℄.If lusters are assumed interating, their preise de�nition is important before atheory an be built. In the theories presented below lusters are de�ned as groups ofpartiles obeying ertain geometri rules. Only on�gurational lusters were studiedthis way, i.e. no internal degrees of freedom of lusters were taken into onsideration,thereby restriting the luster interation to the e�ets of noninterpenetration andweak attration tails of the pair potentials.Two major luster theories emerged as a result of this approah: the theory byLee, Barker and Abraham (LBA) [LBA 73℄, and Stillinger's theory [Stil 63, Stil 67℄with follow-ups [Gill 77℄. Their development was inspired by the pioneer work ofReiss, Frish and Lebowitz (RFL) [RFL 59, RFHL 60, Helf 61, Lebo 65℄ on the uidof spheres, who �rst attempted to systematially address the issues of �nite partile



27volume in thermodynami systems.1.6.2.1 RFL TheoryRFL developed their theory without the diret referene to the onept of lustersand methods of statistial mehanis. They onsidered a mixture of spheres of variousdiameters numbered from 1 to m with number densities (onentrations) n1 : : : nmharaterized by the temperature T . The spheres do not exhibit any attration andinterat only through mutual volume exlusion. Sine the spheres in the mixturehave �nite volume, putting in a new sphere requires some work in order to makeenough spae for it, whih is due to the hange in the on�gurational part of thesystem's free energy (entropi term). In other words, when a new sphere is inserted,it has to push other spheres aside reating a avity and ausing a hange in thefree energy of the uid. RFL alulate the avity work W (D;n1 : : : nm;D1 : : :Dm) ofinserting the sphere of diameter D into the m-omponent mixture by assuming thatfor all values D > 0 the work an be approximated by a ubi polynomial:W = T�S = W0 + �W�D ����D=0D + 12 �2W�D2 ����D=0D2 + �6D3P; (1.30)where W0 is the work of inserting a point (volumeless) sphere, P is the pressure, and�S is the hange in the uid's entropy. This approximation was prompted by theavity formation work in the two extreme ases of inserting a no volume and a largevolume spheres. If a point sphere with D = 0 is put in, ounter to our intuition,the hange in the uid's free energy is not zero. Even though no avity is formed,



28the point sphere restrits the available spae for other spheres, sine their entersannot approah the point sphere loser than their radii. In other words, the pointsphere annot exist inside of other spheres in the mixture. Using integral-equationtehniques, RFL formally alulate thatW0 = �T ln"1� mXi=1 �6D3i ni# ; D = 0 (1.31)Sine ni are number densities, i.e numbers per unit volume, and �=6D3i are spherevolumes, the sum represents the total frational volume whih is oupied and is notavailable to the point sphere. A Boltzmann fator of W0, namely exp(��W0), yieldsthe redution in probability to observe a point sphere in the ontainer due to �nitevolume of other spheres.On the other hand, inserting a very large sphere in the mixture requires thework P�V , where �V is just the volume of the sphere �=6D3. Therefore, the ubipolynomial in Equation 1.30 represents the asymptoti ases plus ontributions atintermediate diameters due to the surfae and urvature of the sphere expressed asa Taylor expansion up to the seond order.RFL were able to derive all the oeÆients in Equation 1.30 and to build theequation of state of the uid of spheres. They demonstrated the magnitude of the�nite volume e�ets in uids and introdued 1 the notion of avity formation, that1The basi priniples of avity formation have been known for a long time. They ome fromgeneral statistial mehanial onsiderations that ifW is the reversible work required for the reationof a avity of an arbitrary shape, then the probability of observing a utuation in whih suh aavity forms is given by the Boltzmann fator exp(��W ) [Tolm 38℄. However, RFL were the �rstto apply this notion to aount for the exluded volume e�ets in uids.



29is entral to the understanding of the luster interation.1.6.2.2 Stillinger's TheoryStillinger was the �rst to rigorously apply the idea of avity-formation in uid tophysial lusters within the framework of statistial mehanis. Inspired by the workof RFL, he onsidered BBF lusters as a starting point of his theory negleting theinternal degrees of freedom of the lusters. However, unlike BBF lusters, Stillinger'slusters were exatly de�ned as on�gurational groups of partiles separated by dis-tanes not exeeding a harateristi distane D, de�ned as a minimum of the pairpotential u(r), where r is the interpartile distane (see the left panel of Figure 1.3).If a sphere of radius D is drawn around eah partile in a snapshot of the system(see the right panel of Figure 1.3), then only partiles with interseting spheres mayform lusters. Otherwise single partiles remain unlustered. Suh on�gurationalluster de�nition allowed Stillinger to improve upon BBF de�nition eliminating theondition of ompatness. Clusters of any shape and surfae ould form, e�etivelyintroduing the surfae entropy.Cavity formation in Stillinger's theory plays the entral role. Like for RFLspheres, the appearane of a luster in the midst of other lusters requires mak-ing a spae for it, whih osts an extra amount of free energy. This free energy isdue to the hange in the on�gurational part of the uid's free energy. Thus forminga luster in the uid requires some free energy to put the partiles together plus an



30u(r)
r

6
--D � DFigure 1.3: Left panel: a shemati of the interpartile pair potential. Right panel:de�nition of Stillinger's lusters. The large irle visualizes the onept of the avity.extra free energy to insert the new luster in the medium of other lusters pushingthem aside. For this reason, lusters interat primarily due to their geometry. Theexat mehanis of the interation, whih Stillinger dubbed \geometrial interfer-ene", may be viewed loosely as a requirement that two lusters, say of size s andt, not approah too near lest they be ounted erroneously as a single luster of sizes+ t. Therefore every luster has to have a \protetive" shell or avity around it inorder to avoid loosing its identity. See how this idea is illustrated in Figure 1.3). Thelarge irle separates the area around the luster of size four, whih is not aessibleby the single partiles, unless the luster of size �ve is formed. This avity restritsthe on�gurational spae of other lusters in the system, damping their abundanesand e�etively repelling the partiles.The same avity an also attrat partiles due to the tails of pair potentials, a



31muh weaker e�et then repulsion.To desribe luster interferene quantitatively, Stillinger rigorously introduedthe notion of the avity formation free energy. A system, like in Figure 1.3, anbe haraterized by a grand partition funtion exp(��
), where the negative grandpotential �
 an be identi�ed as the pressure of the system P times its volume V :�
 = PV . If now a luster of size a and some �xed shape is plaed in a �xed positionin the ontainer (like the luster of size four in Figure 1.3), it reates an impenetrableavity around it that is not aessible by other partiles in the volume. The grandpartition funtion of partiles in the ontainer exluding the avity with the �xedluster is exp(��
a[r℄), where 
a[r℄ again is the grand potential of the system withthe exluded avity, and r stands for radius-vetors of the partiles in the lusterwhih determine the exat loation and shape of the luster. Stillinger introduedthe quantity pa[r℄ to be equal to the probability that the a partiles of the sameluster (serially numbered and regarded as distinguishable) simultaneously oupythe �xed avity volume (luster formation probability). He rigorously demonstratedthat this luster formation probability an be expressed in terms of the partitionfuntions exp(��
) and exp(��
a[r℄) as follows:pa[r℄ = p0a exp(��[
a[r℄� 
℄); (1.32)where p0a is the probability of forming the luster in an empty ontainer that doesnot have any other partiles exept those forming the luster (ideal luster gas), andthe di�erene 
a[r℄�
 = Wa[r℄ is the reversible isothermal work required to reate



32the avity around the luster of size a.Owing to the probability harater of pa[r℄, this funtion may be integrated overall positions inside the ontainer volume V to give Na(z), the average number oflusters of size a: Na(z) = ZV pa[r℄dr = q0a(z)za; (1.33)where the luster partition funtion q0a(z) is now fugaity dependent due to thefugaity dependene of Wa[r℄, whih an be rewritten as Wa[r; z℄:q0a(z) = qa ZV exp(��Wa[r; z℄)dr (1.34)Then the density is �(z) = 1V 1Xa=1 aq0a(z)za = 1Xa=1 ana(z); (1.35)where na(z) is the onentration of lusters of size a. The pressure P of the wholesystem may be obtained integrating Equation 1.35 with respet to z at onstant �:�P = Zz �(z)d ln z; (1.36)whih requires expliit knowledge of Wa[r; z℄. Altogether, the pressure and densityequations an be written similarly to Equations 1.17 of the ideal-luster-gas approx-imation: � = 1V 1Xa=1 aqaza ZV exp(��Wa[r; z℄)dr�P = 1V 1Xa=1 qaza ZV aza Zz (z0)a�1 exp(��Wa[r; z0℄)dz0dr



33na = 1V qaza ZV exp(��Wa[r; z℄)dr; (1.37)from whih the equation of state ould be found by eliminating z, if it were possible.Unlike the ideal-luster-gas approximation, additional omplex position and fugaitydependent manipulations appear due to luster interation.Stillinger derived a Mayer luster expansion 2 for the quantities Wa[r; z℄ andexpliitly demonstrated their dependene on the global thermodynami variables ofpressure and density. Shematially this expression an be written as follows:�Wa[r; z℄ = �Pva + f [r; �℄ (1.38)where va is the volume of a avity around the luster of size a, and f is a position andluster size dependent funtion of density �. Equation 1.38 demonstrates that thepressure and density ontributions to Wa[r; z℄ are always separable, and that onlythe density ontribution is position dependent. Sine Wa[r; z℄ depends on the globalsystem properties, equilibrium luster abundanes in uid are not independent, likein the ideal luster gas. The pressure and density an no longer be found throughsimple summations in Equations 1.17, but rather require a searh for a self-onsistentsolution of Equations 1.37.2Mayer's lusters and expansions employing them were �rst introdued by Mayer in 1937[Maye 40℄. These lusters have nothing to do with physial lusters in uids, and should rather bealled graphs that onstitute a onvenient mathematial abstration that allows expression of theuid's partition funtion as an in�nite sum of independent omponents. Mayer's N -partile graphsare exatly de�ned as olletions of N distint irles numbered 1; 2; 3; : : :; N , with any number oflines joining the same number of distint pairs of irles. Thus every irle in a graph is attahedto at least one line, and every irle is joined diretly or indiretly to all other irles in the graph.



341.6.2.3 LBA TheoryLBA presented a formal theory of physial lusters whih aounted for bothinterluster fores and geometrial interferene. Their formal theory is exat for anyreasonable de�nition of on�gurational physial luster, like Stillinger's luster. Asan example in their work they adopted a de�nition of physial luster, introdued byReiss, Katz, and Cohen [Reis 68, Reis 70℄, whih requires that eah member moleulelie within a spherial volume of presribed radius Ra whose enter is the enter ofmass of the group of a partiles.LBA used their theory only for Monte Carlo studies of individual lusters. Theydid not attempt to alulate the equation of state of the uid, as Stillinger did.Therefore, LBA theory is not �tting as a tool for thermodynami analysis of a systemthrough lusters. Rather it explores properties of individual lusters as they hangewith temperature and de�nition.The main reason for mentioning LBA theory here is due to the important onlu-sion that they arrived at studying various on�gurational luster de�nitions. Theyfound that a luster's free energy is almost independent of its de�nition provided thatthe de�nition is reasonable and the temperature is suÆiently low. Using this onlu-sion, LBA stressed that Stillinger's theory, being a omplete theory for a partiulartype of physial lusters, would be approximately valid for any luster de�nition.This onlusion is very important for the researh presented in this thesis, sinenulear lusters are not exatly de�ned. On the basis of LBA work, one may hope



35that nulear luster distributions possess signatures of geometri interferene whihan be identi�ed within the sope of Stillinger's theory.1.7 Building a Nulear Phase Diagram Using Clus-tersIn marosopi systems, like water or argon, the use of luster theories as ameans to build a phase diagram is not of primary importane, sine other morediret tehniques an be used. Cluster models, like Fisher's model, are rather oftheoretial value and are employed to explore and identify the formation of lustersin real uids using thermodynami data obtained elsewhere.In nulear physis the situation is reversed, sine lusters an be readily deteted,but no diret measurement of nulear vapor pressure is feasible. Here luster mod-els beome handy as mediators providing reipes to analyze experimental nulearfragment abundanes and to draw onlusions about the state of the system thatprodued these fragments.It has been found experimentally that the �rst-hane emission yields of nulearfragments obey the Arrhenius law [More 97, Elli 02℄. First-hane fragment yields areobtained event by event from hot nulei in nulear evaporation experiments. Yieldsare rates multiplied by the harateristi time of emission, and are proportionalto onentrations through Equation 1.8. Figure 1.4 demonstrates an example of



36YA
Figure 1.4: Experimental yields of nulear fragments from the reation of 8 GeV/� on gold. Lines represent �ts with Fisher's model.yields per nuleon of the parent nuleus YA for several nulear fragments at varioustemperatures using the lnYA-1=T -oordinates [Elli 02℄. Clearly, the plots are verylinear. On the basis of the initial rate piture, linearity of the �rst-hane nulearArrhenius plots experimentally validates the thermodynami approah to the analysisof nulear evaporation. First-hane nulear fragment yields bear diret experimentalinformation about the equilibrium liquid-vapor oexistene of nulear matter.The simplest way to build a liquid-vapor phase diagram from lusters is to use theideal-gas-of-lusters approximation at oexistene. This approximation disregardsthe problem of detailed luster de�nition, and an be applied to nulear lustersdiretly if they are assumed not to interat. Looking at Equations 1.18, it beomes



37lear that the pressure and density an easily be obtained by summing the onen-trations and size-weighted onentrations of lusters, respetively. However, in thease of nulear lusters there are ompliations that require additional manipulationsto disentangle relevant and non-relevant ontributions to the luster yields.Nulear luster distributions su�er from the e�ets of Coulomb interation. Whena ompound nuleus readies itself to emit a fragment, the formation free energy ofthe fragment is not only due to its surfae but also to the Coulomb interation be-tween the fragment and the residual nuleus, as well as to the Coulomb self-energyof the fragments. In fat, Coulomb interation is ruinous to the whole piture ofequilibrium phase transition. More detailed disussion on this subjet will be pre-sented later in this hapter. For now it is important to realize that the goal of nulearthermodynamis is the study of unharged matter, undisturbed by Coulomb e�ets.To this end, omplete removal of Coulomb interation from the piture an remedythe problem and lead to the ahievement of the goal. Therefore, nulear lusterdistributions need to be adjusted aordingly by dividing out the part of the freeenergy whih is due to the Coulomb interation. Sine the behavior of the Coulombfore is well known analytially, this proedure presents no fundamental diÆulty.\Filtered" luster distributions an be summed up using appropriate relations for Pand � to obtain the phase diagram [More 03℄.The ideal-luster-gas-based phase diagram ould have been obtained just usingEquations 1.18, if it were not for the fat that experimental fragment distributions



38are inomplete. They are inomplete in terms of the luster size and in terms of thetemperature. InsuÆieny of temperature points is not a fundamental problem. Itan be solved by improving upon the experimental tehniques. The insuÆieny ofluster sizes in a data set, however, presents an insurmountable restrition. The ratepiture, desribed earlier in the text, annot be applied to single nuleons and lightharged partiles for the reason of multiple hane emission. Unlike heavy fragments,nuleons and LCPs have a high probability to be emitted from the residual nuleusafter the emission of the primary fragment, as well as from the primary fragment itselfbefore it reahes a detetor. As a result, nuleon and LCP distributions representa mixture of the system's states, among whih only one state is equilibrium (�rst-hane) at the initial temperature, while others are due to lower temperatures. Heavyfragments, on the other hand, are mostly emitted �rst-hane. Their multiple-haneprobabilities are extremely low, so that their e�ets on the fragment's distributionsare less then statistial error of the experiment itself. Therefore, use of Equations1.18 is frustrated owing to the loss of the most important ontribution from the lightfragments.To overome the insuÆieny of data, missing light-fragment distributions haveto be reonstruted. To ahieve this reonstrution, however, detailed knowledge ofthe fragment's free energy is a must. Suh knowledge an be obtained from a model.Fisher's droplet model has been reognized as the most elaborate and elegant amongluster models. It also allows simple estimation of the ritial temperature. To
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Figure 1.5: Appliation of Fisher's model to nulear fragment distributions.employ Fisher's model, experimental fragment distributions must be �tted with theoexistene expression using Equation 1.29 to determine unknown model parametersfor the system. In addition orretions should be inluded to �lter out the Coulombe�ets. Uniqueness of the Fisher's parameters for the whole system an be ahievedby �tting all the available distributions simultaneously [Elli 05℄. Therefore, the over-all tehnique should onsist of using the expressionna = q0a�� exp(��0�a�) exp(���FCoul) (1.39)to �nd the best set of Fisher's parameters, whih simultaneously minimize the resid-ual sum of all the available experimental distributions. The Coulomb free energyorretion �FCoul an be estimated analytially:�FCoul = FResCoul:�Self + F FragCoul:�Self + F Frag:�Res:Coul � FCompCoul:�Self ; (1.40)



40where FCompCoul:�Self is the initial ompound-nuleus Coulomb self-energy, FResCoul:�Self isthe �nal residual-nuleus Coulomb self-energy, F FragCoul:�Self is the fragment Coulombself-energy, and F Frag:�Res:Coul is the fragment-residual Coulomb interation energy.The self-energy ontributions an be estimated assuming spheriity. To alulatethe interation energy ontribution the touhing-spheres approximation an be used[More 03℄.If the system obeys the onditions of the Fisher's model (short-range interation,thermal emission, fragment independene, distintiveness of the liquid and vaporphases), the minimization onverges, and the saled fragment distributions shouldollapse on the same line, as shown in Figure 1.5 for the fragment yields in threedi�erent experiments [Elli 03℄. This ollapse of the saled distributions is the har-ateristi feature of the model's appliability.The liquid-vapor phase diagram is obtained using Equations 1.18 with Fisher'sexpressions for the onentrations:�P = 1Xa=1 q0a�� exp(��0�a�)� = 1Xa=1 aq0a�� exp(��0�a�); (1.41)where the model parameters are those extrated from the �t. It should be notied,however, that the Coulomb orretion has been removed from onsideration whenalulating the oexistene thermodynami variables thereby guaranteeing the valid-ity of the obtained phase diagram for the unharged nulear matter.



41
Figure 1.6: (Left panel): The redued pressure-temperature phase diagram: the thikline shows the alulated o-existene line, the points show seleted alulated errors,and the thin line shows a �t to the Clausius-Clapeyron equation. (Right panel): Theredued temperature-density phase diagram: the thik line is the alulated lowdensity branh of the o-existene urve, the points are seleted alulated errors,and the thin lines are a �t to and reetion of Guggenheim's equation.The proedure outlined above has been used by Elliott et al. [Elli 02℄ to onstrutthe �rst estimation of the nulear liquid-vapor phase diagram. They used nulearfragment distributions from the Indiana Silione Sphere (ISiS) experiment to yieldthe results shown in Figure 1.6. The projetions are presented in redued form, sothat the pressure, density and temperature are divided by their ritial values. Onlythe gas part of the phase diagram is diretly extratable from the experiment. TheP � T projetion does not su�er from this restrition, sine the vapor and liquidbranhes oinide. Using the integral form of Clapeyron-Clausius equation for anideal gas PP = exp��HvapT �1� TT �� ; (1.42)



42nulear heat of vaporization �Hvap has been evaluated from this projetion.The bell-like T �� projetion an only be ompleted using additional informationabout the liquid branh. Suh additional information omes from Guggenheim'sequation [Gugg 45, Gugg 93℄�liq:;vap:� = 1 + b1�1 � TT�� b2�1 � TT�� (1.43)where b1 and b2 are empirial parameters, and � here represents a parameter, whihwithin Fisher's model an be alulated as� = � � 2� (1.44)Using the Guggenheim equation to �t the vapor branh of the phase diagram, theliquid branh has been obtained by hanging sign in front of b2 as shown in Figure1.6.More omplex luster tehniques involving interating-luster theories have neverbeen employed to build a nulear phase diagram. Therefore, it remains to be seen ifsuh tehniques an e�etively be used to augment the existing Fisher's formalism.This thesis will make an attempt to shed some light on the issue and to introduea tehnique that aounts for luster interferene aording to Stillinger's and RFLmethodology with some modi�ations spei� to oexistene.



431.8 Appliability of Equilibrium Thermodynam-is to Nulear EvaporationThere are several ritiisms of the attempt to use equilibrium thermodynamisas a tool in nulear physis.First of all, there is a doubt that a hot-nuleus liquid has enough time to reahthermal equilibrium before it emits the �rst gas fragment. If liquid itself is notin the state of thermal equilibrium, the �rst vapor fragment does not point to theequilibrated liquid-vapor oexistene, and the whole thermodynami piture is lost.Formation of a hot nuleus happens in a dynami proess of ollision between thenuleus and a projetile partile. The ollision may be strong enough that promptnuleons are knoked out. Clearly, dynamis should play an important part in thisproess, hardly leaving any plae for stati equilibrium.There is no absolute answer to this ritiism at the present time. The importantlue omes from the timing of the emission. Prompt fragments, whih ome outshortly after the moment of ollision and are mostly single nuleons and LCPs, arenot taken into onsideration. On the other hand, IMFs are very rare to appear asprompt. They are mostly emitted later after the proess of thermalization whenthe initial energy of ollision is equally distributed over all the internal degrees offreedom. There is no absolute guarantee that IMFs are emitted from a ompletelythermalized nuleus. However, there is muh experimental evidene that this is so
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Figure 1.7: (Left olumn): The probability P (n) for emitting n IMFs is shown as afuntion of Et for 129Xe-indued reation on di�erent targets: natCu, 89Y and 165Ho.Transverse energy Et = aT 2 is a measure of temperature, where a is a onstant. Thesolid urves are binomial alulations of P (n). (Right olumn):The reiproal of thesingle fragment emission probability 1=p is shown as funtion of 1=pEt for di�erenttargets (natCu, 89Y, 165Ho, 197Au). The line is a linear �t to the data.



45[More 97℄. The thermal saling of fragment distributions (their hange with thetemperature) is suh that it is harateristi of thermalized systems (Arrhenius law).In addition to that, reduibility of fragment number distributions presents anotherproof of thermalization. Reduibility is the property of the IMF number distributionP (n), with n being a number of IMFs, to be a funtion of the elementary probabilityp of emitting one fragment aording to a statistial law, like binomial or Poissonian.Figure 1.7 demonstrates how knowledge of p an aount for all observed fragmentnumber distributions. Suh reduibility is only possible if the fragments are formedompletely independent of eah other. Fragment independene is indiative of thelak of dynamial e�ets and on�rms setting in of thermal equilibrium. In additionto that, the thermal saling of the elementary probability p points to the barrier-ontrolled statistial emission.As an aside it is important to mention that independene of fragment emissionalso validates the use of Fisher's model, whih requires that the lusters lak inter-ation.Seondly, there is a ompliation with the presene of the Coulomb fore betweenthe nuleons in the nuleus. The Coulomb fore is long-range and hurts the equilib-rium emission piture. This issue has already been touhed upon in the disussionof the methodology of �ltering the Coulomb e�ets from the data. Here, however, ajusti�ation for the methodology will be presented in more detail [More 03℄.For an exited thermalized nuleus (a hot droplet), there may be two possible
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Figure 1.8: A shemati representation of the Coulomb orretion when the emittedfragment is bound (left panels) and unbound (right panels).senarios of emitting a fragment (vapor): the fragment may be bound (Q-valueis negative) or unbound (Q-value is positive). If the fragment is bound and haszero harge (neutron), a step is observed at the droplet radius equal to the fragmentbinding energy. For non-zero harges, a maximumBC is observed at the approximatedistane of the droplet and fragment in ontat. From there the potential dereasesaording to the Coulomb law and settles down at in�nity to a value equal to thebinding energy of the fragment, as depited in the left panel of Figure 1.8. In this asethere is no diÆulty in de�ning a gas phase in equilibrium with the liquid droplet.The Coulomb barrier BC does not alter the equilibrium. Only kinetially it mayslow down its ahievement. The standard luster tehniques of the previous setion



47an be used to obtain the phase diagram of the unharged matter, �ltering out theCoulomb e�ets simply as an unneessary information.A more problemati situation is shown in the right panel of Figure 1.8 that arisesif the emitted fragment is unbound due to the Coulomb interation. In this ase thedroplet is metastable, and the ground state of the system onsists of two or morepiees of the original drop at in�nity. Thus it is not possible to speak properly of thisdrop in statistial equilibrium with its vapor. For a nuleus suh as gold the groundstate onsists of three fragments of harge about 30 and is more than a hundredMeV below the mass of the gold nuleus. Therefore, in equilibrium of a gold-likedrop with its vapor, the most probable on�guration for the liquid would be thethree fragments of the true ground state, and not the metastable on�guration ofthe whole gold nuleus. This situation is prohibitive to de�ne phase oexistene fordroplets larger than A � 30. However, there is a way to avoid this diÆulty fromthe experimental point of view. The phase oexistene an be de�ned approximately.Again the solution omes from the onsideration of the timing. On a suÆiently shorttime sale the fat that the droplet has unbound hannels does not play a signi�antrole. The fragment still has to jump over a barrier (ombined surfae and Coulomb)to leave the nuleus. If so, the �rst-hane emission rates from the metastable statestill qualify as equilibrium as long as the droplet is thermalized. The rates then anbe orreted for the Coulomb e�ets, leading to the rates of deay of an unhargeddrop, for whih all hannels are bound: a situation idential to the ase of �ltering



48out Coulomb interation in low-mass nulei that do not have unbound hannels.Thus the tehnique of Coulomb �ltering is universally appliable to any experi-mental luster data without violating the ondition of phase equilibrium in unhargednulear matter.Thirdly, the nulear droplets are of �nite size as ompared to the in�nite nulearmatter. Therefore, the nulear luster distributions have the �nite-droplet-size e�etsburied in them, whih may lead to reovering the unwanted pressure of a �nitesystem. For example, simple lassial onsiderations show that the vapor pressureof a �nite-size liquid drop is higher than that of a bulk liquid [More 02℄. It followsfrom the liquid drop expansion of the molar evaporation enthalpy:Hm = H0m + A2=3A ; (1.45)where H0m is the molar evaporation enthalpy of the in�nite system, A is the size ofthe drop, and  is a oeÆient proportional to the surfae tension. The Clapeyron-Clausius equation for an ideal gas then gives:P = P1 exp� A1=3T � ; (1.46)where P1 is the vapor pressure of the in�nitely large amount of liquid. Unless thesee�ets are aounted for, the resulting phase diagram is bound to represent the �nitematter.An answer to this ritiism has been worked out by Moretto using the omplementmethod [More 05℄. It onsists of evaluating the hange in free energy ourring when



49a luster is moved from one phase to another. In the ase of a �nite liquid drop inequilibrium with its vapor, this is done by transferring a luster of any given sizefrom the liquid drop to its vapor and by evaluating the energy and entropy hangesassoiated with both the vapor luster and the residual liquid drop (omplement).This aounting an be generalized to inorporate other energy terms, as it hasalready been shown for Coulomb energy. Fisher's formula in Equation 1.29 has tobe modi�ed in the following way:na = q0 �a(ad � a)ad ��� exp(��0�[a� + (ad � a)� � a�d ℄); (1.47)where ad is the size of the residual omplement drop. Then, nulear luster distribu-tions are analyzed with the omplement inluded, whereas the phase diagram of thein�nite matter is onstruted with the �nite-size e�ets taken out. Therefore, the�nite-size \�ltering" is aomplished in the same spirit as Coulomb �ltering.



501.9 Simple Models to Test Cluster TehniquesThe suessful use of luster tehniques to reover the thermodynamis of thenulear phase transition is impossible without the assurane that these tehniquesare at least valid for simple test models that mimi phase oexistene. If a ertainluster analysis tehnique produes an aurate liquid-vapor phase diagram for amodel, there is a hope it might work for the nulear data as well. Reliane on a testmodel is an inesapable weakness of the luster method in nulear physis, sine itis hardly possible to have an exat nulear luster de�nition uniquely orrespondingto the experimental distributions. If it were possible, an exat theory ould be builtto analyze the distributions, and the assurane would be presented by the theoryitself. Sine suh theory does not exist, di�erent luster de�nitions must be testedon a simulated thermodynami system with a known equation of state to ome upwith a de�nition that best reprodues the system's thermodynamis.1.9.1 The Lattie Gas ModelAmong suh test models the lattie gas model is the simplest and most illustrative[Path 86, Huan 87℄. It is a model of a simple uid, in whih atoms of the uid areassumed to take on only disrete positions in spae. These disrete positions form alattie of given geometry with a �xed number  of nearest neighbors to eah lattiesite. Eah lattie site an be oupied by at most one atom. Figure 1.9 illustratesa on�guration of a two-dimensional lattie gas in whih the atoms are represented



51              Figure 1.9: A sample realization of the lattie gas.by solid irles. The kineti energy of an atom is negleted, and it is assumed thatonly nearest neighbors interat with a onstant interation energy �J0 of a pair.The lattie is usually assumed to be periodi to avoid the e�ets of the boundary, sothat partiles in one row or a olumn (a two-dimensional ase) on the opposite sidesof the lattie are onsidered nearest neighbors. The potential energy of the systemis equivalent to that of a uid in whih atoms are loated only on lattie sites andinterat through a two-body potential v whih an assume three possible values:v= 8>>>>>><>>>>>>: 1 if atoms are in the same site�J0 if atoms are in nearest-neighbor sites0 otherwise: (1.48)Suppose a lattie gas ontainer has N sites (49 in the example), and the numberof atoms in the system is Na (14 in the example). Also let Naa be the total numberof nearest-neighbor pairs (6 in the example). The total energy of the lattie gas isELG = �J0Naa; (1.49)



52and the partition funtionQLG(Na; T ) = 1Na!Xfag exp(�J0Naa); (1.50)where T is the temperature in energy units (no Boltzmann onstant k), � = 1=T , andthe summation extends over all ways fag of distributing Na distinguishable atomsover N lattie sites. The grand partition funtion of the gas on N sites (ats like thetotal volume V if one site is equated to a unit volume) isLLG(z;N; T ) = Na=NXNa=0 zNaQLG(Na; T ); (1.51)where the fugaity is z = 1�3 exp(��) (1.52)with � being the hemial potential per atom. Notie how the kineti motion isinserted into the grand partition funtion of the lattie gas by making thermal wave-lengths a part of the fugaity. The equation of state an be inferred from the grandpartition funtion in a standard way:�PLG = 1N lnLLG(z;N; T )�LG = 1N z ��z lnLLG(z;N; T ) (1.53)The lattie gas model is non-trivial, and qualitatively reprodues all the prop-erties of a uid. It displays the �rst-order phase transition and ritiality. Thethermodynamis of the lattie gas at oexistene in two dimensions have been found



53

Figure 1.10: P -v-diagram for a two-dimensional lattie gas. The solid urve is theexat boundary of the two-phase region.exatly, thus making the model an exellent tool to study liquid-vapor phase dia-grams. Figure 1.10 demonstrates as an example a P -v-projetion (v stands for thespei� volume) of the lattie gas phase diagram in whih the transition region isompletely mapped out.



54              " " " " " " ## # " " # " #" " # " " " "" # " # " # "" " " " " " "# " " # # " #" " " " # " " = #= "Figure 1.11: Equivalene of the lattie gas and the Ising model.1.9.2 The Ising ModelThe lattie gas model has an equivalent model oming from a di�erent realmof physis. It is the Ising model, whih was introdued in 1925 by Ernst Ising[Isin 25, Path 86, Huan 87℄ to study ferromagnetism, or the ability of some metals,like Fe and Ni, to sustain a marosopi magneti �eld as a result of spontaneousspin polarization of some atoms. In the model the system onsidered is a periodilattie of N sites, like is shown in the right panel of Figure 1.11. Assoiated with eahlattie site is a spin variable si (i = 1 : : : N) whih is a number that is either +1 or -1.If si = +1, the ith site is said to have spin up, and if si = �1, it is said to have spindown. A given set of numbers fsig spei�es a on�guration of the whole system withN+ spins up and N� spins down. Figure 1.11 shows how the equivalene between thelattie gas and the Ising model an readily be illustrated. The two idential latties



55simply use di�erent lattie variables to represent interation. While the Ising lattiespin variables are �1, the lattie gas uses the \atomi" variables 0 and 1.The energy of the Ising system in the on�guration spei�ed by fsig is de�nedto be EIfsig = �J X<ij> sisj �H NXi=1 si; (1.54)where the �rst sum runs over all the spin pairs < ij > in the on�guration, of whihthere are N=2 with  being the number of nearest neighbors of any given site. Theinteration energy J and the external magneti �eld H are given onstants. Thepartition funtion is QI(H;T ) =Xfsig exp(��EIfsig); (1.55)where the sum runs over all 2N possible lattie spin on�gurations. The thermody-nami funtions are obtained in a standard manner from the Helmholtz free energy:FI(H;T ) = �T lnQI(H;T ) (1.56)An important funtion to mention is magnetization:MI (H;T ) = � ��H �FIT � (1.57)If H = 0 the quantity MI (0; T ) is alled the spontaneous magnetization.In two dimensions at zero magneti �eld the Ising model was solved exatlyby Onsager [Onsa 44, Newe 53℄ for an in�nite system, and then extended to �nitesystems by Kaufman [Kauf 49℄. Yang found the exat expression for the spontaneous



56Ising Model Lattie GasN+ NaN� N �Na4J J0exp(2�(J �H)) z� �FIN + 12J �H� PLG12 �MIN + 1� �LGFigure 1.12: Some of the quantities in the lattie gas and their equivalents in theIsing model.magnetization [Yang 52℄ 3.The equivalene of the lattie gas and the Ising models means that the thermody-namis of the two models are equivalent, and exat ties an be found [YLee 52℄. Forexample, the magneti �eld variable is equivalent to the hemial potential variablein the lattie gas, the magnetization is equivalent to the density, and the sum ofthe free energy and the �eld strength (in proper units) is equivalent to the pressure.It an be shown that the zero �eld Ising model is equivalent to the lattie gas inthe transition region below the ritial temperature [YLee 52, Path 86℄, so that theOnsager solution an be used to haraterize the phase boundary urve on the phasediagram of the lattie gas. The equivalene of the two models is summarized in Table1.12.3Historially it was Onsager who �rst found this expression in 1948 and demonstrated it duringa onferene on phase transitions as a hallenge to the audiene to �nd the derivation. However,he never published the derivation himself. Later Yang took the hallenge and found the derivationin 1952. See [Brus 67℄. This historial review has many useful referenes on the subjet.



571.10 Model ClustersThe lattie gas and Ising models naturally allow lusters as groups of partiles orspins. For example, in Figure 1.11 the lattie gas on�guration of partiles reates�ve lusters of size one, one luster of size two, one luster of size three, and oneluster of size four. The equivalent Ising on�guration has the same lusters, whihare formed by the spins of the same orientation.These lusters are the simplest that an be reated on the lattie, and are alledgeometri lusters. The only requirement neessary to de�ne a geometri luster isthe requirement of proximity of partiles in spae. Any two partiles are onsideredto belong to the same luster if they are loated next to eah other, or there is anuninterrupted hain of nearest-neighbor partiles in between them. Single partilesare also onsidered as geometri lusters in whih the only partile has no neighbors.Geometri lusters an be haraterized by their size and outer surfae. The sizeis the number of lattie sites that �t inside a luster, and the surfae is the numberof links a luster has with neighboring empty sites (the lattie gas) or with spins ofopposite diretion (the Ising model).In regard to their shape on the lattie geometri lusters are exatly equivalentto self-avoiding polygons or polyhedra (SAP) (also alled polyominoes) dependingon dimensionality [Gutt 00, Jens 00, Gutt 01℄, whih an be puntured and non-puntured. For example, if a luster in the two-dimensional Ising model is equivalentto a non-puntured polygon, it is possible to draw a urve around a group of like
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Figure 1.13: Equivalene of a geometri luster of the two-dimensional Ising modelto a non-puntured self-avoiding polygons (SAP).
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Figure 1.14: Equivalene of a geometri luster of the two-dimensional Ising modelto a puntured self-avoiding polygons.



59spins in suh a way that it passes along the border separating sites of opposite spins,and the resulting ontour forms a polygon whose faets do not interset (Figure 1.13).Puntured polygons by de�nition have internal voids in the shape of non-punturedpolygons and orrespond to those lusters that embed spins of opposite diretioninside their bulk. These spins are like \holes" in the body of the luster that reateadditional surfae. Thus in addition to the outer ontour, the equivalene is enabledby drawing internal non-interseting ontours around the holes of the luster (Figure1.14).SAP are also haraterized by their size and outer surfae (inluding holes). Thesize is the number of unit volumes that �t inside SAP's volume, and the surfae isthe number of sides. Within eah SAP size a the surfaes s vary from a minimum,orresponding to a ompat non-puntured shape, to a maximum, whih representsa string. The minimum perimeters do not have a lear dependene on the polygonsize. For example, in two dimensions they roughly follow the square-root dependenesmin = 4pa, whih is exat only for the square SAP of size a = 1; 4; 9; 16; 25; :::. Themaximum surfaes are always exatly determined as linear funtions of the SAP size:in two dimensions smax = 2a + 2 and in three dimensions smax = 4a + 2. Betweenthe minimum and the maximum the surfaes vary as even numbers.The equivalene of geometri lusters to SAP is very useful. It allows the exatounting of geometri lusters by size and surfae to obtain the numbers gSAP (a; s).Knowledge of these numbers is very important for testing luster analysis tehniques.



60Obtaining gSAP (a; s) analytially is an unsolved ombinatorial problem whih is be-ing worked on by several researh groups [Brak 90, Lin 91, Bous 96℄. In the meantime numbers of SAPs an be obtained numerially [Jens 03℄ up to the size a = 50in two dimensions and up to the size a = 17 (only gSAP (a) and non-puntured)[Flam 03℄ in three dimensions. It should be emphasized, however, that the sublassof puntured polygons is relatively small ompared to the lass of non-punturedshapes. For instane, polygons of size a = 20 are only about 1% puntured. As theluster size grows, the relative number of the puntured lusters inreases to reahabout 50% at a = 50. Lattie on�gurations ontaining large lusters do not signif-iantly ontribute to the overall behavior of the Ising model. As a result, auraterepresentation of geometri lusters an be aomplished by onsidering them to beequivalent to the non-puntured polygons only, disregarding the e�ets of puntures.Geometri lusters are of primary attention in this work due to their simpliityand a lear physial piture of luster formation, whih they portray.1.11 Computer SimulationsThe use of the lattie gas model as a test ground for the luster tehniquesis aomplished through simulating it on a omputer with Monte Carlo methods.Many on�gurations, like in Figure 1.9, should be stepped through in a random ordersimulating the behavior of the gas. Of ourse, only a limited number of most probableon�gurations an be realized this way, sine their total number even for a relatively



61small system is astronomially large. Clusters in the reprodued on�gurations anbe identi�ed and ounted to build the distributions, whih then an be used toreonstrut thermodynamis of the model and ompared to the aurately knownvalues. However, numerial implementation of the lattie gas in a state on the phaseboundary, or in other loations of the phase diagram requires the ontrol over thehemial potential. Tehnially, it is muh easier to deal with the Ising lattie, andhange the magneti �eld to simulate a partiular state of the lattie gas. Therefore,numerial simulations of the lattie gas are usually done using the Ising model, andalulations for the phase boundary region are aomplished with the Ising model atzero magneti �eld.Numerial Monte Carlo (MC) simulation of the Ising lattie at a �xed tempera-ture is aomplished using lustering algorithms. Clustering algorithms are rigorousinstrutions, programmable on a omputer, of updating lattie realizations in an un-biased random order. Clusters here are portions of the lattie that are subjet tohange from realization to realization, and are not to be mixed with the model lus-ters. The larger the di�erene between suessive on�gurations, the more stable thealgorithm is in the viinity of the ritial temperature with respet to ritial slowingdown. Critial slowing down is the time neessary to ahieve thermal equilibrium(lattie energy on the average does not hange in time) on the lattie starting withan initial non-equilibrated state, say all spins up. Three major lustering algorithmshave been developed to date [Land 00℄.



621.11.1 Metropolis AlgorithmThis proedure was invented by Metropolis et al. in 1953 for sampling an ar-bitrary probability distribution. In the Metropolis algorithm, new on�gurations ofthe system are found by moving through all the lattie sites and updating the spinvariables. A new on�guration is generated by updating a single variable in the oldon�guration and alulating the hange in energy of the lattie �E. If �E � 0, thehange is aepted. Otherwise, the hange is aepted with probability exp(���E).This represents a omplete Metropolis MC yle. Therefore, the Metropolis algo-rithm is onsidered a loal method for reasons that it does not involve multispinlusters. As a result it is found to be very ineÆient around the ritial point due toritial slowing down.1.11.2 Swendsen-Wang AlgorithmSwendsen-Wang is a true luster algorithm, where lusters are identi�ed by estab-lishing bonds between pairs of neighboring spins. Building the appropriate lusteron�gurations and updating whole multispin lusters at a time, this algorithm ap-pears to be muh less sensitive to ritial slowing down as ompared to the Metropolisalgorithm.The steps of the Swendsen-Wang algorithm are the following:1. Initialize the lattie to the �rst realization.



632. Examine every pair of neighboring spins in the system. If they are not parallel,do nothing. Otherwise, establish a bond between the two spins with probabilityp = 1 � exp(�2�J). In this way a bond on�guration is obtained. Two spinsbelong to the same luster if they are onneted through a sequene of bonds.If a spin has no bond with any of its neighbors, it forms a luster by itself.3. Identify all lusters in the system. For eah luster. ip all its spins withprobability 1=2. In this way a new on�guration is obtained.4. Repeat steps 2 and 3 (omplete Swendsen-Wang MC yle) until the desirednumber of on�gurations have been obtained.1.11.3 Wol� AlgorithmThe Wol� algorithm is similar to the Swendsen-Wang algorithm. The majordi�erene is that the Wol� algorithm ips the spins of one partiular luster withprobability 1 in every Wol� MC yle, as ompared to ipping all lusters with theprobability 1=2 in the Swendsen-Wang algorithm.The steps of the Wol� algorithm are:1. Initialize the lattie to the �rst realization.2. Chose a spin at random to be the seed of a luster. Examine all its neighbors,and add the parallel ones to a list alled a perimeter list.



643. Remove a spin from the perimeter list. For eah of the neighbors that alreadybelong to the luster, a bond is established between the perimeter spin and theneighbor (e�etively adding the perimeter spin to the luster) with a probabilityp = 1� exp(�2�J). If within the same Wol� MC yle an earlier attempt wasmade to establish a bond between the perimeter spin and a neighbor, theneighbor is skipped in this step.4. If the perimeter spin is not added to the luster, repeat step 3. Otherwise,inspet its neighbors with parallel spins. If a parallel neighboring spin is neitherin the luster nor in the perimeter list, add it to the perimeter list. If it isalready in the perimeter list or in the luster, do nothing.5. Repeat steps 3 and 4 until no spin remains in the perimeter list, then ip allthe spins in the luster.6. Repeat steps 3 through 5 until the desired number of on�gurations have beenobtained.The Wol� algorithm eliminates the problem of ritial slowing down ompletely,whih makes it the most preferred method to implement Ising MC simulations.1.11.4 Aumulation of Cluster ConentrationsClusters are aumulated after the system is allowed to equilibrate. Cluster iden-ti�ation on the lattie realizations an be done with various methods, like the stan-



65dard Hoshen-Kopelman tehnique found in textbooks [Land 00℄. As a omputer stepsthrough lattie realizations, lusters are identi�ed, sorted by their size and surfae,and ounted. After a desired number of lattie realizations have been reahed, lus-ter numbers in every size and surfae bin are divided by the total number of lattierealizations and the total lattie size N to get the onentrations. This way repeat-ing the MC Ising simulation at various temperatures (the magneti �eld is zero),luster onentrations n(a; s; T ), whih orrespond to the phase boundary region ofthe lattie gas, an be found and used for testing purposes.1.12 Goals of ProjetWhen modeling physial luster behavior on the lattie, the obvious questionarises regarding the hoie of a model luster that best reets the properties of aphysial luster in a Van der Waals uid. In this study geometri lusters are hosenas model lusters in an attempt to demonstrate their elegane, simpliity and diretanalogy to Stillinger's lusters. Therefore, this thesis deals with one model lusterde�nition and sets as one of its goals to show appliability of Stillinger's theory togeometri lusters using MC Ising simulations at zero magneti �eld. In ontrast,inadequay of the ideal-luster-gas approximation to desribe geometri lusters islearly shown.In no way laims are being made that Stillinger's lusters are the only \good"lusters to study nulear uid. They are on�gurational lusters with no internal



66degrees of freedom that annot fully reet properties of nulear liquid droplets.These properties have to be fully known in order to ompletely understand observednulear luster distributions. However, Stillinger's lusters point to an opportunityof developing a new analysis tehnique on the basis of interating-luster gas. Thisopportunity an be justi�ed referring to the work of LBA, who found little e�etof preise physial luster de�nition on the free energy of a luster. Therefore, theseond goal of this study is to develop a luster analysis tehnique using Stillinger'stheory in hopes that it may better desribe nulear lusters and aount for theirinterferene primarily due to the exluded volume. To gain more on�dene in thetehnique, its testing is planned with SAP ombinatoris, whih is equivalent tothe ombinatoris of geometri lusters. In addition, systemati failure of the ideal-luster-gas approximation is presented to ontrast the results of the new method.Analysis of inomplete nulear luster distributions is impossible without a lustermodel, like Fisher's, that analytially parameterizes the distributions. Therefore,the new interating-luster tehnique should also be merged with Fisher's model,introduing a modi�ed version of it. Design of a omputer ode that implements aleast-squares �tting proedure for the analysis of luster distributions using modi�edFisher's model is the third goal of this work.By itself the new luster analysis tehnique annot manifest any improvement.It has to be ompared with the results of the ideal-luster-gas analysis. Using geo-metri lusters, it is possible to observe ertain spei� signatures distinguishing the



67two analyses. On the other hand, it is possible to generate mokup distributions ofgeometri lusters using SAP ombinatoris as if they were not interating. Chara-teristi signatures an also be observed in this ase. Overall, the hope is to �nd thesesignatures in the future analysis of nulear luster distributions. Therefore, the forthgoal is to develop strategies to look for luster interation e�ets in nulear lustergas, whih are mostly due to the exluded volume, whih may manifest if nulearlusters are similar to Stillinger's lusters.If Stillinger's lusters are similar to nulear lusters, then there is an expeta-tion to substantially improve the nulear liquid-vapor phase diagram obtained byMoretto's group using the ideal-luster-gas methodology.



68
Chapter 2Geometri Clusters of the IsingModel as Model ClustersIn this hapter, the properties of geometri lusters are studied from the pointof view of Stillinger's theory, and the results are ompared to the preditions of theideal-luster-gas approximation. In Setion 2.1 geometri-luster onentrations arestudied exatly using the Ising model, and then the ideal-luster-gas and Stillinger-based approximations are introdued. Setion 2.2 shows how to obtain the lattiegas thermodynamis using geometri lusters aording to various approximations.An alternative approah to onnet luster onentrations with the pressure at o-existene, not used previously in luster analyses, is presented for the ase of theStillinger-based approximation. Numerial Monte Carlo Ising simulations and theiruse to obtain luster onentrations are disussed in Setion 2.3, while Setion 2.4



69presents a detailed omparison of simulated geometri-luster onentrations and thelattie gas thermodynamis obtained from them with the orresponding preditionsof the theoretial approximations.2.1 Geometri-Cluster ConentrationsGeometri lusters were disussed at length in the introdutory part of this the-sis. They are on�gurational lusters that are de�ned aording to the ondition ofproximity in spae: two or more spins (or atoms) form a luster if they oupy near-est neighbor lattie sites in an uninterrupted order so that every spin of the lusteris a nearest neighbor to at least one other spin of the same luster.The Ising model provides an unpreedented opportunity to study geometri lus-ters. Within the model, geometri-luster onentration, i.e the average number oflusters per lattie site, an be related to the lattie gas thermodynamis in a learand rigorous way [YLee 52℄. At zero magneti �eld the Ising model is equivalentto the lattie gas at the liquid-vapor phase boundary as a result of the one-to-oneorrespondene between the Ising �eld strength and the lattie gas hemial poten-tial. Only at zero �eld reversing the diretion of spins in the Ising lattie realizationsdoes not hange the energy of these realizations. On the other hand, the equiva-lent proedure of reversing the lattie gas realizations at onstant hemial potentialorresponds to a hange of phases. The ondition of two phases having the sameenergy and hemial potential below the ritial temperature unambiguously points



70to phase oexistene, i.e. a region in the thermodynami P -v-T -spae, in whihpressure, temperature and hemial potential of the liquid phase are equal to thoseof the gas phase.In what follows below, geometri-luster onentrations on the zero-�eld Isinglattie are obtained as an example of luster prodution at liquid-gas phase oex-istene. Adopting Stillinger's approah to a lattie [Stil 63℄, a probability p an beintrodued that a geometri luster of size a (the number of spins in the luster),surfae s (the number of links with the neighboring spins of opposite diretion) andshape k (relative arrangement of spins within the luster) an form in a partiularloation j of the lattie. The shapes of geometri lusters are equivalent to thoseof self-avoiding polygons or polyhedra (SAP) depending on the dimensionality (seeIntrodution for more details). For every partiular size a and surfae s of SAP, theremay be many possible shapes, whih an be ounted and are denoted by gSAP (a; s),so that the ounter k varies between unity and gSAP (a; s). All the luster loationsj on the lattie are distint and also an be numbered. When moving from loa-tion j to a loation j + 1, say to the right, every spin of the luster moves to itsnearest-neighbor position to the right. Depending on the lattie boundary ondi-tions, the total number of loations may di�er. Two types of boundary onditionsare distinguished: open and periodi. In the ase of open boundary onditions, thelattie has �nite boundaries and is not losed on itself. The spins on the edge arenot ompletely surrounded by nearest neighbors. As a result, the number of luster



71loations depends on the luster size and shape. On the other hand, periodi bound-ary onditions orrespond to a lattie whih is losed on itself, e.g in two dimensionsa retangular (or square as a partiular ase) lattie forms a torus. All the spinsin suh a lattie have the same number of nearest neighbors, and, as a result, thenumber of luster loations is independent of luster harateristis. In this ase, ifa lattie is of total size N, there are N of suh loations to plae a luster, so that theounter j goes from one to N. Thus periodi boundary onditions help to eliminatethe unimportant edge e�ets on a �nite lattie and to simplify its geometry. Onsagerused periodi boundary onditions in his solution of the two-dimensional Ising model.This thesis will also adhere to them. Therefore, realling that the total number ofpossible lattie realizations is 2N, the probability isp(a; s; k; j; �;N) = 2NPi=1 Æa;s;k;j(i) exp[��Ei℄2NPi=1 exp[��Ei℄ (2.1)where the index i is the lattie realization ounter. In Equation 2.1 Æa;s;k;j(i) is thevariable indiating the presene or the absene of the luster of size a, surfae s, andthe shape k in the loation j of the lattie realization i, and it an only take thevalues 0 or 1; Ei is the total energy of the realization i. The energy Ei onsists ofall the energies of lusters present in the partiular realization i plus the energy ofthe ground state (all spins are parallel), sine the total interfae between the up anddown spins is the sum of luster surfaes. This property of the zero-�eld Ising modelan be easily understood looking at the following mental exerise. The energy of the



72ground state of the lattie is �1=2JN (it an be readily heked using Equation 1.54for the Ising lattie energy, whih is the sum over all the spin pairs), where J is theinteration strength, and  is the number of nearest neighbors. Suppose a lusterof spins is ipped in the middle of a two-dimensional square lattie, say a squareluster of size a = 4 (two by two). The energy of this new lattie state will onsistof three omponents: the energy of four parallel spin pairs inside the luster, theenergy of eight antiparallel spin pairs on the surfae of the luster, and the energy of2N� 4� 8 parallel spin pairs outside the luster. Clearly, the energy of parallel spinpairs inside and outside the luster are of the same negative sign totaling �2JN+8J ,whereas the interfae energy 8J is positive. Therefore, the total energy of the newlattie realization is �2JN + 16J , whih is 16J above the ground state. As it anbe seen, this energy above the ground state is interfae-only dependent, and ippingmore spins to reate other lusters will inrease the energy above the ground statein proportion to the inreasing interfae. This dependene of the lattie energy onthe surfae of geometri lusters at oexistene is possible beause geometri lustersdo not share their surfae between eah other. They are learly separated one fromanother and annot touh, for otherwise a larger luster is formed.Notie also that the energy above the ground state is always 2J times the totalsurfae (number of antiparallel spin pairs) irrespetive of dimensionality. The quan-tity 2J , denoted as , is the surfae energy oeÆient (surfae tension). Therefore, inthe zero-�eld Ising model the luster energy E(a; s) (energy above the ground state



73to form a luster) is proportional to the surfae s of a luster:E(a; s) = s = 2Js: (2.2)For those realizations where a luster of size a, surfae s and shape k is present,it is always possible to separate the energy of the luster E(a; s) from the energy ofthe remaining lusters E 0i, whih also inludes the ground state energy:Ei = E(a; s) + E 0i (2.3)Then the probability p an be written in the following form:p(a; s; k; j; �;N) = exp[��E(a; s)℄ 2NPi=1Æa;s;k;j(i) exp[��E 0i℄2NPi=1 exp[��Ei℄ ; (2.4)where the Boltzmann fator of the luster energy an be fatored out beause of Æ,whih automatially eliminates all the terms in the sum not satisfying the requiredondition. The quantityw(a; s; k; j; �;N) = 2NPi=1 Æa;s;k;j(i) exp[��E 0i℄2NPi=1 exp[��Ei℄ (2.5)an be understood as the probability that other lusters around the spei�ed lusterdo not a�et its formation. If other lusters were not present in any on�guration(hypothetially), then all the lattie realizations ontained only the spei�ed luster,and w = 1. This assumption, also alled dilute limit, is a typial hypothesis of theideal luster gas approximation. Clusters are believed to be so far apart in their phase



74spae that their trajetories never ross exluding the possibility of interferene. Inthe opposite extreme situation, the spei�ed luster an never be formed, and w = 0.Suh ondition may be observed in a old liquid when ondensed uid forms one giantluster the size of the volume of the liquid. In this ase formation of smaller lustersis absolutely prohibited. At intermediate densities w ats as a weight fator loweringthe luster formation probability in the midst of interferene (interation) with otherlusters.The onentration n of geometri lusters of size a and surfae s (number oflusters per site of the lattie) an be found as a sum of probabilities p over all thepossible shapes gSAP (a; s) that a luster of size a and surfae s an have, and overall the lattie loations divided by the total lattie size:n(a; s; �;N) = exp[��E(a; s)℄N NXj=1 gSAP (a;s)Xk=1 w(a; s; k; j; �;N) = g(a; s; �;N) exp[��s℄;(2.6)where g(a; s; �;N) = 1N NXj=1 gSAP (a;s)Xk=1 w(a; s; k; j; �;N) (2.7)an be interpreted as the average number of shapes for the luster of size a and surfaes, whih an form on the Ising lattie at temperature T = 1=�. This number is lessthan the orresponding number gSAP (a; s) of all the possible shapes beause of thepresene of other lusters and the resulting interferene. This interferene is entirelyof geometri origin and omes from the fat that the freedom of a luster to hangeits shape on the lattie is limited by the temperature dependent presene of other



75lusters that fore the luster in onsideration to \squeeze" in between them. Thisauses the mutual suppression of geometri-luster prodution on the Ising lattie.Therefore, it may be possible to understand geometri-luster distributions of theIsing model if it is possible to determine average luster-shape numbers, whih arenot onstants, like gSAP (a; s), but vary with temperature and the size of the lattie.The quantity Nn(a; s; �;N) is the partition funtion of a luster of size a andsurfae s: q(a; s; �;N) = Nn(a; s; �;N) = exp[��F (a; s; �;N)℄; (2.8)where F (a; s; �;N) = E(a; s)� TS(a; s; �;N) (2.9)is the luster free energy withS(a; s; �;N) = ln [Ng(a; s; �;N)℄ (2.10)being the luster entropy aording to the Boltzmann law. Equations 2.8, 2.9, and2.10 are inluded here to emphasize that the e�ets of luster interation (interfer-ene) enter the individual-luster thermodynamis through the entropi part of theluster free energy. These equations will be useful later when applying Stillinger'smethodology to geometri lusters.



762.1.1 Geometri Clusters as an Ideal GasIt has been shown in the previous setion that geometri lusters may not beonsidered as non-interating. The ombinatorial fator g entering the luster dis-tributions varies with temperature and lattie size as a result of luster interferene.Nevertheless, it may still be bene�ial to assume the ondition of dilute limit so thatgeometri lusters may be thought of as an ideal gas with the goal to estimate theextent of their interation.Appliation of the ideal-luster-gas approximation renders geometri lusters freeto take all the possible shapes gSAP (a; s) in any position j on the lattie without beingrestrited by the surrounding lusters. Suh an assumption may be good enough fordilute systems, but beomes quite unrealisti at high densities or near the ritialpoint. It is equivalent to taking all the values w in Equation 2.6 to be unity. Theonentration of lusters in suh an ideal gas beomesn(a; s; �) � exp[��E(a; s)℄N NXj=1 gSAP (a;s)Xk=1 1 = gSAP (a; s) exp[��s℄; (2.11)whih is no longer a funtion of N, and is haraterized by the temperature indepen-dent ombinatorial fator (number of luster shapes).2.1.2 Geometri Clusters Aording to StillingerThe analogy between geometri and Stillinger's lusters has been noted in theIntrodution. It seems reasonable to apply to geometri lusters the same arguments



77Stillinger used in his theory. Stillinger's lusters of size a are shown to have a two-fator formation probability pa[r℄ in a ontainer loation r:pa[r℄ = p0a exp(��W [a; r℄); (2.12)where r is an array of radius-vetors of individual partiles in the luster, p0a is theloation independent formation probability of a luster in the absene of interation,andW [a; r℄ is the free energy needed to form a avity around a luster in the mediumof other lusters to aount for the interation. This free energy is due to the hangein entropy of the whole system owing to the formation of suh a avity, whih restritsthe available spae for other lusters and reates room for the new luster. TheBoltzmann fator of the avity formation free energy exp(��W [a; r℄) is, in fat, aprobability that the new luster will not interat with other lusters: in ideal-gas-likesystems it is unity, while in dense environments it tends to zero. The variation inshape of Stillinger's lusters is implied by radius-vetors r, sine in any loation ofthe ontainer, whih is �xed by the ondition of onstant enter of mass of a luster,there are many possibilities for individual radius-vetors to satisfy this ondition.Now onsider a geometri luster of size a, surfae s and shape k in the lattieloation j. By analogy with Equation 2.12, the luster formation probability an bewritten as p(a; s; k; j; �;N) = exp(��s) exp[��W (a; s; k; j; �;N)℄; (2.13)



78where it an be notied thatw(a; s; k; j; �;N) = exp[��W (a; s; k; j; �;N)℄ (2.14)aording to Equations 2.4 and 2.5. In other words, the onstraining e�et of otherlusters on the formation probability of the luster in onsideration an be attributedto the free energy of reating a avity on the lattie. This free energy omes as a resultof redued entropy of other lusters whih is due to restriting their on�gurationalspae. Then the onentration an be written asn(a; s; �;N) = gSAP (a; s) exp[��s℄NgSAP (a; s) NXj=1 gSAP (a;s)Xk=1 exp[��W (a; s; k; j; �;N)℄ (2.15)Aording to Stillinger, the avity formation free energy an be alulated andonsists of two ontribution (f. Equation 1.38):�W (a; s; k; j; �;N)℄ = �Pv(a; s) + f(a; s; k; j; �;N; �) (2.16)where P is the lattie gas pressure, v(a; s) is the volume of a avity around the lusterof size a and surfae s, and f is a position and luster dependent funtion of thelattie gas density �. Therefore, the luster onentration beomesn(a; s; �;N) = gSAP (a; s) exp[��s℄ exp[��Pv(a; s)℄ hexp[��f ℄i (a; s; �;N; �);(2.17)where hexp[��f ℄i (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 exp[��f(a; s; k; j; �;N; �℄)NgSAP (a; s) (2.18)



79The quantity hexp[��f ℄i (a; s; �;N; �) an be expressed in terms of hfi (a; s; �;N; �):hexp[��f ℄i = exp[�� hfi℄+ 12 �2�f2 exp[��f ℄����hfi �2f+: : : = exp[�� hfi℄(1+�2�2f+: : :)(2.19)Equation 2.19 is the in�nite moment expansion 1 of the average funtion in termsof its average argument. Only even-order moments appear 2 in the expansion. The�rst two moments shown here an be alulated as follows:hfi (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 f(a; s; k; j; �;N; �)NgSAP (a; s) (2.20)is the zeroth moment, and�2f (a; s; �;N; �) = NPj=1 gSAP (a;s)Pk=1 [f(a; s; k; j; �;N; �)� hfi (a; s; �;N; �)℄2NgSAP (a; s) (2.21)is the seond moment. It is important to notie, that f is averaged over positionson the lattie and shapes of the avity. For a large enough lattie, various positionstend to beome equally probable, i.e. the distribution of f with j is at. Similarsituation an be onjetured regarding the distribution of f with the shapes k, sinethe avity volume does not appreiably hange with the shape (it depends on thethikness of the surfae). These arguments lead to a reasonable approximation:hexp[��f ℄i � exp[�� hfi℄; (2.22)1The methodology of the statistial moment expansion and its derivation are thoroughly pre-sented in the seond part of this thesis. See Setion 5.2 for more information.2As demonstrated in Setion 5.2 of Part 2 of this thesis, the odd-order statistial moments of theexpansion do not survive the averaging operation sine the positive and negative deviations fromthe average anel eah other in the in�nite limit of the number of individual deviations. Obviously,this does not our to the even-order moments.



80whih yields the following luster onentrations:n(a; s; �;N) = gSAP (a; s) exp[��s℄ exp[��Pv(a; s)℄ exp[�� hfi (a; s; �;N; �)℄(2.23)Geometri-luster onentration in Equation 2.23 may not be further simpli�edwithout introduing more approximations due to extreme omplexity of the quantityhfi (a; s; �;N; �). Eah of the approximations will now be disussed in turn.First of all, the size of the lattie N does not signi�antly a�et the lusterprodution unless the lusters are of size omparable with N. As N tends to in�nity,the dependene ompletely disappears in the thermodynami limit. Therefore, forlarge enough latties the �nite-ontainer e�ets an be safely disregarded.Seondly, the quantity hfi (a; s; �;N; �) an be approximated using the RFLtheory of the uid of spheres (disks in two dimensions or rods in one dimension)[Lebo 65℄. In the words of Stillinger, \... if the luster almost always had a smoothspherial surfae, ... the Reiss-Frish-Helfand-Lebowitz theory of spherial avityformation work in real uids would apply" [Stil 63℄. If Stillinger's lusters are on-strained to form spherial avities, and attration is negleted, Stillinger's theoryshould approximately redue to RFL desription. Therefore, the density dependentpart of the avity free energy an be adopted from RFL. They derived the followingexpressions for the quantity hfi in one, two and three dimensions [Lebo 65℄:1D: � hfi (�) = � ln(1 � �)



812D: � hfi (R; �) � � ln(1 � �) + �s1� �R (2.24)3D: � hfi (R; �) � � ln(1 � �) + �s1� �R + � 2�1 � � + 3�2s(1� �)2�R2;where R = R(a) is the radius of the sphere, and� = Xa 2�R(a)n(a; �) in 3D only�s = 8>>><>>>: Pa 2�R(a)n(a; �) in 2DPa 4�R(a)2n(a; �) in 3D (2.25)� = 8>>>>>>><>>>>>>>: Pa ln(a; �) in 1DPa 4�R(a)2n(a; �) in 2DPa 43�R(a)3n(a; �) in 3Dare irular, surfae, and volume densities, respetively, and n(a; �) is the onentra-tion of spherial lusters of size a. Their interpretation depends on dimensionality.In three dimensions the volume density � is the density in its usual meaning as afration of the ontainer volume taken up by the volume of all the spheres. In twodimensions it is a fration of the ontainer surfae oupied by the surfae of all theirles, and in one dimension it is just the frational length of all the rods of length lon the ontainer string. The surfae density �s in three dimensions is the total spheresurfae per ontainer volume with a similar de�nition in terms of a irumferenein two dimensions. The irular density �, whih appears only in three dimensions,an be interpreted as the average density of spherial luster's linear measure (ir-



82umferene if a ut through the enter is made). All these densities are intriatelyintertwined to aount for the volume, surfae and urvature e�ets in the avityformation.Depending on the dimensionality of the problem, orresponding approximationsfor hfi an be introdued to desribe geometri-luster onentrations. In this work,however, the simplest one-dimensional form will be employed and tested with ge-ometri lusters. No lear reason an be o�ered at this time to justify the hoieexept that of empirial validity for geometri lusters of the two-dimensional Isingmodel. It will be shown later in this hapter that the simulated onentrations ofgeometri lusters very aurately follow the one-dimensional form of hfi, and noneed exists to introdue more omplex approximations. Some speulations, however,an be onsidered as to why the one-dimensional form of hfi works well to aountfor luster interferene. This form is a part of hfi in all dimensions of interest (one,two, and three), and represents the zeroth-order e�et of plaing a sphere in theontainer (a point sphere e�et). This is the e�et of having something in ompar-ison with nothing, a sharp transition from no e�et to �nite e�et. On the otherhand, the other terms desribe spei� properties of the newly plaed sphere (surfae,urvature) and only modify the extent of the already existing e�et. These modi�-ations may not be signi�ant. As an example, onsider Fourier transformation of afuntion. If the funtion is smooth and not dramatially varying with its argumentin the range of onsideration, the zeroth-order Fourier oeÆient is by far the most



83dominant and an reasonably well approximate the funtion with a onstant. Theless important higher-order oeÆients only improve upon the approximation anddetermine the extent of the deviation from the onstant.When applied to Equation 2.23, the one-dimensional form of hfi yields an elegantpressure and density dependent approximation for luster onentrations, that an bereadily alulated analytially in one and two dimensions for whih the Ising modelis solved exatly. The onentrations are:n(a; s; �) � gSAP (a; s) exp[��s℄ exp[��Pv(a; s)℄(1� �) (2.26)Thirdly, the issue of the geometri-luster avity volume needs to be addressed.On the Ising lattie the volume of a avity v(a; s), whih is formed to ontain theluster of size a and surfae s, onsists of two ontributions. The �rst ontributionis from the size a of the luster itself, whih forms the ore of the avity volume.The seond ontribution is from the luster surfae of �nite thikness. For a lusterto maintain its identity, there has to be a shell of sites around the ore that is in-aessible to other lusters, sine otherwise they would join the luster. This shellonsists of a maximum of s sites for ompat or small lusters, but may ontainless then s if a luster has stringy parts with bends in the string. The bends ausethe number of sites around the luster to be less then the number of links to them,whih onstitute the luster surfae. In this ase the shell is not exatly related tothe surfae. For example, two-dimensional geometri luster of size three and surfae(perimeter) eight an have two irreduible shapes (whih annot be transformed into



84eah other by rotation): a string and an angle. The string-shaped luster has eightnearest-neighbor sites around it, whereas the angle-shaped luster has only seven.Nevertheless, as a good approximation, it will be assumed in this work that the shellalways has s sites, sine ompat or small lusters appear more frequently on thelattie due to the less energy requirements. Therefore, in addition to a ore sitesof the luster the avity should ontain s shell sites around the ore, whih repre-sent the luster surfae of �nite thikness. The shell thikness ts should neessarilybe introdued for generality yielding the following approximate form for the avityvolume: v(a; s) � a+ tss; (2.27)whih is exat for ompat and some small lusters. The shell thikness is equal to thelattie spaing, i.e. the distane between the sites of the lattie. If the avity volumeis measured in units of lattie sites, the shell thikness is unity. Suh de�nition of theavity volume provides for an elegant way to introdue surfae deformation e�etsinto an otherwise spherial desription of the �nite volume e�ets in Equation 2.26.Clearly, the geometri-luster surfae shell ontribution to the avity volume is asigni�ant fration of the total, that an be the largest for small or strongly deformedlusters realling that s varies between about 4pa and 2a+2 in two dimensions, andeven more radially in three dimensions.Thus the onentration of geometri lusters on the Ising lattie to be explored



85in this work may be approximated by the following expression:n(a; s; �) � gSAP (a; s) exp[��s℄ exp[��P (a+ sts)℄(1� �); (2.28)in whih the temperature dependene of ombinatorial fators has been fatored out.For simpliity Equation 2.28 will be referred to as the �nite volume approximation(FVA) throughout this thesis.2.2 Coexistene Lattie Gas Thermodynamis withGeometri ClustersAs mentioned earlier in the Introdution, thermodynamis of a system are ob-tainable through lusters using a luster model. In the following, two formalisms arepresented to extrat thermodynamis of the lattie gas at the liquid-vapor oexis-tene using geometri lusters as an ideal gas and as a gas of Stillinger's lusters.In the ase of Stillinger's lusters, the theory is modi�ed to suit the requirements atoexistene, and the luster onentrations are assumed to obey the �nite volumeapproximation aording to Equation 2.28.2.2.1 Ideal Cluster GasIn the framework of the ideal luster gas approximation the lattie gas pressureand density below the ritial temperature an be evaluated using Equations 1.18 as



86applied to geometri luster onentrations:P � TXa;s n(a; s; �)� � Xa;s an(a; s; �) (2.29)Critiality of the lattie gas at oexistene an in priniple be observed in thebehavior of the heat apaity at onstant volume CV , whih an be alulated frompressure using standard thermodynami relations:V = CVV = 1V �E�T ����VEV = T �P�T ����� � P = T 2 ��T �PT ������ (2.30)where E is the energy of the lattie gas, and � is the hemial potential, V is thevolume of a system, and V is the heat apaity per unit volume. At the ritialpoint V is in�nite in the thermodynami limit, whih is a harateristi signatureof the seond order phase transition. 3 If the lattie size is �nite, the heat apaityis expeted to have a peak of �nite hight at the ritial temperature. This peak mayallow determination of the ritial temperature for �nite systems. The lattie gasheat apaity per one lattie site within the ideal luster gas approximation isV = ��T T 2 ��T �PT �����N;� � 2TXa;s ddT n(a; s; �) + T 2Xa;s d2dT 2n(a; s; �)� 2�2Xa;s s2gSAP (a; s) exp[��s℄; (2.31)whih an be easily derived using Equations 2.29 and 2.30.3Critial phenomena are quali�ed as seond order phase transitions, whih are partiularly har-aterized by the in�nite disontinuity in the seond derivative of uid's free energy with respet totemperature. Heat apaity ontains suh a derivative, as it an be seen in Equation 2.30 reallingthat the free energy is proportional to the pressure.



872.2.2 Non-Ideal Cluster GasStillinger's luster theory an be used to obtain the lattie gas pressure and den-sity from geometri lusters using Equations 1.37. If, however, luster onentrationso� oexistene are not available 4, they annot be integrated over the hemial po-tential to obtain the pressure. This problem an be overome by performing thealulation of the oexistene pressure and other thermodynamis using the energyof the system as a funtion of temperature. In the Ising model geometri-lusteronentrations an be used to alulate the average lattie energy exatly due totheir diret relation to the energy of a single lattie realization i:Ei = Si� 12JN; (2.32)where Si is the total surfae between the up and down spins (the number of opposite-spin pairs) in a realization. The energy Si is above the lattie ground state energy�1=2JN, where  = 2J is the surfae energy oeÆient, N is the total number ofspins on the lattie, J is the interation onstant, and  is the number of the nearestneighbors of a spin on the lattie. Geometri lusters have a well de�ned surfae,not shared between the lusters, whih is the number of links with opposite spins4A somewhat arti�ial diÆulty for geometri lusters, sine non-zero �eld MC simulations anbe easily performed. This made up problem, however, is raised to solve a real problem with nulearlusters, for whih experimental distributions are assumed to pertain only to the oexistene ofliquid and gas due to the exponential fall-o� of the luster's abundane with their size (numberof nuleons). If the system were in the gas-only region, only monomers ould be observed. In theliquid-only region, the luster abundane would inrease exponentially with the luster size. As it is,however, the limited presene of multimers supports the assumption of oexistene. At oexistene,standard Stillinger's approah annot be used, sine the hemial potential is not an independentfuntion of temperature.



88bordering the luster. Therefore, the total surfae of a realization Si is omposed ofa sum of surfaes of all the geometri lusters present in this realization:Si =Xa;s sNi(a; s); (2.33)where Ni(a; s) is the number of lusters of size a and surfae s in a realization i.Then the average energy per spin of the Ising lattie uI an be alulated as follows:uI = 2NPi=1Ei exp(��Ei)N2N 2NPi=1 exp(��Ei)= Xa;s s 2NPi=1Ni(a; s) exp(��Ei)N2N 2NPi=1 exp(��Ei) � 12J 2NPi=1N exp(��Ei)N2N 2NPi=1 exp(��Ei)= Xa;s sn(a; s; �) + ug; (2.34)where ug = �1=2J is the Ising ground state energy per spin.The average energy above the ground state u is related to the lattie gas pressureat oexistene through a standard thermodynami relation:u = Xa;s sn(a; s; �) = T �P�T ����� � P (2.35)Therefore, the knowledge of the geometri-luster onentrations as funtions of tem-perature obtained at oexistene is suÆient to determine the pressure. The �rst-order di�erential equation with the initial ondition P (T = 0) = 0 an be solved inorder to get the PT oexistene line.



89Using the approximate form for the luster onentrations, the pressure and den-sity of the lattie gas an be evaluated using SAP ombinatoris. Sine the onen-trations are density and pressure dependent quantities, they an be written in thefollowing way:n(a; s; �; P; �) � gSAP (a; s) exp(��s) exp[��(a+ sts)P ℄(1� �) (2.36)A system of equations T �P�T ����� � P � Xa;s sn(a; s; �; P; �)� � Xa;s an(a; s; �; P; �) (2.37)an be de�ned, that enables the lattie gas pressure and density alulation in therange of validity of Equation 2.36. For onise referene this methodology will bealled di�erential equation tehnique (DET) in the rest of the thesis.In Equations 2.37 the density an be expressed as a funtion of the pressure:� � Pa;s an0(a; s; �; P )1 +Pa;s an0(a; s; �; P ); (2.38)where n0(a; s; �; P ) � gSAP (a; s) exp(��s) exp[��(a+ sts)P ℄ (2.39)is the density independent part of the geometri luster onentrations. Then anapproximate �rst-order di�erential equationPa;s sn0(a; s; �; P )1 +Pa;s an0(a; s; �; P ) � T �P�T ����� � P (2.40)



90an be written to de�ne the pressure as a funtion of temperature and luster om-binatorials. This di�erential equation is of entral importane in this thesis, sinewithin the validity of Equation 2.36 it allows the onstrution of a liquid-vapor phasediagram if interferene e�ets are not negleted.Critial properties of the lattie gas an be evaluated in a standard way alu-lating the heat apaity at onstant volume as a funtion of temperature along thephase separation line V = �u�T ����V (2.41)and �nding its peak at the ritial point. Using Equations 2.35 and 2.36, the lattiegas heat apaity an be expressed in terms of the geometri-luster onentrationsin the following way:V � 2T 2 "Xa;s s2n� tsXa;s snXa;s s2n � 2Xa;s snXa;s asn+ (Xa;s sn)2Xa;s a2n+ ts(Xa;s sn)2Xa;s asn# (2.42)If luster onentrations are known beyond the ritial temperature, the �nite volumeapproximation may be aurate enough to display the peak whose loation an bedetermined with Equation 2.42 to estimate the ritial temperature 5.5At and beyond the ritial temperature oexistene of phases is lost. However, it does notmean that lusters ease to exist and their onentrations annot be found. Equation 2.36 o�ers apredition to luster distributions on a ertain trajetory in the P -V -T spae in the superritialregion. This trajetory neessarily passes through the ritial point and is determined only bythe fundamental properties of SAPs (numbers of self-avoiding polygons or polyhedra gSAP (a:s)).Therefore Equation 2.42 is not a priori bound to fail in the superritial region, but rather is openfor testing to determine its range of validity.



912.3 Obtaining Geometri Cluster ConentrationsSimulated geometri-luster onentrations are obtained from the Ising MC om-puter runs at di�erent preset temperatures. In this work the two-dimensional zero-�eld square-lattie Ising model was simulated at temperatures between Tmin = 1:5and Tmax = 2:25 (J = 1) below the ritial temperature T � 2:269 using the Wol�algorithm with a omputer ode ourteously provided by Dr. Larry Phair. Thetemperature points were equidistant with the gap between them �T = 0:05.
Figure 2.1: Conentration of a geometri luster at di�erent temperatures. The errorbars are too small to be seen.In the ode, Phair employed his own luster identi�ation routine to tag geometrilusters on every lattie realization to distinguish them as separate lusters. Among



92other data, the output of the ode ontained listings of numbered lattie realizations,eah of whih provided a tagged list of spin oordinates. These listings were thenused to reonstrut individual lusters on every realization, and to sort them by sizeand surfae (perimeter). After sorting, numbers of lusters in every size and surfaebin were divided by the lattie size and the number of simulated lattie realizationsto get the onentrations. An example of a luster onentration as a funtion oftemperature is shown in Figure 2.1.2.4 Numerial Analysis of Geometri ClustersTo test appliability of a formalism to geometri lusters, theoretial and simu-lated luster onentrations, as well as system's thermodynamis, need to be inde-pendently obtained and ompared.2.4.1 Ideal Cluster GasAppliability of the ideal-luster-gas approximation to geometri lusters is pre-sented in Figure 2.2, whih shows several simulated onentrations as funtions oftemperature as ompared to equivalent onentrations alulated with Equation 2.11.Comparison of the two data sets reveals reasonable auray of the ideal-gas desrip-tion at low temperatures far below the ritial temperature T � 2:269. However, asthe temperature of the lattie is inreased, Equation 2.11 starts failing and eventu-
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Figure 2.2: Comparison of some geometri-luster (GC) onentrations with theorresponding theoretial preditions based on the ideal-luster-gas approximation(Point-Partile).ally displays large deviations from the simulated data in the viinity of the ritialpoint. Quantitatively the disrepany between simulated and theoretial onentra-tions an be estimated in terms of the luster-averaged relative deviation, expressedin per ent: �nn = 100N Xa;s jn(a; s; �)� nsim(a; s; �)jn(a; s; �) ; (2.43)where nsim(a; s; �) indiates luster onentrations from the simulation, and N isthe number of luster types of di�erent size a and surfae s used to evaluate thequantity. This statisti is spei�ally intended to put equal emphasis on large and



94little lusters alike. Though large lusters are muh less numerous than monomersand little lusters, like trimers, and do not play muh of a role in overall thermo-dynami behavior of the lattie (or uid in general), they aquire muh importanein nulear luster analysis appliations. As it has been shown in the introdution,only large nulear lusters an be trusted to onvey reliable thermodynami infor-mation. Therefore, when testing properties of geometri lusters as model lusters,large lusters are of primary onern, sine their properties determine appliabilityof analysis tehniques to build the phase diagram.

Figure 2.3: The average relative deviation of geometri-luster onentrations fromthe preditions of the ideal-luster-gas model. Clusters up to and inluding the sizea = 15 were used.



95Unfortunately, the statisti in Equation 2.43 is awed at low temperatures, whereluster prodution is predominantly suppressed. The rare multispin lusters, that doform in a limited number of simulated lattie realizations, appear in very smallnumbers whih deviate substantially from the expeted averages. As a result, theluster-averaged relative deviation is dominated by statistial noise, i.e. the devia-tions due to several events (or even one event) of large luster formation. This anbe seen in Figure 2.3 whih demonstrates �n=n for a set of lusters with the sizeup to and inluding a = 15, N = 64 in all. The unexpetedly large deviations inthe �rst three temperature points of Figure 2.3 are dominated by these statistiallyunreliable data, and should not be paid attention to. Only the data that fall on astraight line should be taken into onsideration, and orrespond to sampling abovethe noise.Overall, at low temperatures Figure 2.3 predits a small umulative e�et ofinterferene for geometri lusters. However, as the temperature rises, the deviationsinrease with the temperature to reah 80% around the ritial point. This inreasingbehavior may be explained as a result of inreasing pressure of gas in the two-phasemixture. As the temperature inreases along the phase boundary urve as shownin Figure 1.10, the amount of liquid dereases, and the amount of gas inreasesat onstant total ontainer volume. The larger the pressure of the gas phase, thestronger the interation between the gas lusters due to the exluded volume e�et.Using the approximation in Equation 2.28 and keeping only the dominant exponential



96part ontaining the pressure, the luster-averaged relative deviation an be roughlyestimated as follows:�nn � 100N Xa;s 1 � exp[��P (a+ sts)℄ � 100PNT Xa;s (a+ sts) / PT ; (2.44)whih inreases roughly as a sum of luster onentrations aording to Equations2.29.Another unbiased test of the approximation an be arried out by omparing theexat SAP ombinatorial fators with those obtained by �tting simulated onen-trations with Equation 2.11 as a funtion of temperature. In the �tting of everypartiular luster onentration, only g(a; s) is used as a variable parameter. Ifthe �tting formula orretly reets the properties of the lusters, it is expeted toreprodue ombinatorial fators of geometri lusters just as they are known fromSAP ounting. However, inorret or insuÆient models would yield ombinatorialfators that systematially deviate from the expeted exat numbers. Figure 2.4demonstrates ombinatorial fators for 64 lusters up to and inluding a = 15, ob-tained using the aforementioned proedure, plotted against the exatly known SAPfators. If the reovered numbers were aurate, the plot would show a one-to-oneorrespondene evidened by a straight y = x-line. As it is, however, the deviationsfrom the y = x-line are fairly large and follow a systemati trend. All the ombina-torial fators, that were obtained by �tting, underestimate the exat quantities, andfall on a straight line, indiating the model's failure to reprodue the same propertyfor all the lusters onsidered. The fat that the extrated ombinatorial fators



97are smaller than those expeted from SAPs indiates that the freedom of lusters totake various shapes is suppressed by the presene of other lusters, an e�et that theurrent model annot aount for.
Figure 2.4: Comparison of several SAP ombinatorials with the orresponding geo-metri luster ombinatorials extrated by �tting their onentrations with Equation2.11.There is an intriguing possibility of simple linear mapping the wrong ombinato-rial fators to the right ones. Sine the deviations are systemati, and the inorretombinatorials follow an approximately linear dependene on the true SAP numbers,this dependene an be empirially parameterized by the linear funtion y = kx+ b,where k and b are some oeÆients. Doing this simple trik yieldsgSAP (a; s) � (3:96� 0:20)gideal(a; s)� (1:90 � 0:27); (2.45)



98where gideal(a; s) are the ombinatorial fators obtained from �tting simulated geometri-luster onentrations with the ideal luster gas approximation. This mapping em-pirially aounts for the e�ets of luster interation on the ombinatorial fatorsof the Ising geometri lusters and prompts the existene of a similar mapping innulear systems. Although the knowledge of orret luster ombinatoris does nothelp �nding orret thermodynamis without a proper attention to luster intera-tion at every temperature, still these data are important on their own as an indiatorof the extent of luster interferene.
Figure 2.5: The lattie gas oexistene pressure in the limit of the ideal luster gasalulated with geometri-luster onentrations from simulations (solid irles), andusing Equation 2.11 (open irles), as ompared to the exat pressure (line). Thesolid stars depit the average of the two pressures. The mean-�eld Bragg-Williamspressure is also shown as open triangles.Thermodynamis of the lattie gas at the phase boundary an also be used to



99test the auray of the non-interating-luster method. As an example, pressure anbe found within the ideal-luster-gas approximation using Equations 2.29. At thesame time, the exat pressure P an be found from the Onsager solution using theequivalene relations in Table 1.12. If the ideal-luster-gas approximation is good forgeometri lusters, it should yield the lattie gas pressure just as Onsager preditsit or lose to it. Otherwise the poor orrespondene would be indiative of an inad-equate methodology. In addition to that, the two possible independent methods toalulate the pressure using an ideal gas of lusters should produe onsistent results.Aording to the �rst method, luster onentrations from MC simulations an besummed up at spei�ed temperatures using Equations 2.29. In the seond method,Equation 2.11 an be used at the same temperatures to predit the onentrations ofgeometri lusters as if they were non-interating, and then these onentrations anbe aordingly summed up. Both methods are expeted to produe equal results,omparable with the exat pressure. However, the expetations are not ful�lled, asthe results of the alulations are shown in Figure 2.5. The pressure aording tothe �rst approah is abbreviated GC (geometri lusters), aording to the seondapproah the pressure is alled SAP, and the exat pressure is alled Onsager. Pre-ditions of the zeroth order mean-�eld Bragg-Williams approximation are also shownin the �gure. Notie that the Bragg-Williams approximation is the worst among allshown in the �gure thereby giving a redit to the ideal luster gas approximation asof a higher order ompared to the mean �eld. Nevertheless, it an be observed with



100ertainty that the ideal-luster-gas approximation still applies poorly to geometrilusters unless the temperatures are low. At high temperatures and in the viin-ity of the ritial temperature the deviations are of the order of 30% with the twomethods yielding inonsistent results whih bend o� the exat pressure in oppositediretions. The Bragg-Williams approximation is more or less onsistent with the�rst method of alulating the pressure diretly from the simulated luster onen-trations indiating that the non-interating-luster tehnique is more than suÆientto obtain rough estimation of mean-�eld thermodynamis of the system. However,at ertain onditions these thermodynamis an signi�antly deviate from the exatvalues, and may not be very helpful. These deviations are the result of the lusterinteration, whih needs to be aounted for in order to orretly reprodue uid'sthermodynamis from the observed luster distributions.An interesting result, shown in the same �gure, onerns the pressure obtainedby averaging GC and SAP pressures. It an be seen that this average pressure omesfairly lose to the exat Onsager's alulation thus allowing for a simple reipe toestimate the true pressure and the extent of the �nite volume e�ets in the system.This is another empirial result that ombined with the empirial parameterizationin Equation 2.45 may provide a simple test proedure for probing a system on a-ount of luster interferene. Again one should have nulear lusters in mind forthe potential use of these simple triks as preludes to the full-edged Stillinger-likeanalysis methodology.
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Figure 2.6: The lattie gas oexistene heat apaity in the limit of the ideal lustergas alulated with geometri-luster onentrations from simulations (solid irles),and using Equation 2.31 (open irles), as ompared to the exat heat apaity (line).The heat apaity aording to Bragg-Williams is also plotted.Critial properties of the lattie gas annot be obtained from geometri lustersas an ideal gas using the heat apaity. The demonstration of this fat an beseen in Figure 2.6, whih o�ers a omparison of the exat lattie gas heat apaityalong the phase boundary line with the approximate ideal-luster-gas heat apaitiesalulated using Equation 2.31 in two previously disussed ways. In addition tothat, the heat apaity aording to Bragg-Williams mean-�eld approximation is alsopresented. To ondut this test, the temperature range of the Ising MC simulationswas extended to Tmax = 2:35. Not surprisingly, the �gure shows no onsisteny ofthe results, and no result omes lose to the exat heat apaity depited by the solid



102line. The heat apaity, designated SAP and alulated using self-avoiding-polygonombinatoris, diverges quikly prompting the existene of a di�erent ritial pointfor the hypothetial ideal gas of geometri lusters loated at about 2:06J , whihis quite far from reahing the exat ritial point of the lattie gas at TC � 2:269.Without ertainty, this suggests that the ritial temperature of the lattie gas issigni�antly inuened by luster interferene, and that without interferene, as isthe ase in the hypothetial ideal gas of geometri lusters, the ritial temperatureis redued. On the other hand, the heat apaity alled GC is alulated usinggeometri luster onentrations obtained diretly from the MC simulations. Insteadof showing a peak in the positive range, this heat apaity dips toward the negativerange around the ritial point and is, therefore, non-physial. In ontrast, theBragg-Williams heat apaity is relatively at in the ritial region, indiating thelak of the ritial information.2.4.2 Non-ideal Cluster GasNumerial tests with geometri lusters as a non-ideal gas an be arried out inthe same manner as the one o�ered to hek appliability of the ideal-luster-gasapproximation. Figure 2.7 presents a qualitative omparison of simulated geometri-luster onentrations with the analytially assessed preditions of the �nite volumeapproximation (FVA) in Equation 2.28. It an immediately be seen that the devi-ations are barely visible. A more thorough omparison is shown in Figure 2.8, in



103

Figure 2.7: Comparison of some geometri-luster (GC) onentrations with theorresponding theoretial preditions by Equation 2.28.whih average relative deviation, alulated with Equation 2.43, is demonstrated inper ent as a funtion of temperature for 64 lusters up to a = 15. No doubt, this�gure displays a dramati improvement over a similar plot in Figure 2.3, whih refersto the ideal-luster-gas approximation. Apart from utuations at low temperaturesdue to poor statistis of large lusters, the deviations do not exeed 7-8% and arenot temperature dependent. Notie how the divergent temperature dependene isannulled using the �nite volume approximation, and the deviations stay onstantthroughout the whole temperature region under onsideration. These onstant de-
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Figure 2.8: The average relative deviation of geometri-luster onentrations fromthe preditions of the �nite volume approximation.viations point to systemati errors due to insuÆient auray of FVA. It must beemphasized, however, that the extreme simpliity of FVA, whih is based on the one-dimensional Reiss-Frish-Lebowitz (RFL) approximation, makes it quite surprisingto see deviations so insigni�ant. Clearly, the more omplex two and three dimen-sional RFL approximations will be able to render the observed disrepanies almostnon-existent.Pleasing results also ome when extrating SAP ombinatoris 6 from simulated6This tehnique of estimating numbers of SAP may be used as an alternative to exat ountingmethods in three and higher dimensions when the exat methods fail due to the limited omputerpower. Even with the power of modern superomputers, SAP enumeration in two dimensions islimited by the size a = 50. In higher dimensions exat alulations annot break the a = 20 limit.
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Figure 2.9: Comparison of SAP degeneraies with geometri luster degeneraies ex-trated by �tting their onentrations with �nite volume approximation in Equation2.28onentrations using Equation 2.28. Figure 2.9 shows almost one-to-one orrespon-dene between the exat and alulated ombinatorial fators spanning eight ordersof magnitude, with only small deviations appearing at large values. The inonsis-tenies an better be seen in Figure 2.10, in whih relative deviations are plottedversus exat values. In the plot it may be notied that up to the values in the �fthorder of magnitude the deviations from the exat numbers do not exeed several perent. These ombinatorials orrespond to small and/or relatively ompat lustersfor whih the surfae ontribution to the avity volume and free energy is approx-However, MC Ising simulations an be arried out fairly easily and quikly for very large lattieswith high statistis. Using approximations to luster onentrations, like FVA or better, reliableSAP ombinatoris may be obtained with a small ost [Breu 04℄.
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Figure 2.10: Relative deviations of geometri luster degeneraies from exat SAPdegeneraies. Finite volume approximation in Equation 2.28 has been used to �tgeometri luster onentrations obtained from MC Ising simulations.imated aurately by FVA. On the other hand, large ombinatorials orrespond tostringy lusters that have extremely onvoluted surfaes with many bends in thestrings. The estimation of the avity volume v(a; s) is impreise for these lusters,whih also require higher order of RFL approximation used to desribe the surfaee�ets on the avity formation free energy.The lattie gas thermodynamis an be obtained using FVA with the di�erentialequation tehnique (DET) aording to Equation 2.37. The use of DET to analyzethe luster onentrations obtained diretly from the simulations is bound to beaurate, sine FVA is not needed, and the lattie energy is aurately alulatedas shown in Equation 1.54. The error is only due to the inomplete set of lattie
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Figure 2.11: The lattie gas pressure alulated from SAP ombinatorial fatorsassuming non-ideal luster gas (solid irles). The line represents Onsager's pressure.realizations and luster sizes explored in the simulations. Therefore, it is only ofinterest to learn how FVA an be used to desribe the lattie gas with a �nite set ofSAP ombinatorials, sine in possible real-life appliation of this tehnique to nulearlusters the knowledge of ombinatorial fators is of entral importane. First-orderdi�erential Equation 2.40 an be solved numerially to �nd the pressure from thelimited distributions gSAP (a; s). Matlab was employed to program the algorithm ona omputer. The ode is presented in Appendix A. Figure 2.11 shows the result ofthe alulation in two dimensions using 877 SAP ombinatorials up to and inludinga = 50. The agreement with the exat pressure is remarkable with the largestdeviation being 1.53% at T = 2:25.



108
Figure 2.12: Heat apaity of the two-dimensional Ising model alulated using SAPombinatorials (solid irles) and from the Onsager solution.The ritial point an be estimated from the peak in the heat apaity usingEquation 2.42. Again the 877 SAP ombinatorials are used to obtain the resultspresented in Figure 2.12 in omparison with exat Onsager's result. The expetationof non-divergene of the heat apaity is readily on�rmed in the �gure. A small butlearly visible peak ours that provides the estimation of the ritial temperatureat T � 2:358. At �rst glane the deviations from the exat result seem to be fairlylarge. Nevertheless, the methodology should be given muh redit. Notwithstandingthe simpliity of FVA, and trunation of SAP distributions used for the alulation,there is a large improvement in omparison with the ideal-luster-gas alulation. Inspite of weak omparison to the exatly known lattie gas heat apaity, the �nite



109volume approximation orretly reprodues the expeted properties of the uid, whilethe estimation of ritial temperature deviates from Onsager's only by 4%.2.5 ConlusionsIt has been demonstrated on the basis of a simple RFL approximation, that ge-ometri lusters of the Ising model behave like Stillinger's lusters, and are apableof aurately reovering thermodynamis of the lattie gas. On the other hand,the ideal-luster-gas approah to geometri-luster analysis yields worse results om-pletely failing in the viinity of the ritial temperature. Therefore, geometri lustersmay be aepted as proper model lusters to test and develop nulear luster analysistehniques if luster interferene is duly aounted for.The ultimate test for appliability of Stillinger's formalism to nulear lusters liesonly with the experiment. However, the observed suess of geometri lusters as anon-ideal gas, espeially in the viinity of the ritial point, to orretly reveal theproperties of the lattie gas hints at the possibly similar properties of nulear lusters.If these expetations are true, then the failure of the ideal-luster-gas approximationto orretly reover the lattie gas pressure from the geometri-luster gas asts adoubt on the previously onduted nulear analyses, and produes a motivation tosearh for alternative tehniques.The �rst easy step in suh a searh is to modify previously used Fisher's model toaommodate the e�ets of luster interferene and to employ the di�erential equa-



110tion tehnique to analyze nulear luster distributions. In fat, to make a onnetionbetween nulear and lattie lusters, Fisher's model is only needed to parameterizeluster ombinatorials and surfaes as funtions of luster size. Then the energy ofthe nulear gas phase at the phase boundary may be estimated as a sum over surfaeenergies of individual lusters, and the pressure may then be inferred from the en-ergy by solving a di�erential equation similar to Equation 2.40. Sine experimentalluster distributions are inomplete, the above tehnique should be oupled with a�tting proedure to determine the best estimate of the parameters, and reonstrutthe missing luster distributions. The pressure, density and all the other thermo-dynami quantities an then be determined from the modi�ed Fisher-like analytionentrations. The next hapter onsiders this methodology in detail.
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Chapter 3Interating-Cluster Approah toNulear Cluster AnalysisThe suess of Stillinger's methodology in estimating the lattie gas pressure atoexistene prompts a question: an it be suessfully arried over to Fisher's dropletsand eventually to nulear lusters? Apart from inomplete nulear luster data, theneed to use Fisher's model is ditated by the lak of experimental information aboutthe partiular surfae area of a nulear luster at the moment of detetion. Setion3.1 will deal with these issues by introduing the Modi�ed Fisher's model, whihaounts for e�ets of luster interferene and niely avoids the need to use lustersurfae areas. Appliation of the modi�ed Fisher's model to data will be onsideredin Setion 3.2, and Setion 3.3 will present �nal onlusions.



1123.1 The Modi�ed Fisher's ModelA modi�ed 1 Fisher-based analysis proedure, whih inludes luster interferenee�ets, an be obtained by substituting luster surfaes and ombinatorial fatorsin the Stillinger-based formalism with the orresponding Fisher's parameterizations.However, the original Fisher's parameterizations did not suÆiently aount for fra-tality e�ets. Fratality is a property of some shapes to be self-similar with a hangeof sale. Fratals will be disussed more thoroughly after this brief introdution,but now it is important to say that fratality e�ets may play a signi�ant roleomparable to or even larger than that of luster interferene. And sine the �nitevolume approximation (FVA) laims a signi�ant improvement in auray over theideal-luster gas methodology, avoiding onsideration of fratality an underminethe overall usefulness of Stillinger-based approah to luster analysis using Fisher'smodel.1Finite volume e�ets in Fisher's model have been onsidered in the past. Swaminathan andPoland [Swam 78℄ used the results of the three-dimensional RFL theory to ombine them withFisher's onentrations. In addition to that they developed a methodology to predit individualluster onentrations from known Fisher's parameters. Their approah to introdue �nite volumee�ets into Fisher's onentrations is essentially the same as the one in this work. However, theirmethodology to analyze a uid is more general and omplex involving a non-linear system of equa-tions, the number of whih is equal to the number of luster types, whereas this thesis onsidersa partiular ase of phase oexistene o�ering a rather simple and novel tehnique, re�ned on thebasis of geometri lusters. The modi�ation of Fisher's model by Swaminathan and Poland wasnever used in nulear luster analysis.



1133.1.1 Fratality E�ets in Fisher's ParameterizationsFratality [Fede 88, Shr 91℄ is the property of an objet to repeat its uniqueform and struture in the form and struture of the building bloks used to reatethe objet. In other words, the form and struture of the briks is repeated in theform and struture of the building, whih is repeated in the form and struture ofthe ity, and so on. In the words of Mandelbrot, who introdued fratals into themodern physis [Mand 82℄, \a fratal is a shape made of parts similar to the wholein some way" [Fede 88℄.Fratal shapes are distinguished from non-fratal ones by the fat that their di-mensionality is di�erent from the dimensionality of the spae they form in. Fratalityan be haraterized by a fratal dimension. For non-fratals it oinides with Eu-lidean topologial dimension of the spae, whereas for fratals it is non-integer anddi�ers from the spae dimension. Fratal dimension is de�ned as a ratio of the log-arithm of the number of building bloks that an �t into a omposite objet, tothe logarithm of the hange of sale between the sales (magni�ation fator) of theomposite objet and its building bloks. For example, the fratal dimension of asquare is alulated to be two, sine it an ontain four squares twie as small. Thefratal dimension of a ube is three. Therefore a square and a ube are not fratals.On the other hand, the fratal dimension of Sierpinski triangle, shown in Figure 3.1,is log 3= log 2 � 1:58, whih is quite di�erent from the topologial dimension of thetwo-dimensional spae. Sierpinski triangles are fratal objets.
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Figure 3.1: Sierpinski triangle.Clusters also possess fratality due to irregularity of their shapes with the exep-tion of ubes, squares, strings and some other non-fratal shapes that lusters antake on. Every one of those shapes is haraterized by a unique fratal dimension, attimes exeedingly di�erent from the topologial dimension. As a result, fratality inlusters strongly a�ets the relationship between the volume and surfae of lusters.In fat, for an arbitrary luster of a partiular size the relationship is not unique, likefor a ube or a sphere. Nevertheless, for a group of lusters of a partiular size, aonnetion between the volume and average surfae an be onjetured, whih alsogives proper attention to fratality e�ets. In his original work [Fish 67, Fish 69℄,Fisher aounted for luster fratality introduing a formula similar to the surfae-volume relationship of simple shapes, but with the exponent inluding an e�etivefratal dimension of the luster surfae instead of its topologial dimension:s = �a�; (3.1)where s is the average surfae of a luster of size a, � is the ratio of an e�etive frataldimension of the average luster surfae to the topologial dimension of the luster



115volume, and � is a proportionality oeÆient. This formula, however, is too muh ofan approximation. Stau�er [Stau 75, Stau 79℄ presented a onvining argument thatthe average luster surfae on the lattie splits in two parts. One part is proportionalto a power of the luster volume and the other part is proportional to the volumeitself. Though Stau�er did not mention fratality as a reason for suh a relation,learly this e�et must be due to fratality as the luster surfae may be extremelyonvoluted. In the extreme when the surfae �lls the whole luster volume in thespiral-like arrangement, the surfae area beomes only proportional to the volume.As an example, imagine a sheet of aluminum foil, say 1 ft2. This fairly large sheetan be wrinkled and pressed into a small sphere. Clearly, at onstant thikness ofthe foil, the mass (and the volume) of the sphere will be proportional to the atualsurfae area of the foil in the sphere (whih is 1 ft2), whereas the use of the standardsurfae-volume relationship of the sphere will yield grossly inorret estimation ofthe foil's surfae. So it is with lusters. Two-dimensional geometri lusters an bepresented as a simple example to larify the issue. The most ompat non-fratallusters are squares, whose surfae (perimeter) goes exatly as the volume to thepower 1=2. In the other extreme, geometri lusters an form spirals and strings,whose surfae goes exatly linearly with the luster volume beause it �lls up thevolume (the fratal dimension of suh a surfae approahes the topologial dimensionof the volume). All other lusters take some intermediate position with respet tothese two extremes and have both ontributions to their average surfae. Therefore,



116aording to Stau�er, it seems more �tting to express the average luster surfae asa superposition of the two extreme (ompat and onvoluted) ontributions:s = �[a� + la℄; (3.2)where l is a onstant.

Figure 3.2: Comparison of the exat perimeter dependent SAP ombinatorial fatorsto the �t with Fisher's asymptoti in Equation 3.3.Di�erent expressions for the average luster surfae as a funtion of the lustersize should neessarily a�et Fisher's parameterization of the ombinatorial fator.Fisher's original parameterization for this quantity isg(s) � qs�x exp($s); (3.3)



117where g is the luster ombinatorial fator, and q, x, and $ are some onstants. It isbased on an asymptoti empirially found [Rush 59, Fish 59℄ in the 1950s for numbersof polygons and random walks on the lattie and later on�rmed semi-analytially[Fish 59℄. This asymptoti is extremely aurate when applied to the number of self-avoiding polygons as a funtion of their perimeter (the analogy to the surfae area intwo dimensions). In Figure 3.2 the exat numbers of SAPs [Jens 03℄ are omparedto the �t with Equation 3.3. Over the range of thirty �ve orders of magnitudethe orrespondene is blameless, and holds a promise to remain blameless for anyperimeter size. Reent studies [Brak 90, Lin 91, Bous 96, Gutt 00, Jens 00, Gutt 01℄on�rmed the earlier work by analytially alulating the numbers of a limited lassof self-avoiding polygons (onvex and row-onvex polygons), deriving the asymptotisand testing the results on modern omputers. They demonstrated that Equation 3.3is a good approximation to the true ombinatorial fators.Fisher further assumes the validity of Equation 3.1 and postulates thatg(a) � q0a�� exp(ka�); (3.4)where q0 = q��x and k = $�. This parameterization, however, does not aountfor the proportionality of the average luster surfae to the volume of the luster.Therefore, it seems reasonable to improve upon Fisher's asymptoti in Equation 3.4by adopting Stau�er's parameterization of the average luster surfae and keepingthe general form of Equation 3.3 unhanged:g(a) � q0[a� + la℄�x exp(k[a� + la℄) (3.5)



118This form is expeted to aount for the fratality e�ets of average luster surfaesmore aurately by separately onsidering the non-fratal surfae and volume ontri-butions. Sine Equation 3.5 implies � to be a non-fratal surfae part, the value ofthis quantity may be taken as a ratio of topologial surfae and volume dimensions.For example, in two dimensionsg(a) � q0[a1=2+ la℄�x exp(k[a1=2 + la℄) (3.6)In the rest of this work � will no longer be onsidered as a parameter, but will be�xed aording to the dimensionality of the problem.3.1.2 The Modi�ed Fisher's Droplet ConentrationsIn Chapter 2 it was demonstrated that geometri lusters of the Ising modelobey Stillinger's theory. An approximation was introdued to desribe luster on-entrations in the limit of RFL (Reiss, Frish, Lebowitz) spheres in one dimension,whih produed very good agreement with the results obtained from two-dimensionalMonte Carlo Ising simulations. This enouraging outome prompts a development ofa similar Fisher-based methodology to analyze nulear luster data with its inherentlimitations of inompleteness and lak of surfae information. The starting point inthis endeavor is the �nite volume approximation adopted in Chapter 2:n(a; s; �; P; �) � g(a; s) exp(��s) exp[��P (a+ tss)℄(1� �); (3.7)



119where here g(a; s) will denote ombinatorial fators of nulear lusters. In order toobtain the modi�ed Fisher's onentrations, Equation 3.7 must be �rst summed upover the luster surfaes to yield the size dependent onentrations:n(a; �; P; �) � exp[��Pa℄(1� �)Xs g(a; s) exp(��s) exp[��Ptss℄ (3.8)

Figure 3.3: The basis for Fisher's onjeture in Equation 3.10 using the exampleof SAP. In this example T = 2. The pressure dependent part does not hange theoverall piture, and was omitted in this alulation.Aording to Fisher's arguments, the sum in Equation 3.8 is strongly dominatedby one term, and an approximately be substituted by this term, whih orrespondsto the most probable surfae s[�℄:s[�℄ = Ps sg(a; s) exp(��s) exp[��Ptss℄Ps g(a; s) exp(��s) exp[��Ptss℄ (3.9)
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Figure 3.4: The basis for Fisher's onjeture in Equation 3.12 regarding the temper-ature. SAPs of size a = 20 are used as an example. The pressure dependent partdoes not hange the overall piture, and was omitted in this alulation.Therefore, the sum isXs g(a; s) exp(��s) exp[��Ptss℄ � g(s[�℄) exp(��s[�℄) exp[��Ptss[�℄℄ (3.10)This approximation has a good on�rmation in the properties of self-avoiding poly-gons. Figure 3.3 depits the summand (without the pressure dependent part, whihdoes not alter the piture) for various SAP sizes at a �xed temperature below theritial Ising temperature as a funtion of SAP surfaes (perimeters). The peaks arelearly seen. Therefore, the size dependent luster onentrations may be written asn(a; �; P; �) � g(s[�℄) exp(��s[�℄) exp[��P (a+ tss[�℄)℄(1� �); (3.11)where g(s[�℄) is the ombinatorial fator of a luster of size a at the most probable



121surfae orresponding to an inverse temperature �. Fisher argues that this tempera-ture dependene is not strong and is dominated by the maximum temperature in theinterval of onsideration. This point an be demonstrated by writing the temperatureaveraged most probable surfae of a luster of size a:s = �2R�1 s[�℄g(s[�℄) exp(��s[�℄) exp[��Ptss[�℄℄�2R�1 g(s[�℄) exp(��s[�℄) exp[��Ptss[�℄℄ � s[�2℄ (3.12)The integrals in Equation 3.12 are also expeted to be strongly peaked at a temper-ature orresponding to the maximum temperature in the range [�1 : �2℄. Therefore,the most probable surfae s an be assumed to be a funtion of the maximum tem-perature in the range being explored: a onstant as far as the range is �xed. Theon�rmation to this assumption is readily furnished by SAPs. In Figure 3.4 surfaearea distributions for a polygon of a �xed size are shown at di�erent temperatures.Clearly, the peaks of these distributions are separated by orders of magnitude, withthe peak at the highest temperature being about �fteen times higher than the peakat a temperature di�erent only by ten per ent. Therefore, the Æ-funtion approxi-mation for the integrals in Equation 3.12 seems quite �tting.With the most probable surfae s assumed to be a onstant within the hosentemperature range, the modi�ed Fisher's onentrations at oexistene an be ex-pressed aording to Equations 3.2, 3.3, and 3.5 as follows:n(a; �; P; �) � q0[a�+ la℄�x exp([k�0��ts��P ℄[a�+ la℄) exp(��Pa)(1��); (3.13)



122where 0 = �. Equation 3.13 represents the form, that may be further used in theanalysis of experimental data.3.1.3 The Coexistene Condition and the Linear TermsIntrodution of the linear terms la in the parameterization of the average lustersurfae s demands a justi�ation at the liquid-gas oexistene. The matter is thatat oexistene the transfer of lusters between the phases is not haraterized bythe hange of the volume part of the free energy (hange of the hemial potentialis zero), and for that reason the volume dependent terms in the exponential partof Equation 3.13 are expeted to vanish. This ritiism is valid, and no rigorousjusti�ation for retaining the linear terms is o�ered at this time. Nevertheless, someomments an be o�ered to alleviate the problem.It is important to say that the oexistene ondition is not enfored in the method-ology desribed in this thesis. When luster interation is introdued through thefree energy ontribution ��W due to the avity formation, this ontribution alsohanges with the hemial potential di�erene �� of the phases. Therefore, with in-teration inluded, modi�ed Fisher's onentrations an be written in the followinggeneral form:n(a; �) � q0[a� + la℄�x exp(ka� � 0�a� + kla� 0�la) exp(���a) exp(��W [��℄);(3.14)for whih enforing the oexistene ondition �� = 0 requires the expliit knowledge



123of the W [��℄ dependene. In the formalism presented in this thesis, oexistene isimplied by putting �� = 0 in the ideal part of Equation 3.14 and onsidering thetemperature-only dependene of all the quantities involved in the analysis, so thatthe thermodynami quantities are evaluated with the relationu = T ��P�T �� � P; (3.15)whih is used to alulate the pressure through the average energy per partile u ofthe system. The ��-dependene of the avity free energy, however, is not identi�ed,but rather it is expeted to be inferred from the experimental luster distributions.The simple approximation for avity formation free energy��W [�� = 0℄ � ��P [�� = 0℄vavity + ln(1� �[�� = 0℄); (3.16)adopted in this work, where vavity is the volume of the luster avity, is general in asense that it is not restrited to oexistene and does not easily avail itself to suh arestrition without the expliit knowledge of the expressions P (��) and �(��). As aresult, it is possible that the intriate unknown dependene of the luster interationon �� may ause linear terms la to stay in a way not yet learly investigated.Nevertheless, it an be shown, that in the limit of low density Equation 3.14 prop-erly redues to Fisher's non-interating luster onentrations. At low densities, theideal gas law Pv1 = �T an be used to onnet the pressure with the frational vol-ume density � of the lusters, where v1 is the volume of one partile. Combined withthe Taylor expansion of the logarithm (one term retained), the ideal gas ondition



124simpli�es the luster interation as follows:exp(��P (��)vavity + ln(1� �(��))) � exp��vavityv1 �(��)� �(��)�� 1� �(��)�vavityv1 + 1� : (3.17)Therefore, at low densities the e�et of luster interation is small, and in ase ofoexistene no linear terms survive (exept for the la-terms in the ombinatorialfator).It is also important to mention, that the linear terms are expeted to vanish atlow temperatures at oexistene for a di�erent reason. As it is seen from Equation3.12, the average luster surfae area is a funtion of the upper temperature limit �2,so that the onstants �(�2) and l(�2) are also funtions of this temperature. As thetemperature goes to zero (�2 !1), the lusters stop having onvoluted surfaes dueto the lak of energy in the system to a�ord a large total liquid-vapor interfae. Asa result, the lusters that form at low temperatures are mostly spherial (minimalsurfae area) or nearly so with the surfae-volume relationship s(�2) = �(�2)a�approahing that of a perfet sphere. In other words, the lusters stop being fratal,and the linear volume dependene of the luster surfae area disappears (l(�2)! 0),while �(�2) tends to �1 of a geometrial sphere. Exat funtional forms for �(�2)and l(�2) are extremely omplex and require the knowledge of luster ombinatorisand all the interferene e�ets in the system. A more omplete analysis of lusterfratality as a funtion of temperature using a restrited set of SAP ombinatorisan be found in the work of Elliott et al. [Elli 04℄.



1253.1.4 ThermodynamisWith Equation 3.13 desribing luster onentrations, thermodynami analysisof luster data at oexistene an be performed using the methodology desribed inChapter 2. The di�erential equation tehnique (DET) introdued in that hapterfor Stillinger-like geometri lusters an be easily arried over to apply to Fisher'sdroplets with a minimum of Fisher-spei� hanges. Similar to the modi�ation ofluster onentrations, the surfae summation in Equation 2.40 has to be dropped,and the luster surfaes must be replaed by the most probable values at �xed lustersizes. Again SAPs are very handy and an be used to justify this approximation. InFigure 3.5 the surfae area distributions of self-avoiding polygons of di�erent sizes aremultiplied by the orresponding surfaes to mimi the summand in the numeratorof the Equation 2.40. The presene of peaks is learly observed and supports theapproximation of the surfae sum by the largest term. Therefore, the Fisher-modi�eddi�erential equation an be written as:T �P�T ����� � P � Pa sn0(a; �; P )1 +Pa an0(a; �; P ); (3.18)wheren0(a; �; P ) � q0[a� + la℄�x exp([k � 0� � ts��P ℄[a� + la℄) exp(��Pa) (3.19)is the density independent part of the luster onentrations. Substituting the mostprobable luster surfae with the appropriate dependene on the luster size, the



126
Figure 3.5: The basis for Fisher's onjeture in Equation 3.18 using the example ofSAP. In this example again T = 2, and the pressure dependent part was not inluded.oexistene pressure of the uid an be found as a solution of the equationT �P�T ����� � P � 0Pa [a� + la℄n0(a; �; P )1 +Pa an0(a; �; P ) (3.20)with the initial ondition P (T = 0) = 0, if Fisher's exponents and other parametersof the model are known. One the oexistene pressure is determined, the density ofthe uid an be evaluated as � � Pa an0(a; �; P )1 +Pa an0(a; �; P ); (3.21)and other thermodynami quantities an be alulated from the pressure in a stan-dard way. For example, the uid's energy isu � 0Xa [a� + la℄n(a; �; P; �); (3.22)



127and the heat apaity isV = �u�T ����V � 2T 2 "�2Xa [a� + la℄2n� ts�3Xa [a� + la℄nXa [a� + la℄2n� 2�2Xa [a� + la℄nXa a[a� + la℄n+ �2 Xa [a� + la℄n!2Xa a2n+ ts�3 Xa [a� + la℄n!2Xa a[a� + la℄n35 (3.23)3.2 How the Modi�ed Fisher's Model Can Be Usedin Data AnalysisThe appliation of the modi�ed Fisher's model to experimental nulear lusterdistributions an be aomplished similarly to the methodology employed to analyzethese lusters with the original version of the model. The main goal of the analysisis to �nd a set of Fisher's parameters that haraterizes the available luster dis-tributions in the best possible way. This is aomplished through �tting the modelto all the data simultaneously (global �tting) by minimizing the total �2. However,the use of the modi�ed Fisher's model annot be redued to mere �tting due tothe pressure and density dependene of luster onentrations. Therefore, on eahiteration of the �2-minimization proedure, the best estimates of the pressure anddensity must also be found. This an be done using Equations 3.20 and 3.21 forthe intermediate values of Fisher's parameters. In these equations the summationhas to go to in�nity, though in pratie summing up to the luster size of several



128thousand partiles should be suÆient to reah the required auray. Therefore,a self-onsistent �tting proedure an be set up to analyze the experimental dataand to determine thermodynamis of the system with a few �tting parameters: q0,l, x, k, �. The value of � should be �xed aording to the dimensionality of theproblem, 0 an be found independently, sine 0 = �, and the surfae tension is approximately known from the liquid drop model. The skin thikness ts an alsobe given a reasonable estimate based on harge density pro�les obtained in eletronsattering experiments. One the minimization suessfully onverges, the pressureand density obtained at the last iteration provide the best estimates of the nulearthermodynami quantities at oexistene as funtions of temperature and enable theonstrution of the liquid-vapor phase diagram in an alternative way that takes intoaount luster interferene.3.2.1 Numerial Testing with Geometri ClustersThe modi�ed Fisher's methodology, as outlined above, is ready to be appliedto nulear luster distributions if are is taken to �lter out Coulomb and quantume�ets in a standard way. However, the methodology annot be relied upon unlessit passes the test with geometri lusters of the lattie gas (Ising model). To realizethe test, luster onentrations from two-dimensional Ising simulations an be folded



129in the surfae degree of freedom to beome the funtions of luster size:n(a; �; P; �) =Xs n(a; s; �; P; �); (3.24)thus resembling a nulear-luster data set. These onentrations an be �tted diretlywith the modi�ed Fisher's presription to obtain the phase diagram of the lattiegas. A Matlab proedure has been developed to implement the neessary oding.Five independent �tting parameters were used to minimize the �2: q0, l, x, k, and0. The value of � = 1=2 was �xed by the dimensionality of the problem. Parameter� = 0= was de�ned by the Ising surfae tension  = 2. The skin thikness ts isunity for geometri lusters on the lattie if thermodynami quantities in questionare determined per lattie site. The entire listing of the ode is provided in AppendixA. A �nite set of medium-size lusters a 2 (10 : 25) has been hosen for �tting tomimi the restritions on the nulear data. The temperature range was T 2 (1:5 : 2:2)with a gap �T = 0:05. The lower temperature boundary was determined by therequirement of suÆient statistis for the lusters in onsideration, and the upperboundary was set to be below the ritial temperature T � 2:269, as it is a typialsituation for nulear lusters.The �2-minimization suessfully onverged and yielded the best set of parame-ters shown in the left half of Table 3.1. With these parameters, the resulting �ts aredisplayed in Figure 3.6 for several sample onentrations. The �gure displays a ratheraurate �tting of the onentration, espeially taking into aount the fat that the
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Figure 3.6: Geometri-luster onentrations extrated from a two-dimensional Isingsimulation (symbols) with �ts by the modi�ed Fisher's model (solid lines).proedure was global. Deviations are observed at low temperatures mostly for largerlusters due to poor statistis. However, statistis are not the only ause for thedeviations. It an be seen that there are systemati deviations at low temperaturesthat show the limitations of the many approximations involved.The pressure of the lattie gas as a funtion of temperature an be obtainedat the last iteration of the �tting routine solving Equation 3.20 with the best setof the �tting parameters. Figure 3.7 exhibits the result of the alulation. It isvery pleasing to see that exept for low temperature region the extrated pressure isalmost indistinguishable from the exat oexistene pressure of the lattie gas. Theerror bars are about one per ent (estimated from the parameter errors), and annot
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Figure 3.7: Comparison of the two-dimensional lattie gas oexistene pressure ob-tained from the analysis of geometri lusters (solid irles) with the exat pressure(line).be seen on the plot. The varying length of the intervals between the temperaturevalues is due to the automati step ontrol mehanism in the numerial proedurethat integrates the di�erential equation.The ritial temperature of the lattie gas an be determined by the peak inthe heat apaity, alulated using Equation 3.23. It is expeted that the modi�edFisher's model is valid beyond the ritial temperature. Again this expetation an bejusti�ed resorting to the analogy with SAPs. In Chapter 2 it has been demonstratedthat the �nite volume approximation (FVA) and SAP ombinatoris together providea very aurate desription of simulated geometri luster onentrations below theritial temperature of the lattie gas (as a reminder see Equation 3.7). At the



132
Figure 3.8: Comparison of the two-dimensional Ising heat apaity obtained fromthe analysis of geometri lusters (solid irles) with Onsager's exat heat apaity(line).same time, no ondition exists that would require this approximation to fail at andabove the ritial temperature: lusters ontinue to exist and interfere, the systemis haraterized by a partiular pressure, and the ombinatoris of the lusters isthe same SAP ombinatoris. On the opposite, the heat apaity alulated withthis approximation learly shows a meaningful peak and allows estimation of thelattie gas ritial temperature with four per ent auray. When merging the�nite volume approximation with Fisher's model, the only major hange is the useof an analyti expression to desribe ombinatorial fators. But the ombinatorialfators remain the same no matter what the temperature is. Therefore, the modi�edFisher's model should not a priori be limited by the subritial region and may work



133in the superritial region just as well till it may somehow fail. When applied togeometri lusters the sensitivity of Fisher-based proedure an be even better thanthat based on SAPs due to parameter exibility and plausibility of a more ompletesummation, that runs up to the luster size of a thousand in the present alulationthe results of whih are shown in Figure 3.8. The �gure ompares the heat apaityfrom �tting simulated geometri luster data with the exat heat apaity from theOnsager solution. The ritial temperature is estimated at T � 2:293�0:007, whihdeviates from the true ritial temperature by about one per ent.The suess of the aforementioned tehnique to onstrut the phase diagram ofthe two-dimensional lattie gas and aurately determine its ritial temperature isenouraging, and suggests appliation of this methodology to experimental data.3.2.2 A Possible Way of Testing Cluster Conentrations forNon-idealityUnlike geometri lusters of the Ising model, it is not a priori known whether thenulear luster gas is non-ideal. It may be, however, that during the luster formationin the nuleus just prior to the emission there is a ompetition between variousluster forms that are mutually exlusive. And if one form is suessful in emission,it preludes other forms from leaving the nuleus thereby reating a possibility ofluster interferene. For example, an analogy of the exluded volume e�et an bevisualized as follows. Suppose a luster of a ertain size a forms on the nulear



134interfae and is emitted. At the moment of emission, the fragment bloks an area ofthe nulear interfae equal to the fragment's ross setional area �a. Multiplied bythe fragments veloity va and the harateristi nulear time �nu, the ross setion �ayields a volume Va in the immediate viinity of the emitting nuleus (ompare to thenotion of the luster avity) whih is bloked from ontaining fragments (lusters) ofany other size but a: Va = �ava�nu (3.25)Therefore, the phase spae available to all other possible fragments is redued aus-ing the e�et of fragment interferene. Be it as it may, e�ets of luster interferenein nulear luster distributions an only be tested experimentally by omparing theresults of traditional Fisher's analysis with the results obtained using the modi�edFisher's model: both methods will produe the pressure and �2-values, whih need tobe ompared to draw the onlusions. This omparison is helpful to answer the ques-tion whether it is neessary to invoke a more omplex luster analysis methodology,or the ideal-luster-gas approximation is enough.In the following, a omparison proedure is onjetured on the basis of geometrilusters and SAPs. Geometri lusters form a non-ideal gas that an suessfullybe analyzed with the modi�ed Fisher's model. On the other hand, a hypothetialideal gas of geometri lusters an be reated using SAP ombinatoris with the



135Modi�ed Fisher �2=D = 2:85 Original Fisher �2=D = 109:86Parameter Value Error Parameter Value Errorq0 0.0279 0.0003 q0 0.0278 0.0050l 0.1382 0.0002 l 0.0411 0.0171x 3.5530 0.0032 x 3.7147 0.3525k 3.6937 0.0026 k 3.3560 0.13100 7.3077 0.0065 0 7.4204 0.4084Table 3.1: The best set of the �tting parameters obtained from the analysis ofgeometri lusters of the two-dimensional Ising model. D is the number of degreesof freedom in the �t.
Modi�ed Fisher �2=D = 76:05 Original Fisher �2=D = 19:23Parameter Value Error Parameter Value Errorq0 0.0036 0.0006 q0 0.0364 0.0002l 0.0650 0.0075 l 0.0595 0.0001x 0.4405 0.2697 x 4.0177 0.0013k 3.7671 0.0946 k 4.3507 0.00110 8.8818 0.2355 0 8.7929 0.0018Table 3.2: The best set of the �tting parameters obtained from the analysis of SAPgas lusters. D is the number of degrees of freedom in the �t.
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Figure 3.9: Comparison between the values of the pressure obtained by �tting ge-ometri lusters of the two-dimensional Ising model with original and the modi�edFisher's models.orresponding onentrations alulated in the dilute limit asn(a; �) =Xs gSAP (a; s) exp(��s); (3.26)where as before gSAP (a; s) is the total possible number of SAPs of size a and surfaes. Suh a gas mimis a nulear luster vapor that is inherently ideal in omparisonwith a non-ideal gas modeled by geometri lusters. Appliation of the two Fisher'stehniques to these gases may reveal relative harateristi signatures identifying thepresene and extent of the interferene e�ets in luster distributions.In order to realize a fair omparison, a modi�ation due to fratality must beintrodued to original Fisher's model. In other words, the only di�erene between
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Figure 3.10: Comparison between the values of the pressure obtained by �tting SAPgas lusters with original and the modi�ed Fisher's models.original and the modi�ed Fisher's models used for testing must be solely due toluster interferene. Therefore, the original Fisher's onentrations must ontainparameters l, x, and k as they were de�ned for the modi�ation:n(a; �) � q0[a� + la℄�x expf[k � 0�℄[a� + la℄g (3.27)The following results emerged from the alulations. In the �rst ase the lustergas was non-ideal represented by geometri lusters. Appliation of the modi�edFisher's model produes a muh better �2, while the parameters of the two modelsdo not di�er substantially, as shown in Table 3.1. The pressure obtained from themodi�ed Fisher's model is only several per ent higher than that of the original, asFigure 3.9 depits it.



138Quite di�erent situation ours when the luster gas is ideal, like the hypothetialSAP gas. Foring modi�ed Fisher's model to �t suh distributions leads to an utterfailure in omparison with original model, as demonstrated by the �2 and the valuesof the �tting parameters in Table 3.2. In addition to that, the pressure extrated fromthe modi�ed Fisher's model is suppressed several times as ompared to the pressureof original Fisher's model. The observation of these symptoms indiates the lakof the interferene e�ets in luster onentrations. Therefore, the original versionof Fisher's model is expeted to provides a better estimate of the phase diagram,sine it does not rigidly impose funtional forms due to luster interferene whihthe onentrations do not support. Figure 3.10 demonstrates the omparison of thepressures below the ritial temperature of the SAP gas, found to be about 2J .3.3 ConlusionsThe proedure presented in this hapter o�ers a general Fisher-model-basedmethodology to analyze nulear luster distributions at thermodynami phase o-existene and onstrut a phase diagram. The proedure makes an assumption thatnulear lusters, as omplex as they are, may still ontain harateristi signaturesof Stillinger's on�gurational lusters. If so, the methodology may approximatelyaount for Stillinger's luster interferene and produe thermodynami results moreaurate than those obtained with the ideal-luster-gas approximation. Geometrilusters of the Ising model, representing Stillinger's lusters on the lattie, learly



139demonstrated the superiority of the new interating-luster-gas approah in ompar-ison with the traditional treatment of lusters as an ideal gas.The new analysis proedure opens an opportunity to look for luster interatione�ets (mostly due to exluded volume) in nulear luster prodution. Combiningthe proedures with and without luster interation inluded, it may be possible toanswer the question whether the e�ets are there, and what their extent is. Char-ateristi signatures of the two possible outomes have been demonstrated using theexample of geometri lusters.
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Chapter 4Introdution4.1 Theoretial ConsiderationsEvaporation-like proess in hot nulei and its thermodynami representation havebeen thoroughly disussed in the previous part of this thesis. Regardless of the wayenergy is delivered to a nulear system, the resulting exited nuleus proeeds todeexite by emission of fragments in a wide range of masses beginning with neutronsand protons and reahing drops half the size of the deaying system (�ssion). Thefragments are emitted in a statistial way, the rate of emission being ontrolled bythe average bulk binding energy of the fragment.Equilibrium thermodynami haraterization of nulear matter, muh like that ofordinary uids, ompletely eliminates any memory of events between the phases. Inother words, when drops form, no information about the history of a partiular drop



142in the liquid phase is expeted to pass to the gas phase. Kinetially, the statistialemission of fragments implies their random formation on the nulear interfae.Statistial emission of fragments from thermalized nulear systems has beenlearly on�rmed experimentally to be the dominant mode of deay of hot nulei[More 97℄. Nevertheless, there has been an expetation that kinetis of the fragmentemission may somehow be inuened by the quantum e�ets of fragment formationinside the parent nuleus prior to the emission from the nulear interfae [More 97b℄.This preformation may be espeially notieable for suh a tightly bound fragment asthe �-partile. If �-partiles are indeed present in the nuleus before emission, theirpresene may manifest itself in a ertain way in the evaporation proess.
Figure 4.1: Shemati representation of the states of a fragment in a nulear potentialwell.The logi is as follows. Suppose that a fragment preexists in a nuleus before it



143is emitted. As the fragment readies itself to leave the nuleus, it senses the well-likenulear potential and aquires the quantum states, whih possess a ertain widthdue to their oupling with the ontinuum and the many-body degrees of freedomof the nuleus. This point is illustrated in Figure 4.1. The states of the fragmentinside the well are the shell-model-like states, while the states above the well arethe optial-model resonanes whih may appear if a ompound nuleus is formed.Therefore, when the kineti energy spetrum of suh a fragment is aumulated,the statistial-emission-only bakground of the spetrum may be modulated by astrength funtion, whih arises due to the quantum states of the fragment in thepotential well of the parent nuleus. These quantum e�ets may introdue a biasin the emission spetrum of fragments, sine some energies are preferred over theothers.Experimental observation of the modulations may be made possible if auratetheoretial desription of the statistial bakground is ahieved. Then the experi-mental high-statistis spetrum (disussed later) an be ompared to a theoretialform to reveal the modulations.The statistial bakground of the kineti energy evaporation spetrum an inpriniple be estimated using detailed balane of the initial (before emission) a and�nal (after emission) b states of a nulear system aording to Fermi's Golden Rule:�a�a!b = �b�b!a; (4.1)where �a!b and �b!a are the diret and the inverse deay widths, and �a, �b are the



144orresponding nulear level densities. The inverse width an be expressed in termsof the \inverse" ross setion �inv:�b!a = ~�invvV ; (4.2)where v is the veloity of the fragment, and V is the normalization spae volume.Equations 4.1 and 4.2 an be ombined to yield the di�erential deay width withrespet to the fragment's kineti energy � in the diret reation:�(�)d� / �inv��(E �B � �)d�; (4.3)where E is the initial energy of the hot nuleus, and B is the fragment's bindingenergy. Expanding the logarithm of the level density to the �rst order in the frag-ment's kineti energy, an approximate expression for the kineti energy spetrum ofa fragment an be obtained:�(�)d� / �inv� exp�� �T � d�; (4.4)where T is the temperature of the hot parent nuleus. Equation 4.4 is the theoretialbasis for onventional models to understand the statistial part of the fragment'skineti energy spetrum obtained in the evaporation of exited nulei. Additionalmodels and empirial formulae are used to desribe the inverse ross setion �inv toyield an analyti expression for the kineti energy spetrum. As a result generalityis forfeited. In addition to that, onventional models do not inorporate thermalshape utuations of the emitting nuleus, whih leads to poor performane of thesemodels when analyzing experimental data.
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Figure 4.2: Top: Normal modes at the saddle point. Bottom: Total potential energyVT and Coulomb energy VCoul as a funtion of the deformation oordinate Z.



146An alternative general approah is due to Moretto [More 75, More 87℄ whoseunonventional fragment emission theory is based on the saddle point approximationwith additional onsideration of nulear deformation. The theory takes into aountonly statistial degrees of freedom at the saddle of the transition state and assumesno knowledge of the entrane hannel and preexisting strutures in the nuleus.In addition to the usual saddle degrees of freedom the theory also inludes shapepolarizations of the emitting nuleus.When a deaying nuleus reahes the sission point (deay mode) there are ad-ditional degrees of freedom or modes that the system an take. As shown in the toppanel of Figure 4.2, Moretto lassi�ed the modes as amplifying and non-amplifying.The mode is amplifying if the relative ontribution from Coulomb and surfae energyto the system's potential energy hanges widely with deformation. The deformationof the residual nuleus an be desribed with a deformation oordinate Z, whih isde�ned as a hange in distane between the enters of the fragment and the residualnuleus relative to the undeformed distane, the fragment being in ontat with thenuleus. Inreasing of Z leads to the prolate deformation of the nuleus in the di-retion of emission and thereby to lowering the Coulomb barrier. On the opposite,dereasing Z results in oblate deformation and elevated Coulomb barrier. Therefore,a fragment rossing over the saddle point aquires a kineti energy at in�nity smalleror greater than the Coulomb barrier assoiated with a spherial on�guration. Suhan emission is not lassi�ed as subbarrier emission in the sense of quantum barrier



147penetration, but rather it is a purely lassial e�et.Thermal utuations along the deformation oordinate Z lead to large utua-tions in the Coulomb interation energy, as shown in the bottom panel of Figure 4.2.While the total potential energy VT has a minimum at some prolate deformation, thefragment-nuleus Coulomb interation VCoul is a monotonially dereasing funtionof the deformation oordinate. Therefore, the total potential and the Coulomb in-teration energies an be expanded in series of Z in the viinity of the saddle point.Retaining only the �rst terms of the expansion, the expressions areVT = V 0T + kZ2VCoul = V 0Coul � Z (4.5)If the shape of the emitting nuleus is allowed to utuate involving an energy of theorder of the temperature T , the orresponding utuations of the Coulomb energyare �VCoul = 2r2k T = 2ppT ; (4.6)where the parameter p is alled the ampli�ation parameter, whih haraterizes therelative properties of the total and Coulomb potentials with respet to deformationin the amplifying mode. The parameter p itself is not expeted to depend on thedeformation, at least in the seond order, but rather indiates the amplitude ofthe Coulomb barrier utuations as a funtion of the amplitude of the total energyutuations. The utuations of the Coulomb barrier strongly a�et the width of



148the kineti energy spetrum.When the potential energy varies almost exlusively from the Coulomb energy, themode is non-amplifying, sine the deformation-dependent Coulomb energy hangeis relatively small in the absene of the surfae energy hange. For instane, theosillation of a fragment about the tip of a prolate emitting nuleus an be onsidereda non-amplifying mode. As the fragment rolls away from the tip, the Coulomb energyinreases due to the dereasing distane between the enters of the fragment and thenuleus, while the surfae energy of the system hanges only in higher order termsof the deformation oordinate series and an be onsidered approximately onstant.Non-amplifying modes are not expeted to a�et the width of the kineti energyspetrum as muh as the amplifying mode and will not be onsidered in this thesis.Moretto derived several analyti expressions for the kineti energy spetrum ofa fragment P (�) taking into aount various ombinations of amplifying and non-amplifying modes. The simplest and the most suessful approah inluded only theamplifying mode and yielded the following result:P (�) / exp��xT � erf�p � 2x2ppT � ; (4.7)where x = ��V 0Coul. More omplex expression was used by Kexing Jing, whose workwill be mentioned in more detail later. Overall, these analyti results bypassed theproblem of modeling the inverse ross setion in onventional statistial models andprovided a way to diretly analyze experimental spetra for any traes of residualquantum e�ets in nulear fragment evaporation.
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Figure 4.3: The enter-of-mass energy spetrum of �-partiles emitted from the3He+natAg reation at 65-MeV beam energy.



1504.2 Experimental Evaporation SpetraExperimental fragment-evaporation spetra are usually obtained by bombardingvarious target nulei with light harged partiles. The most abundant fragmentsthat evaporate from the resulting ompound nuleus are �-partiles. Due to highprobability of emission, �-partiles an be deteted in very large numbers, and high-statistis kineti energy spetra an be aumulated. The experimental spetra usedin this thesis were obtained at the 88-Inh Cylotron of the Lawrene Berkeley Na-tional Laboratory by Kexing Jing [Jing 99℄ who used two position-sensitive �E-Equad telesopes to detet the partiles emitted in the reations. Jing used 3He beamof energies 55, 65, 75, 85, 95, 110, 125, 140 MeV to bombard the targets made of197Au, 181Ta, natAg, natCu, 27Al and 12C. A typial spetrum is shown in Figure 4.3.The data sets used for analysis in this thesis inlude only the spetra from the3He+natAg reation at 55, 65, 75, 95, 110, and 125 MeV beam energies. Sine thegoal of the study is to look for �ne e�ets in the spetra, the maximum errors areset at 1%, thereby utting the edges of the spetra at about 10000 ounts. Doingso produes distributions onsisting of 61 energy points with the bin size of 200 keVovering the range of kineti energies between 10 and 23 MeV.



1514.3 Apparent Evidene of Preexisting Partile Stru-tures in �-EvaporationIn his attempt to investigate quantum e�ets in evaporation spetra, Jing usedMoretto's transition state formalism with the inlusion of one deay mode, one am-plifying mode, and the barrier penetration [Jing 99℄. The resulting formula for theevaporation spetra P (�) was the following:P (�) / e�x=T� erf�(2V 0Coul + p)=2ppT�� erf�(p � 2x)=2ppT�+12e�(p�2x)2=4pTh e(p�2x�pT )2=4pT�1 + erf�(p� 2x� pT )=2ppT���e(p�2x+pT )2=4pT�erf�(2V 0Coul + p + pT )=2ppT�� erf�(p� 2x+ pT )=2ppT��i�; (4.8)where again x= ��V 0Coul and � is the kineti energy of evaporated partile; V 0Coul is theCoulomb barrier; T is the temperature of the residual nuleus; p is the ampli�ationparameter, and  is a parameter representing the barrier penetrability.In the ase where the temperature T is low and the Coulomb barrier V 0Coul is large(for � partiles, for example), erf�(2V 0Coul + p)=2ppT� = 1, and erf�(2V 0Coul + p +pT )=2ppT� = 1. Taking advantage of this fat, Equation 4.8 an be rewritten as:P (�) / e�x=T� erf�(p � 2x)=2ppT�+12e�(p�2x)2=4pTh e(p�2x�pT )2=4pTerf��(p� 2x� pT )=2ppT��e(p�2x+pT )2=4pTerf�(p� 2x+ pT )=2ppT�i�: (4.9)



152It should be notied that Equations 4.8 and 4.9 do not ontain polynomials in � of2nd order or higher, and the (omplementary) error funtions and the exponentialsare all smooth funtions. Therefore, the observation of spetrum modulations shouldnot ome from spurious polynomial osillations.Jing used the smooth funtion of Equation 4.9 to �t the alpha spetra and tosearh the residuals for modulations. The extremely aurate �ts he obtained indi-ated the suess of Moretto's theory in aounting for the bulk properties of thespetra. In addition to that the �t residuals revealed the existene of the osillationsthat were asribed to the preexistene of �-partiles in the potential well of the parentnuleus. Shown in the lower panel of Figure 4.4 are the measured alpha spetra andthe �t for the 3He + natAg reation at various beam energies. The quality of the �t isremarkable. The exeedingly good quality of the �t indiates that, on the one hand,the bulk of the evaporation spetrum is indeed statistial, and that, on the otherhand, the shape utuations at the saddle point indeed play a very important role.The perent di�erenes between the experimental data and the �ts are shown in theupper panel of the �gure. The residuals of the �ts are of the order of 1% throughoutthe energy range, whih shows the goodness of the �tting funtion. The residualslearly show a statistially signi�ant modulation with an amplitude of about 1.5%.The important feature to notie is the lak of dependene of the modulations onbombarding energy. However, the shape of the modulations is strongly dependenton the type of the ompound nuleus formed in the reation, as indiated in Figure
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Figure 4.4: Lower panels: The experimentally measured � spetra ( Æ ) from 3He +natAg reations at 55, 65, 75, 85, 95, 110 MeV beam energies, and the orresponding�ts (|) with Equation 4.9. Upper panels: The perent di�erene between theexperimental data and the �ts with Equation 4.9 are shown in the lower panels. Theerror bars represent the statistial errors of the experimental data.



1544.5 for the reation 3He + 197Ag.The disovery of the osillations raised several important questions:� Are the modulations physial, as those expeted for residual quantum e�ets?� Could the modulations be introdued by departures from linearity of ADCs,ampli�ation eletronis, detetors, et.?� Could the osillations be the result of the �tting problem assoiated with therigidity in the �tting funtion?In answering these questions Jing demonstrated that the instrumental e�ets ouldnot have been possible, sine the same modulations were observed in several indepen-dent detetor-eletronis hains. In addition to that the the same modulations havebeen on�rmed in di�erent follow-up experiments using di�erent detetors, ADCs,and di�erent hains of ampli�ation eletronis. However, answering the questionabout physiality of the e�et has not been learly provided in his thesis. The mainproblem of distinguishing between arti�ial �tting funtion rigidity e�ets and ob-servation of a true phenomena was very diÆult. It may be possible that there isa slight mismath between a smooth �tting funtion and a true statistial evapora-tion spetrum whih is also smooth that produes the osillations. Jing used severaladvaned methods (orthogonal polynomial analysis and Strutinski smoothing) toseparate the osillations from the bakground and identify their uniqueness. Unfor-tunately, in onlusion he wrote that \the searh for evidene for the existene of
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Figure 4.5: Lower panels: The experimentally measured � spetra ( Æ ) from 3He +197Au reations at 75, 85, 95, 110 MeV beam energies, and the orresponding �ts (|) with Equation 4.9. Upper panels: The perent di�erene between the experimentaldata and the �ts with Equation 4.9 are shown in the lower panels. The error barsrepresent the statistial errors of the experimental data.



156omplex partiles as independent partiles inside a nuleus is still an ongoing e�ort: : : The spetral shape used in the �tting is shown to represent alpha spetra to anexellent preision, although this is not suÆient to onvine that the modulations,whih appear in the residuals of the �ts, are physial : : : It seems still a long way toreah de�nite onlusion regarding the physial reality of the observed modulations,thus the existene of omplex partiles as independent partiles inside a nuleus".
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Chapter 5The New Look at the Osillations:Myth or Reality?The hallenge presented by the duality of the osillations: their possible originin the disrepanies between the otherwise smooth funtional forms of experimentaland theoretial spetra, or in true quantum phenomena, seemed unsurmountable.Nevertheless, the problem remained attrative and promising to yield the evideneof quantum properties surviving thermalization of hot nulear liquid. Many moreweeks went into the analysis of the puzzle until one day an unexpetedly simple andordinary answer put an end to the lofty expetations.
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Figure 5.1: The quality of �tting experimental data with Equation 5.1. The irlesrepresent the data, and the solid line is the �t.5.1 Mundane Solution to an Intriguing PuzzleThe best results for the desription of experimental �-spetra are alaimed byMoretto [More 75, Jing 99℄, who developed a single-hane emission theory and de-rived several analyti expressions for the kineti energy spetrum of a fragment. Al-though Jing employed a omplex version of Moretto's theory (one amplifying mode,one non-amplifying mode and quantum barrier penetration) to �t the spetra anddisover the osillations [Jing 99℄, the simplest version of the theory, whih inludesonly one amplifying mode, produes very good data �tting results as well, although
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Figure 5.2: An example of osillations observed in �tting data with Equation 5.1.at a ost of fewer �tting parameters. Aording to the theory, the evaporation spe-trum an be represented by the simple formula:P (�) = A exp����BT � erf�p � 2(��B)2ppT � ; (5.1)where A is a proportionality onstant, � is the kineti energy of deteted fragments,Bis the Coulomb barrier at equilibrium deformation, p is the ampli�ation parameter,and T is the temperature of the parent nuleus. The quality of �tting the data byEquation 5.1 is shown in Figure 5.1, whih manifests only small deviations. Sureenough, the residuals display the familiar osillations, analogous to those observed



160by Jing. Figure 5.2 shows the osillations. The osillations are about 1.5% abovethe bakground and learly stand out beyond the statistial noise.In this thesis, an old and simple explanation will be o�ered to aount for theosillations in the �-spetra. Being straightforward and unattrative, this approahwas hoped to be the last to ome true. The pervasive idea of residual quantume�ets surviving beyond the thermal emission too muh aptivated the minds ofresearhers, as it surely did the author's until an unexpetedly simple trik unlokedthe true reality of the puzzle.Experimental evaporation spetra annot be expeted to be �rst-hane only.If, for example, �-emission is onsidered, the �-partile an be emitted from a hotnuleus after the emission of a nuleon. At temperatures when evaporation takesplae, emission of a proton or a neutron is the dominant hannel of deexitation, andindividual emissions do not remove a large fration of the exess energy from thenuleus ausing multiple-hane �-emission to remain quite probable. As a result,experimental spetra, whih are not aquired on the event-by-event basis, but ratheronsist of all the partiles emitted from the target, end up being omprised of �-partiles emitted from di�erent parent nulei.A very simple alulation an be used to demonstrate this point. Consider theexample of the 65 MeV 3He + natAg reation, whih produes 112In 1 at the tem-perature about 2.5 MeV. If the �-partile is emitted seond hane after a neutron,1Natural silver onsists of 51.84 atom % of isotope 107Ag and 48.16 atom % of isotope 109Ag.Prodution of 112In is onsidered here only as an example, sine 110In is produed in abundane aswell.



161the probability of suh an event relative to the �rst-hane emission is not far fromunity, sine neutron emission is by far the most probable proess in omparison withthe other modes of deay and removes an insigni�ant part of the nulear exitationof the order of 2T . The proton emission is suppressed in omparison to the neu-tron emission roughly by pp � exp(�BCoul=T ), where BCoul is the proton's Coulombbarrier, and T is the temperature. For 112In BCoul is of order 5 MeV, whih givespp �13%. In other words, the seond-hane post-proton �-emission is only about 8times less probable than the post-neutron emission.The third-hane and higher modes of �-evaporation may already be signi�antlysuppressed due to ooling of the emitting nuleus. However, the multiple-haneemission hains are numerous, and their number inreases with the order of theemission mode. For example, the third-hane �-emission an be realized in fourways of nuleon emission sequenes preeding the emission of the �-partile, whereasthe forth-hane event is nine-fold degenerate.So far, there has not been a mention of the emission of light harged partiles otherthan protons that an proeed evaporation of �-partiles. For example, emission ofdeuterons and tritons is a probable proess ompeting with the proton emission.These hannels of deexitation, although being less probable than nuleon emission,add to the variety of possible emission modes preeding �-evaporation and enrihthe total multiple-hane omponent in �-spetra.Almost equal abundane of two isotopes in natural silver an also add to the



162variety of independent emitters that ontribute to the experimental spetrum. Both110In and 112In �-emitters are �rst-hane whose properties are not the same.Overall, the onlusion an be drawn that the kineti energy �-evaporation spe-tra may not be onsidered �rst-hane single-parent only, but, rather ontrary, mixedisotopi ontent of the target and the presene of the multiple-hane omponent anhave a signi�ant e�et on the shape of the spetrum, the multiple-hane omponentbeing largely dominated by the seond-hane mode. Therefore, sine �-partiles areemitted from di�erent nulei, the Coulomb barriers are slightly di�erent for everyparent nuleus (due to shrinkage and loss of harge when nuleons and other partilesare emitted), and so are the temperatures sine the multiple-hane emission oursfrom ooled nulei. The variation in deformation between various parent nulei is notexpeted to be large, and for simpliity it will be disregarded in the present analysis.Mathematially, these ideas an be written in the following form:Ptot(�) =Xi wiPi(Bi; Ti; �); (5.2)where Ptot(�) is the observed total spetrum of all types of �-partiles, i is the ounterof emitting parent nulei, and wi, Bi, Ti are the weight, Coulomb barrier, and temper-ature of a partiular mode of �-emission. Therefore, no single Coulomb barrier andtemperature an be asribed to an experimental spetrum. Rather these quantitiespossess a distribution folded into the spetrum aording to Equation 5.2.The aforementioned onlusion did not ome as a well thought out result, butwas found unexpetedly in the ourse of data analysis. It was suggested that if



163Eb, B1, B2, T1, T2, p, Rel. Prob.,MeV MeV MeV MeV MeV MeV w2=w155 12.77�0.15 12.36�0.03 2.71�0.04 1.28�0.09 2.49�0.18 0.83�0.3265 12.74�0.09 12.38�0.02 2.88�0.03 1.31�0.08 2.29�0.12 0.60�0.3275 12.95�0.15 12.41�0.03 3.06�0.05 1.41�0.09 2.48�0.15 0.94�0.2495 13.02�0.19 12.44�0.04 3.34�0.09 1.61�0.13 2.37�0.16 0.89�0.31110 12.92�0.17 12.49�0.05 3.34�0.07 1.48�0.18 2.36�0.20 0.58�0.43125 13.35�0.18 12.65�0.03 3.57�0.07 1.68�0.08 2.73�0.15 1.27�0.43Table 5.1: Fitting parameters obtained from the two-spetra deomposition analysisof the �-spetra from the reation 3He+natAg at various beam energies Eb.the multiple-hane hypothesis were to be right, the observed �-spetra ould bepresented using Moretto's formula in the following way aording to Equation 5.2:Ptot(�) =Xi wi exp����BiTi � erf�p � 2(��Bi)2ppTi � (5.3)Empirially, at least two average ontributions must show up in �tting the dataas a superposition of two single-hane spetra, whose weights, temperatures andbarriers must di�er. The ontributions are average sine they represent many possibleomponents muh in the way like two-point Gaussian quadrature represents an entireintegral. Thus, it an be written thatP (�) � w1 exp����B1T1 � erf�p � 2(��B1)2ppT1 �+ w2 exp����B2T2 � erf�p � 2(��B2)2ppT2 � ; (5.4)where the indexes 1 and 2 refer to the two ontributions.The tehnique of two-spetra deomposition turned out to be very suessful inanalysis of experimental data. When �tting the data with the two spetra deompo-sition method, seven variables have been used as parameters of the �t: w1, w2, B1,
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Figure 5.3: Fitting the data with the two spetra deomposition tehnique is shownto aount for the osillations. The irles represent the relative residuals of thesingle-hane �t, while the solid line stands for the relative di�erene between themultiple-hane and single-hane theoretial formulae.B2, T1, T2, and p. As an example of the �tting, the data set from the experiment at65 MeV beam energy is shown in Figure 5.3. In the �gure, the letter M stands forthe multiple-hane spetra both experimental and theoretial (Equation 5.4), whilethe letter S denotes the single-hane theoretial spetrum of Equation 5.1 aordingto Moretto. The two spetra deomposition �t yielded the �2 per degree of freedomat about 0:96 as ompared to about 5:23 when �tting the same spetrum with the�rst-hane formula in Equation 5.1. More examples of �tting the data at di�erent
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Figure 5.4: Examples of �tting the data with the two spetra deomposition teh-nique at various exitation energies. The osillations are seen to be ompletelyaounted for. The irles represent the relative residuals of the single-hane �t,while the solid lines stand for the relative di�erene between the multiple-haneand single-hane theoretial formulae.



166beam energies are presented in Figure 5.4. The �2-values are all about unity.The suess of the two-spetra deomposition �tting is quite reassuring, and leadsto a reasonable preliminary onlusion that the osillations in the �-emission spetraare reated arti�ially due to �tting the single hane theory to the multiple-hanespetrum. In spite of the visual appeal and simpliity, �tting alone, however, isnot suÆient to prove the point. Rigorous model onsiderations may be neessaryto further develop the topi. Nevertheless, analysis of the �tting parameters maystrengthen the ase.Table 5.1 o�ers a list of the �tting parameters extrated from �tting data at dif-ferent beam energies. Parameters with the subsript 1 an be attributed to the hightemperature mostly �rst-hane spetrum of �-partiles, whereas subsript 2 olle-tively refers to the multiple-hane group dominated by the seond-hane emission.Meaningful tendenies an be found in the behavior of the parameters as the exita-tion energy is inreased. First of all, attention should be paid to the temperatures ofthe spetra, whih progressively inrease with exitation, as it undoubtedly shouldbe. With the Q-value of the reation being 14.2 MeV, temperatures T1 an reason-ably well be �tted with a Fermi gas formula for the exitation energy E�:E� = 112k T 2 + onst (5.5)to obtain the level density oeÆient parameter k � 8:5. An additional onstant isused to approximately aount for the unknown temperature dependene of the leveldensity parameter.



167Temperatures T2 are generally twie as low in omparison with temperatures T1,indiating a large loss of energy between the �rst- and seond-hane �-partiles.This result is not lear, and may not be physial at all in terms of absolute values.There may be an interplay between the parameters of the �t ausing the temperatureT2 to be fored low. At this point no onlusive answer an be presented. However,the very fat that T2 is lower than T1 already indiates the right trend.The Coulomb barriers B1 of the predominantly �rst-hane emission display aslight growth with temperature whih is possibly aused by inreasing the relativeabundane of the seond-hane omponent. Sine the barriers B1 are not purely�rst-hane, the inreasing fration of post-neutron seond-hane �-emission mayalter these barriers due to dereased radius of 111In in omparison with 112In. In thisase the barrier should hange in reverse proportion to the radius.The e�et of inreasing the seond-hane omponent may also be marginallyinferred from the dependene of the ampli�ation parameter p on the temperature.Remembering that p is de�ned as a ratio of the square of the Coulomb barrieramplitude and the total energy amplitude, the slight growth of this parameter hintsat growing the Coulomb barrier amplitude.A similar inrease an be seen for the barriers B2 evidently aused by the samereason. More important, however, is the di�erene between B1 and B2, whih isindiative of the proesses preeding the �-emission. It an be seen that the barriersB2 are onsistently lower in omparison with the barriers B1. If the multiple-hane



168omponent in �-spetra were only due to neutron emission, the barriers B1 and B2would ompare in the opposite way: the sole neutron emission leads to reduing thesize of the emitting nuleus without hanging its harge. As it is, however, the smallerbarriers B2 suggest a signi�ant fration of light harged partiles ontributing tothe multiple-hane nature of �-evaporation.Not muh an be said about the relative ontribution w2=w1 of the two spetradue to the large unertainty. The errors are of the order of 50 and more per ent.Nevertheless, with the exeption of 125 MeV reation, the trend is aording tothe expeted pattern of the multiple-hane omponent being smaller then the �rst-hane omponent. As the temperature is inreased, the data are also onsistent withthe antiipated inrease of the multiple-hane emission ompared to the �rst-hane.Altogether, it should be emphasized that the tehnique of two-spetra deompo-sition is only meant to demonstrate the possible ause of osillations qualitatively,and no aurate desription of physial parameters should be antiipated. The a-tual struture of evaporation spetra is expeted to be very omplex with sores ofmultiple-hane ontributions whose probabilities an vary widely. Nevertheless thesimple assumption of the two average spetra does well in doing away with the osil-lations and demonstrating the orret trends in extrated physial parameters thattogether reinfore the belief that the multiple-hane nature of fragment evaporationis indeed the reason for the observed osillations and not a residual quantum e�et.In order to further on�rm the suggested explanation for the osillations, multiple-



169hane modi�ation of Moretto's theory needs to be introdued and tested on exper-imental data. One way to implement this task is through the statistial moment ex-pansion of the spetrum to aount for the distribution of temperatures and Coulombbarriers.5.2 Moment Expansion of Evaporation SpetraThe idea to use the statistial moment expansion of evaporation spetra was re-ently o�ered by Moretto in response to the suess of the two-spetra deompositiontehnique [Breu 00℄. The moment expansion method an be introdued in the fol-lowing way. It is always possible to expand the temperature and Coulomb barrierdependent spetrum funtion P (�;B; T ) in Taylor series about the average valuesor the zeroth moments B and T of these quantities. Up to the seond order theexpansion is P (�;B; T ) = P (�;B; T )+ �P�B ����B;T (B �B) + 12 �2P�B2 ����B;T (B �B)2+ �P�T ����B;T (T � T ) + 12 �2P�T 2 ����B;T (T � T )2+ �2P�B�T ����B;T (B �B)(T � T ) + : : : (5.6)In integral form, the observed spetrum an be written asP (�) = ZB ZT w(B;T )P (�;B; T )dBdT; (5.7)



170where w(B;T ) is the normalized probability distribution funtion in oordinates oftemperature and the Coulomb barrier. ThereforeP (�;B; T ) = P (�;B; T )+ 12 �2P�B2����B;T �2B+ 12 �2P�T 2 ����B;T �2T+ �2P�B�T ����B;T Cov(B;T )+ : : :(5.8)where �2B = ZB ZT w(B;T )(B �B)2dBdT�2T = ZB ZT w(B;T )(T � T )2dBdT (5.9)Cov(B;T ) = ZB ZT w(B;T )(B �B)(T � T )dBdTare seond moments or varianes. The �rst moments in Equation 5.8 are zeros sineby assumption they do not survive the averaging operation.Equation 5.8 elegantly introdues the multiple-hane e�ets into evaporationspetra as due to a distribution of temperatures and Coulomb barriers. However,the appliation of Equation 5.8 to data is hindered without using an analyti form forP (�;B; T ) and for the seond derivatives. The problem an be overome onsideringthe properties of the expansion. It is easy to see that when there is no distributionof temperatures and barriers, seond moments in Equation 5.8 beome zero, and allwhat is left is P (�;B; T ). On the other hand, zero seond moments mean that evap-oration is purely single-hane, whih is exatly when Moretto's formula in Equation



1715.1 is valid. Therefore, it is an obvious step to assume thatP (�;B; T ) = A exp����BT � erf p� 2(��B)2ppT ! ; (5.10)whih is also on�rmed by the good quality of �ts this formula provides for �-spetra(exept for the osillations).While P (�;B; T ) desribes the average bakground of the spetra as if it weresingle-hane, the seond derivatives in Equation 5.8 refer to the e�ets of variousmultiple-hane omponents. Formally, they are the derivatives of the unknown fun-tional form of the multiple-hane spetrum. However, to a very good approximation,Moretto's formula in Equation 5.1 an still be used to determine these derivatives,sine the funtional form it provides is suÆient to desribe experimental spetrumup to 1.5% (osillations). Altogether, the following analyti expression an be derivedas an extension of Moretto's theory to inlude multiple-hane evaporation:P (�;B; T ) = A exp����BT � erf p � 2(��B)2ppT !�1 + �2B2T 2 + �2B(��B)2T 3 ���BT � 2�+ Cov(B;T )T 2 ���BT � 1��+ Ap�(pT )3=2 exp����BT � exp0�� p � 2(��B)2ppT !21A���2B(p � 2(� �B)) + �2T16T 2 ((p� 2(��B))2 � 6pT )(p � 2(��B))+ pT � (��B)p� 2(��B)2T Cov(B;T )� (5.11)Equation 5.11 an be used diretly to �t experimental data. It has seven unknown�tting parameters: A, B, T , p, �B, �T , and Cov(B;T ). The results of the �tting



172are shown in Figure 5.5, in whih, as before, M stands for multiple-hane spetraboth experimental and theoretial, whereas S is single-hane spetrum aording toMoretto's theory. The parameters obtained from the �tting are summarized in Table5.2. The �2's per degree of freedom of the �ts are all of order unity.

Figure 5.5: Examples of �tting the data with the moment expansion methodologyat various exitation energies. The osillations are ompletely desribed. The irlesrepresent the relative residuals of the single-hane �t to the data, while the solidlines stand for the relative di�erene between the multiple-hane and single-hane�ts.The parameters reveal a steady and onsistent hange with the exitation energyof the reation, the errors being small. This hange an �nd a reasonable explanationon the basis of the multiple-hane emission piture. As the exitation energy is



173Eb, B, T , p, �B, �T , Cov(B;T ),MeV MeV MeV MeV MeV MeV MeV255 12.62�0.02 2.01�0.04 2.28�0.07 0.59�0.07 0.71�0.03 0.15�0.0265 12.68�0.01 2.16�0.03 2.25�0.06 0.58�0.06 0.75�0.02 0.18�0.0175 12.71�0.02 2.26�0.04 2.39�0.10 0.46�0.12 0.77�0.03 0.25�0.0295 12.77�0.02 2.51�0.06 2.25�0.10 0.55�0.10 0.83�0.03 0.27�0.02110 12.85�0.03 2.52�0.07 2.29�0.11 0.66�0.11 0.89�0.04 0.27�0.03125 12.94�0.02 2.59�0.05 2.56�0.12 0.46�0.13 0.89�0.02 0.30�0.02Table 5.2: Fitting parameters obtained from the moment expansion analysis of the�-spetra from the reation 3He+natAg at various beam energies Eb.inreased, the average temperature of the emitting system progressively grows, whilethe spread of the temperature distribution, traked by the standard deviation �T ,also inreases. The spread is fairly large in omparison with the absolute value ofthe average temperature and hints at the signi�ant fration of low temperatureemission. The growth of the spread with the temperature an be explained by theappearane of new modes of emission as the temperature is inreased.The growth of the average temperature T auses the growth of the averageCoulomb barrier B, whih an reasonably be understood as due to inreasing roleof the seond-hane post-neutron emission. The standard deviation �B stays aboutthe same and indiates a signi�ant spread of the barriers of various �-emitting nu-lei. The spread does not seem to hange appreiably, sine the upper limit of thebarrier distribution funtion does not hange with temperature, whereas the shapeof the distribution may hange and a�et the average.In the urrent analysis, the ampli�ation parameter p is assumed to be a onstant,



174independent on the identity of the emitting nuleus. Although in general it is nottrue, insigni�ant variations in mass between various emitters suggest that the am-pli�ation parameter should not be expeted to hange widely. Fitting experimentalspetra well on�rms this expetation. The osillations an be aounted for with theassumption of onstant p. In addition to that, within the range of errors the datain Table 5.2 indiate a onstant value of p with respet to hanging temperature.This observation demonstrates that the growing number of possible �-emitters haveabout the same ampli�ation parameter. On the other hand, a slight growth of pmay still be onjetured due to inreasing presene of multiple-hane post-neutronemission. Marginally, the data may also be interpreted to support this assumption.Even if it is true, overall the data supports the expetation that the ampli�ationparameter is very narrowly distributed with the mass of �-emitters.A very important parameter is the ovariane Cov(B;T ), whih indiates theorrelation between the Coulomb barrier and temperature distributions as funtionsof the mass of the emitting nuleus. As seen from the �tting parameter table, theovariane of these two distributions is positive at every investigated exitation. Thisfat vividly indiates the derease of Coulomb barriers with the mass of �-emitters asthe temperature goes down depending on the order of the multiple-hane emissionevent. In other words, as a nuleus ools emitting various light partiles, its Coulombbarrier toward �-emission on the average is redued. This fat is ontrary to theexpetation of neutron-only pre-� emission and supports the idea of a signi�ant



175fration of light harged partiles partiipating in forming pre-� emission hains.In losing this disussion, it must be emphasized that the extension of Moretto'stheory presented here fully aounts for every slightest detail of the observed experi-mental �-spetra and produes the values of theoretial parameters that an well beexplained within the sope of the theory. Although alternative explanations for theosillations annot be ruled out ompletely yet, the experimental evidene is strongin favor of the explanation o�ered in this thesis.5.3 ConlusionsThe puzzle of kineti energy osillations in evaporation �-spetra, whih was in-trodued through the use of single-hane Moretto's theory and long onsidered asa manifestation of residual quantum e�ets, has been o�ered a simple and thoroughexplanation: the osillations are the arti�ial result of �tting a single-hane theoryto multiple-hane experimental data. This onlusion was initially reahed with thedata analysis tehnique of two spetra deomposition, whih assumed the experi-mental spetrum to onsist of at least two independent ontributions of �-partilesemitted from di�erent parent nulei. These nulei an be the result of pre-� emis-sion of partiles from the initial ompound nuleus, and they an be the result ofthe isotopi ontent of the target. The tehnique suessfully aounted for theosillations in experimental spetra and produed meaningful �tting parameters inompliane with the assumed physial phenomenon. However, the tehnique had



176weaknesses and in itself was insuÆient to strengthen the newly o�ered explanationof the osillations.Moretto worked out an extension of his single-hane emission theory to allowfor multiple-hane properties of the emitting system. Due to a variety of �-emittersontributing to the observed spetrum, the otherwise onstant physial parameterslike Coulomb barrier and temperature aquire a distribution, whose attributes ex-pressed in statistial moments like variane and ovariane, an be added to theformalism by way of statistial moment expansion. Restriting the expansion upto and inluding the seond moments, analyti expressions were obtained to �t ex-perimental spetra. Fitting produed exellent results with the physial parametersexhibiting meaningful values aording to the newly o�ered explanation of the e�et.Unfortunately, no absolute �nal answer an stritly be given at the time sineall the onlusions were based on �tting with many parameters involved. Althoughexperimental evidene is very pressing toward validity of the suggested explanationfor the osillations, no rigorous onlusion an be made without setting a detailedmodel alulation to aurately aount for all the possible modes of �-emission atall temperatures of interest. Then omparisons an be made between the experimentand the alulation, and the aforementioned tehniques an at as mediators in theanalysis. Unfortunately, this alulation is extremely involved and was not attemptedin this thesis.
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Appendix AAnalysis CodesTo realize the alulations desribed in Chapters 2 and 3, the following Matlabodes were involved. Setion A.1, presents a simple program to alulate the lattiegas pressure with SAP ombinatoris aording to the methodology of Chapter 2.Setion A.2 details the appliation of the modi�ed Fisher's model to geometri lus-ters in order to obtain the lattie gas pressure and �nd harateristi signatures ofluster interation.A.1 The Lattie Gas Pressure from SAP%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Load Initial Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%lear;% SAP distributions by size and area.load SAP.dat% Onsager's pressure vs. temperature for omparison.



183load PTO.dat% Onsager's heat apaity vs. temperature for omparison.load CVO.dat% Onsager's pressure and temperature in separate vetors.T=PTO(:,1); P=PTO(:,2);% Heat apaity and temperature in separate vetors.TCV=CVO(:,1); CV=CVO(:,2);% SAP size, surfae and number in separate vetorsA=SAP(1:877,1); S=SAP(1:877,2); g=SAP(1:877,3);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Solve Differential Equation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Set ODE optionsoptions = odeset('RelTol',1e-8,'AbsTol',1e-8);% Solve the differential equation f (see below) to obtain an% approximation to the lattie gas pressure PSOL vs. temperature% TSOL.[TSOL,PSOL℄=ode45(�f,[1e-50 3℄,0,options,A,P,g);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Additional Calulations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calulate an approximation to the lattie gas heat apaity CVSOL.CVSOL = v(TSOL,PSOL,A,P,g);% Find the ritial temperature TC and pressure PC.minoptions = optimset('TolX',1e-10);TC = fminbnd(�vfun,2,3,minoptions,TSOL,PSOL,A,P,g);PC = interp1(TSOL,PSOL,TC,'spline');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interpolating TSOL and PSOL to math vetors T and P.PSOL=interp1(TSOL,PSOL,T,'spline');% Plotting.plot(TSOL,PSOL,'*',T,P,'-');



184%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Funtions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Differential equationfuntion dydt = f(t,y,A,P,g) = 2;sp = .*sum(P.*g.*exp(-.*P./t-(A+P).*y./t));sa = sum(A.*g.*exp(-.*P./t-(A+P).*y./t));dydt = (sp./(1+sa)+y)./t;% Heat apaityfuntion CV = vfun(t,tv,yv,A,P,g)y = interp1(tv,yv,t,'spline'); = 2;sp = sum(P .*g.*exp(-.*P./t-(A+P).*y./t));sa = sum(A .*g.*exp(-.*P./t-(A+P).*y./t));sp2 = sum(P.^2.*g.*exp(-.*P./t-(A+P).*y./t));sa2 = sum(A.^2.*g.*exp(-.*P./t-(A+P).*y./t));sap = sum(A.*P.*g.*exp(-.*P./t-(A+P).*y./t));sa = 1+sa;h = -^2/t^2*(sp2/sa-sp*sp2/sa^2-2*sp*sap/sa^2+sp^2*sa2/sa^3+sp^2*sap/sa^3);% Heat apaity as an array.funtion CV = v(t,y,A,P,g) = 2;for j = [1:length(t)℄sp = sum(P .*g.*exp(-.*P./t(j)-(A+P).*y(j)./t(j)));sa = sum(A .*g.*exp(-.*P./t(j)-(A+P).*y(j)./t(j)));sp2 = sum(P.^2.*g.*exp(-.*P./t(j)-(A+P).*y(j)./t(j)));sa2 = sum(A.^2.*g.*exp(-.*P./t(j)-(A+P).*y(j)./t(j)));sap = sum(A.*P.*g.*exp(-.*P./t(j)-(A+P).*y(j)./t(j)));sa = 1+sa;h(j) = ^2/t(j)^2*(sp2/sa-sp*sp2/sa^2-2*sp*sap/sa^2+sp^2*sa2/sa^3+sp^2*sap/sa^3);end



185A.2 Modi�ed Fisher's Code%*************************************%****** Data input *******************%*************************************lear;% Delaration of global arrays.global data;global errors;global PTO;% Load data and error arrays. These are two-dimensional% arrays with geometri luster onentrations and statistial% errors to the onentrations vs. temperature and luster size.load data;load errors;% Load Onsager's pressure and heat apaity vs. temperature.load PTO.datload CVO.dat% Rearrange Onsager's data into vetors.T = PTO(:,1); P = PTO(:,2);TCV = CVO(:,1); CV = CVO(:,2);% Set the range of luster sums.A=[1:1000℄;% Set the luster size fitting range.Afit=[10:25℄';%*******************************************%*** Original Fisher's Model Minimization **%*******************************************% Initial values of Fisher's parameters.q_0 = 0.032;l = 0.1;x = 3;k = 3;sig = 1/2;_0 = 8;parmf0(1) = q_0;



186parmf0(2) = l;parmf0(3) = x;parmf0(4) = k;parmf0(5) = _0;% Fittingfitoptions = optimset('TolFun',1e-6,'TolX',1e-6,'MaxIter',100000, 'MaxFunEvals',100000,'LargeSale','off');[parmf,hisqf,exitflag,output,grad,hessian℄ = fminun(�ffit0,parmf0,fitoptions,Afit,T);parmf = abs(parmf);q_0 = parmf(1);l = parmf(2);x = parmf(3);k = parmf(4);_0 = parmf(5);% Calulating the lattie gas pressure with the original% Fisher's model POF.for j = [1:length(T)℄POF(j) = T(j)*sum(nf(A,T(j),q_0,l,x,k,sig,_0));end%*******************************************%******* Parameter errors ******************%*******************************************dparmf=sqrt(diag(inv(hessian)));fitparsf=[parmf',dparmf℄;%***********************************************%******** Modified Fisher's Model Minimization *%***********************************************% Initial parameter valuesq_0 = 0.032;l = 0.1;x = 3.6;k = 3.7;_0 = 7.3377;



187parm0(1) = q_0;parm0(2) = l;parm0(3) = x;parm0(4) = k;parm0(5) = _0;% Fittingodeoptions = odeset('RelTol',1e-9,'AbsTol',1e-9);fitoptions = optimset('TolFun',5e-1,'TolX',5e-1,'MaxIter',100000,'MaxFunEvals',100000,'LargeSale','off');parm = fminsearh(�ffit,parm0,fitoptions,odeoptions,T,A,Afit);fitoptions = optimset('TolFun',1e-6,'TolX',1e-6,'MaxIter',100000,'MaxFunEvals',100000,'LargeSale','off');[parm,hisq,exitflag,output,grad,hessian℄ = fminun(�ffit,parm,fitoptions,odeoptions,T,A,Afit);q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);_0 = parm(5);sig = 1 / 2;kap = _0 / 2;%*******************************************%******* Parameter errors ******************%*******************************************dparm=sqrt(diag(inv(hessian)));fitpars=[parm',dparm℄;%*****************************************%********* Thermodynamis ****************%*****************************************% An approximation to the lattie gas pressure as a% solution to the differential equation fdiff with the% best set of Fisher's parameters.[TSOL,PSOL℄ = ode113(�fdiff,[1e-10 3℄,0,odeoptions,A,q_0,_0,x,sig,k,kap,l);% Heat apaity.



188CVSOL = v (A,TSOL,PSOL,q_0,_0,x,sig,k,kap,l)';%*****************************************%********* Density ***********************%*****************************************RSOL = rho (A,TSOL,PSOL,q_0,_0,x,sig,k,kap,l)';%*****************************************%********* Sample Cluster Distributions **%*****************************************n10d = data(10,1:length(T));n15d = data(15,1:length(T));n20d = data(20,1:length(T));n25d = data(25,1:length(T));e10d = errors(10,1:length(T));e15d = errors(15,1:length(T));e20d = errors(20,1:length(T));e25d = errors(25,1:length(T));n10 = n(10,tv,pv,rv,q_0,_0,x,sig,k,kap,l);n15 = n(15,tv,pv,rv,q_0,_0,x,sig,k,kap,l);n20 = n(20,tv,pv,rv,q_0,_0,x,sig,k,kap,l);n25 = n(25,tv,pv,rv,q_0,_0,x,sig,k,kap,l);%*****************************************%********* Critial Point ****************%*****************************************minoptions=optimset('TolX',1e-9);TC = fminbnd(�vfun,2.1,2.4,minoptions,TSOL,PSOL,A,q_0,_0,x,sig,k,kap,l);PC = interp1(TSOL,PSOL,TC,'spline');%*****************************************%********* Critial Point Error **********%*****************************************f1 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0+0.0001*q_0,_0,x,sig,k,kap,l);



189f2 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0-0.0001*q_0,_0,x,sig,k,kap,l);dtdq0 = (f1-f2) / 0.0002 / q_0;f1 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x,sig,k,kap,l+0.0001*l);f2 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x,sig,k,kap,l-0.0001*l);dtdl = (f1-f2) / 0.0002 / l;f1 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x+0.0001*x,sig,k,kap,l);f2 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x-0.0001*x,sig,k,kap,l);dtdx = (f1-f2) / 0.0002 / x;f1 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x,sig,k+0.0001*k,kap,l);f2 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0,x,sig,k-0.0001*k,kap,l);dtdk = (f1-f2) / 0.0002 / k;f1 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0+0.0001*_0,x,sig,k,kap,l);f2 = fminbnd(�vfun,2,3,minoptions,t,p,A,q_0,_0-0.0001*_0,x,sig,k,kap,l);dtd0 = (f1-f2) / 0.0002 / _0;DTC = sqrt(dtdq0^2*dparm(1)^2+dtdl^2*dparm(2)^2+dtdx^2*dparm(3)^2+dtdk^2*dparm(4)^2+dtd0^2*dparm(5)^2);%*****************************************%****** Plotting *************************%*****************************************plot(TSOL,PSOL,TSOL,POF,'*',T,P,'-');%*****************************************%****** Funtions ************************%*****************************************% Heat apaity as an array.funtion CV = v(A,t,p,q_0,_0,x,sig,k,kap,l) = _0 / kap;Asig = A.^sig + l.*A;



190for j = [1:length(t)℄sp = kap *sum(Asig .*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));sp2 = kap^2.*sum(Asig.^2.*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));sa2 = sum(A.^2 .*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));sap = kap *sum(A.*Asig.*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));sa = sum(A .*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));u = *sp/(1+sa);h(j) = (.^2.*sp2-.*u.*(sp2+2.*sap)+u.^2.*(sa2+sap))./t(j).^2./(1+sa);end% Heat apaityfuntion CV = vfun(t,tv,pv,A,q_0,_0,x,sig,k,kap,l) = _0 / kap;p = interp1(tv,pv,t,'spline');Asig = A.^sig + l.*A;sp = kap* sum(Asig .*np(A,t,p,q_0,_0,x,sig,k,kap,l));sp2 = kap^2*sum(Asig.^2.*np(A,t,p,q_0,_0,x,sig,k,kap,l));sa2 = sum(A.^2 .*np(A,t,p,q_0,_0,x,sig,k,kap,l));sap = kap* sum(A.*Asig.*np(A,t,p,q_0,_0,x,sig,k,kap,l));sa = sum(A .*np(A,t,p,q_0,_0,x,sig,k,kap,l));u = *sp/(1+sa);h = -(^2*sp2-*u*(sp2+2*sap)+u^2*(sa2+sap))/t^2/(1+sa);% Differential equationfuntion dydt = fdiff(t,y,A,q_0,_0,x,sig,k,kap,l)Asig = A.^sig + l.*A;s1 = _0.*sum(Asig.*np(A,t,y,q_0,_0,x,sig,k,kap,l));s2 = sum(A .*np(A,t,y,q_0,_0,x,sig,k,kap,l));dydt = (s1./(1+s2)+y)./t;% Fitting funtion for the modified Fisher's model.funtion [hisq,t,p℄=ffit(parm,odeoptions,tv,A,Afit);global data;global errors;global att;parm = abs(parm);



191q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);_0 = parm(5);kap = _0 / 2;sig = 1 / 2;[t,p℄=ode113(�fdiff,[1e-30 3℄,0,odeoptions,A,q_0,_0,x,sig,k,kap,l);pv = interp1(t,p,tv,'spline');rv = rho(A,tv,pv,q_0,_0,x,sig,k,kap,l);hisq=0;for j=[1:length(tv)℄n = n(Afit,tv(j),pv(j),rv(j),q_0,_0,x,sig,k,kap,l);ss = sum((data(Afit,j)-n).^2./errors(Afit,j).^2);hisq = hisq + ss;endhisq = hisq / (length(Afit)*length(tv)-length(parm));disp([parm,hisq℄)% Fitting funtion for the original Fisher's model.funtion hisq = ffit0(parm,Afit,tv);global data;global errors;parm = abs(parm);q_0 = parm(1);l = parm(2);x = parm(3);k = parm(4);_0 = parm(5);sig = 1/2;hisq=0;



192for j=[1:length(tv)℄ss = sum((data(Afit,j)-nf(Afit,tv(j),q_0,l,x,k,sig,_0)).^2./errors(Afit,j).^2);hisq = hisq + ss;endhisq=(hisq)/(length(Afit)*length(tv)-length(parm));disp([parm,hisq℄)% Modified Fisher's luster onentrationfuntion on = n(a,t,p,r,q_0,_0,x,sig,k,kap,l);on = np(a,t,p,q_0,_0,x,sig,k,kap,l).*(1-r);% Modified Fisher's pressure-only dependent% luster onentrationfuntion on = np(a,t,p,q_0,_0,x,sig,k,kap,l);asig = a.^sig + l.*a;on = q_0.*asig.^(-x).*exp(k.*asig -(_0.*asig + (a+kap.*asig).*p)./t);% Original Fisher's luster onentrationfuntion on = nf(a,t,q_0,l,x,k,sig,_0);asig = a.^sig + l.*a;on = q_0.*asig.^(-x).*exp(k.*asig - _0.*asig./t);% Density.funtion r = rho(A,t,p,q_0,_0,x,sig,k,kap,l)for j=[1:length(t)℄s = sum(A.*np(A,t(j),p(j),q_0,_0,x,sig,k,kap,l));r(j) = s./(1 + s);end


