Mutual Passivation of Group IV Donors and Nitrogen in Diluted GaN$_x$As$_{1-x}$ Alloys

K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

M. A. Scarpulla, O. D. Dubon,
Department of Materials Science and Engineering, University of California, Berkeley,
and Lawrence Berkeley National Laboratory, Berkeley, CA 94720

M. C. Ridgway
Department of Electronic Materials Engineering, Research School of Physical Sciences
and Engineering, Australian National University, Canberra, Australia

D. E. Mars, D. R. Chamberlin,
Agilent Laboratories, 3500 Deer Creek Road, Palo Alto, CA 94304

ABSTRACT

We demonstrate the mutual passivation phenomenon of Ge donors and isovalent N in the highly mismatched alloy GaN$_x$As$_{1-x}$ doped with Ge. Layers of this alloy were formed by the sequential implantation of Ge and N ions followed by pulsed laser melting and rapid thermal annealing. The mutual passivation effect results in the electrical deactivation of Ge$_{Ga}$ donors (Ge on Ga sites) and suppression of the N$_{As}$ (N on As sites) induced band gap narrowing through the formation of Ge$_{Ga}$-N$_{As}$ nearest neighbor pairs. These results in combination with the analogous effect observed in Si-doped GaN$_x$As$_{1-x}$ provide clear evidence for the general nature of the mutual passivation phenomenon in highly mismatched semiconductor alloys.

PACS numbers: 71.20.Nr; 78.20.-e; 61.72.Vv; 81.40.Wx
GaN$_x$As$_{1-x}$ (with x typically less than 0.05) belongs to the class of highly mismatched semiconductor alloys (HMAs) in which small quantities of more electronegative elements (N) replacing the metallic anions (As) cause dramatic changes in the alloy's electronic properties.1-5 The unusual properties of HMAs have been successfully described by the anticrossing interaction between localized states of the foreign electronegative element (N) and the extended states of the host semiconductor matrix.1,6 Such interaction gives rise to a drastic reduction of the band gap, a large increase in the electron effective mass,7,8 and an increase in the density of states of the conduction band.7 As a consequence, over an order of magnitude enhancement in the maximum achievable free electron concentration has been demonstrated in GaN$_x$As$_{1-x}$ thin films doped with group VI donors (Se and S).9-11 However, doping the material with Si resulted in a highly resistive GaN$_x$As$_{1-x}$ layer.12

Our recent investigation of epitaxially grown GaN$_x$As$_{1-x}$ thin films doped heavily with Si revealed that the Si and N mutually passivate each other’s electronic activity.13 The reduced electrical activity of Si$_{Ga}$ donors (Si on Ga sites) in GaN$_x$As$_{1-x}$ alloys was attributed to the formation of nearest neighbor Si$_{Ga}$-N$_{As}$ pairs. Since isovalent nitrogen (N$_{As}$) is responsible for a massive modification of the electronic structure of GaN$_x$As$_{1-x}$ alloys, the formation of these Si$_{Ga}$-N$_{As}$ pairs affects the conduction band structure by deactivating a fraction of the N$_{As}$ sites. In this paper we use Ge doping of GaN$_x$As$_{1-x}$ to demonstrate that the mutual passivation effect is a general phenomenon applicable to all group IV donors in the highly mismatched alloy GaN$_x$As$_{1-x}$.

The Ge doped GaN$_x$As$_{1-x}$ layers were synthesized by sequential implantation of Ge and N ions into GaAs followed by a combination of pulsed laser melting (PLM) and rapid thermal annealing (RTA). 340 and 100 keV Ge ions were implanted into semi-insulating GaAs substrates with doses of 6.4×10^{15} and 1.7×10^{15} cm$^{-2}$, respectively. Matching N distributions were obtained by dual energy N$^+$-implantation of 80 and 33 keV with doses of 7.0×10^{15} and 2.4×10^{15} cm$^{-2}$, respectively. This Ge$^+$ and N$^+$ co-implantation
created a ~200nm thick layer of Ge and N co-doped GaAs with ~2 mole percent (~4.4x10^{20} \text{cm}^{-3}) of both species (2\%N+2\%Ge). Layers produced from only N (2\%N) or Ge (2\%Ge) ion implantation were also used as references. The implanted GaAs samples were subjected to PLM in air using a KrF laser (\lambda=248 \text{ nm}) with a FWHM pulse duration of ~38ns and fluence of 0.45 J/cm^2. The samples were subsequently processed by RTA at temperatures between 600 and 950\degree C for 5-120 seconds in flowing N_2. This post-implantation pulsed laser melting and rapid thermal annealing approach will be referred to as PLM-RTA. We have recently utilized this method to realize GaN_xAs_{1-x} layers with x as high as 0.016.14,15

The free carrier concentration was measured by the Hall Effect technique in the Van de Pauw geometry. Electrochemical capacitance-voltage measurements (ECV) were also carried out to determine the net dopant concentration profiles. The band gaps of the films were measured using photomodulated reflectance (PR) at room temperature using a chopped HeCd laser beam (\lambda=442 \text{ nm} or 325nm) for modulation. The spectral line widths and band gaps were determined by fitting the PR spectra to the Aspnes third-derivative functional form.16

The passivation of the N activity by the Ge atoms in the 2\%N+2\%Ge sample after PLM-RTA is illustrated in the series of photoreflectance (PR) spectra presented in Fig. 1. A fundamental band gap transition at 1.24 eV is observed for GaAs samples implanted with 2\% N alone after PLM-RTA at 950\degree C for 10-120 s, corresponding to ~1 mole percent incorporation of N in the substitutional As sites (N_{As}). In contrast, the band gap of the 2\%N+2\%Ge samples increases from 1.24 to 1.42 eV (band gap of GaAs) as the RTA duration increases to 60s, revealing that N_{As} is passivated by Ge. We propose that the sufficiently short melt duration (~200 ns) during PLM leads to the incorporation of the Ge and N atoms to levels far beyond equilibrium randomly in their preferential sublattice. During subsequent RTA, the temperature is sufficient to enable Ge atoms to diffuse to attain a lower-energy configuration. Since N is more electronegative than As...
(Pauling electronegativities of N and As are 3.0 and 2.0, respectively) it has a tendency to bind the fourth valence electron of Ge atoms in Ga sites GeGa, and therefore the formation of GeGa-NAs nearest-neighbor pairs is favored energetically. The gradual increase in the band gap of the 2%N+2%Ge sample as a function of RTA temperature and/or time duration can therefore be attributed to the passivation of NAs by GeGa through the formation of nearest neighbor GeGa-NAs pairs. The estimated diffusion length of Ge in GaAs at 950°C for 10s is ~2-20 Å (due to the uncertainties in the diffusion coefficient of Ge)\(^1\). This is comparable to the average distance from a Ge atom to its nearest NAs for GaN\(_x\)As\(_{1-x}\) with x~0.01 (~10.3 Å).

The change in the band gap of the GaAs samples containing both N and Ge together and N alone and processed identically is shown as a function of RTA duration in the inset of Fig. 1. Results from another set of samples implanted with 4%N+2%Ge and 4%N alone are also shown. For the sample implanted with 4% N, GaN\(_x\)As\(_{1-x}\) is formed with a band gap of 1.17 eV, which corresponds to x=0.016. After PLM-RTA at 950°C for 10 s, the band gap of the 4%N+2%Ge sample (1.36 eV) becomes closer to that of GaAs compared to the band gap of the 2%N+2%Ge sample (1.29 eV). Such observation shows that the passivation process is controlled by the diffusion of randomly distributed Ge atoms to a Ga site with a NAs nearest neighbor. The average distances from a Ge atom to its nearest NAs are ~10.3 and 8.8 Å for the 2% (x=0.01) and 4% N (x=0.016) implanted samples, respectively. Therefore for a given amount of Ge in GaN\(_x\)As\(_{1-x}\) (with Ge concentration higher than x) and the same annealing conditions, a larger fraction of NAs is passivated by GeGa for samples with higher x.

Since NAs has a tendency to bind the fourth valence electron of GeGa donors, we expect a reduction of the concentration of electrically active Ge donors. Figure 2 shows a comparison of the electron concentration of the 2%N+2%Ge and 2%Ge samples followed by PLM-RTA for 10s in the temperature range of 650 to 950°C. For both samples the electron concentration approaches 10\(^{19}\) cm\(^{-3}\) after PLM. Experimentally, the
maximum free electron concentration n_{max} in GaAs achievable under equilibrium growth conditions is limited to the mid 10^{18} cm$^{-3}$ range, corresponding to the Fermi energy E_F located approximately at 0.1 eV above the conduction band edge. The electron concentration exceeding the equilibrium n_{max} results from the highly non-equilibrium rapid melting and solidification in the PLM process.

For the 2%Ge sample, thermal annealing after PLM drives the system toward equilibrium with an electron concentration of $\sim 1 \times 10^{18}$ cm$^{-3}$. This electron concentration is consistent with the amphoteric nature of Ge in GaAs. The electron concentration of the 2%N+2%Ge samples, on the other hand, drops over two orders of magnitude to lower than 10^{17} cm$^{-3}$ as the samples are subjected to RTA at temperatures higher than 650°C. This is consistent with the passivation of Ge$_{\text{Ga}}$ donors via the formation of N$_{\text{As}}$-Ge$_{\text{Ga}}$ pairs by Ge diffusion during RTA, similarly to the case in Si doped Ga$_x$As$_{1-x}$.

It has been widely recognized that the N-induced modifications of the conduction band lead to a drastic reduction of the electron mobility in Ga$_x$As$_{1-x}$, typically ranges from ~ 10 to a few hundred cm2/Vs. During the post-implantation treatment, it is expected that some of the Ge diffused out of the N-implanted region forming a layer of Ge doped GaAs below the GaNAs:Ge layer. Hall effect measurements may be complicated when such parallel layers with very different electrical behaviors co-exist in the sample. The electrical behavior of the Ga$_x$As$_{1-x}$:Ge samples are therefore further studied by ECV profiling.

Figure 3 shows three ECV profiles for the 2%Ge sample PLM-RTA at 950°C for 10 s and the 2%N+2%Ge samples PLM-RTA at 950°C for 10 s and 60 s. The Ge and N atomic distributions calculated using the PROFILE code are also shown in the figure for comparison. PLM-RTA at 950°C for 10 s leads to a strong decrease in the donor concentration for the 2%N+2%Ge sample as compared to the 2%Ge alone sample, consistent with the Hall effect measurements.
A striking effect is observed in the 2%N+2%Ge sample after RTA at 950ºC for 60 s. In this case the top ~0.25 µm layer is p-type, followed by an n-type layer below. The p-n junction depth in this sample corresponds to the melt depth in GaAs for PLM using a fluence of 0.45 J/cm². The p-type activity in the top layer in this sample is attributed to the complete passivation of GeGa by NAs through the formation of GeGa-NAs nearest neighbor pairs in the laser melted region. The electrical activity of the small concentration of GeAs acceptors is revealed once the GeGa donors are passivated by NAs in the PLM region. In Fig.1 notice that PR measurements on this sample show a band gap similar to that of GaAs, suggesting that the ~2x10²⁰ cm⁻³ of N atoms are passivated by Ge atoms. We also note that GaNAs:Si samples formed by co-implantation of Si and N processed by PLM-RTA were highly resistive with no p-n junction formed. This is consistent with less amphoteric nature of Si compared to Ge in GaAs.

In conclusion, a comparison of the band gap and the electrical behavior in the GaAs samples implanted with Ge alone and N+Ge followed by PLM-RTA shows that the formation of GeGa-NAs pairs results in a mutual passivation of both species: it eliminates the electrical activity of GeGa donors and deactivates NAs as the isovalent dopant. Consequently, Ge doping in GaNₓAs₁₋ₓ under equilibrium conditions results in a highly resistive or p-type GaNₓAs₁₋ₓ layer with the fundamental band gap governed by a net “active” N, roughly equal to the total N content minus the Ge concentration. These results together with our previous report on the mutual passivation of Si and N in GaNₓAs₁₋ₓ clearly demonstrate a general nature of this phenomenon. Moreover, the ability to use PLM for a spatially controlled passivation provides a unique opportunity for the fabrication of novel planar and three-dimensional structures by the selective implantation of either one or both species. The mutual passivation effect described here may therefore be exploited for electrical isolation, band gap engineering, and quantum confinement.
ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. MAS acknowledges support from an NSF Graduate Research Fellowship.
REFERENCES

2. see for example, Semiconductor Science and Technology 17, 2002, Special Issue: III-N-V Semiconductor Alloys.

FIGURE CAPTIONS

Fig. 1 Photomodulated reflectance (PR) spectra measured from a series of GaAs samples implanted with 2%N+2%Ge followed by PLM-RTA at 950°C for a duration of 5-120 s. PR spectra from a GaAs wafer (top spectrum) and a GaAs sample implanted with 2%N only after PLM+RTA at 950°C for 120 s. (bottom spectrum) are also shown. The inset shows the band gap energies determined from the PR measurements from 2%N, 2%N+2%Ge, 4%N and 4%N+2%Ge samples after PLM+RTA at 950°C for durations of 5-120 s.

Fig. 2 Free electron concentrations of the 2%Ge and 2%N+2%Ge samples after PLM+RTA at increasing temperature for 10 s. obtained by Hall effect measurements. Electron concentration for the 2%N+2%Ge sample after PLM+RTA at 950°C for 60 s is also shown.

Fig. 3 Net donor (acceptor) concentration profiles obtained by electrochemical capacitance-voltage (ECV) measurements for a GaAs sample implanted with 2%Ge followed by PLM-RTA at 950°C for 10 s and GaAs samples implanted with 2%N+2%Ge processed by PLM-RTA at 950°C for 10 s and 60 s. The calculated Ge and N atomic distributions are also shown in the figure for comparison.
Figure 1
Figure 2
Figure 3