DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Investigation of the Interphase Region in Polymer Matrix - Glass Fiber Reinforced Composites Using the Interfacial Force Microscope

Robb M. Winter
Camille and Henry Dreyfus Scholar
Department of Chemistry and Chemical Engineering
South Dakota School of Mines and Technology
Rapid City, SD 57701-3995

Objective As stated in the original proposal the objectives of the proposed research were two fold. The proposed research was to: 1) provide a critical vehicle to enhance South Dakota researchers’ abilities to participate in nationally important energy related research while 2) building and strengthening partnerships between the South Dakota School of Mines and Technology (SDSM&T) and Sandia National Laboratories (SNL), Albuquerque, NM. In collaboration with Dr. J.E. Houston of SNL, the inventor of the Interfacial Force Microscope, expertise was to be developed to utilize the IFM in the investigation of nanomechanics in polymer based systems. The IFM was to be used to obtain quantitative and spatially resolved measurements of nanomechanical properties in polymer matrix glass fiber reinforced composites and other polymeric systems. Because of the unique sensor the IFM utilizes, this work held the promise to reveal the critical relationships between the interphase chemistry, mechanical properties, and the adhesion at the reinforcement interface. It was anticipated that the Department of Energy would benefit from this research from the ability to “engineer” advanced light-weight polymer matrix composites and in the application to aging of polymeric composite systems.

Summary of Accomplishments Over the course of this project a variety of composite systems were investigated which resulted in a number of collaborations with SNL and companies (shown in parentheses). The projects included glass fiber reinforced epoxy composites (SDSM&T-SNL), elastomers (SDSM&T-SNL-Goodyear), metallic fiber reinforced elastomers (SDSM&T-SNL-Goodyear), heterogeneous mock rocket propellant (SDSM&T-SNL), carbon-carbon composites (SDSM&T-Goodrich), and multi-layered composite paint films (SDSM&T-SNL-PPG). Typically the IFM was found to be suitable to obtain spatially resolved (nanometer spatial resolution) elastic modulus.

To accomplish these studies we developed experimental procedures, experimental hardware and software analysis tools. A sample of such developments include:

1) assisted in the development and fabrication of IFM sensors,
2) developed and refined the methodology to make probes/tips,
3) developed EXCEL macros to extract mechanical properties from force profile data,
4) developed EXCEL macros to extract mechanical properties from a unique two-step creep testing procedure for soft materials,
5) developed chemical kinetic models to interpret spatially resolved chemical data, and
6) developed finite element stress-strain models to incorporate spatially resolved elastic modulus data from IFM analysis.

Brief summaries/abstracts of some of the investigations are given below. References to publications and presentations regarding these studies can be found in the Scientific Productivity Section.

Glass Fiber Reinforced Epoxy Composites Fourier transform infrared evanescent wave spectroscopy (FT-IR/EWS) has been utilized to study the interphase chemistry of polymer glass fiber composites. Previous studies have shown that optical constants of polymer systems change during the curing process. It is important to understand the effect of the change of optical constants of the polymer system on the chemical kinetics, when FT-IR/EWS is applied. Herein, we show how the sample optical constants may affect the chemical kinetic results, according to optical waveguide theory and numerical analysis. It is found that change in sample optical constants during the curing process will not significantly affect the chemical kinetic results under the conditions discussed. [3]

The epoxy-amine interphase curing reaction was monitored in-situ using FT-IR/EWS. A high refractive index flint glass fiber was used for a model reinforcement and evanescent wave sensor. The epoxy was EPON 862® and the curing agent was ETHACURE 100®. The reaction was carried out at constant temperature and with a stoichiometric mixture of epoxy and curing agent. Changes in the primary amine band 5060 cm⁻¹ and epoxide band 4530 cm⁻¹ were monitored with respect to time from which chemical kinetic parameters were obtained. The conversion of epoxy appeared to vary from 82 to 98% within the interphase. This study shows the utility of FT-IR EWS to probe the interphase chemistry for epoxy amine resin fiber reinforced composites. [1,4, 10]

Polymer Surface Analysis Scanning-probe microscopies (SPM) are presently widely used in remarkably diverse applications and, as evidence by this symposium, these techniques are rapidly expanding into the important areas of polymer surfaces and interfaces. The Atomic Force Microscope (AFM) is presently the most widely used of the scanning-probe techniques. However, the AFM’s range of application suffers from and inherent mechanical instability in its deflection force sensor. The instability problem has been overcome by the development of the Interfacial Force Microscope (IFM), which utilizes a force-feedback sensor concept. In the following, we present several examples of polymer applications to illustrate the utility of the IFM sensor concept applied to the study of polymer surfaces. [7]

Elastomers Modulus measurements are among the most useful properties available for monitoring the cure and aging of rubbers. Historically, such measurements were done on macroscopic samples, but over the past 15 years, several penetration techniques have been and are being developed that allow quantitative estimates of modulus to be made with lateral resolutions of 100 μm or better. This review summarizes these developments and the types of unique information that can be generated on rubbery materials. A large part of the review
focuses on the types of results available from a modulus profiling apparatus that has been used to study rubbers for the past 15 years. This instrument allows estimates to be made of the inverse tensile compliance (closely related to Young's tensile modulus) with a lateral resolution of around 50 to 100μm. Several recently developed alternative methods for achieving similar spatial resolution are also described. Finally, a brief review is given of the recent attempts to measure quantitative modulus values for rubbers with even better resolution using instruments historically focused on metals and other hard materials such as nanoindenters the atomic force microscope and the interfacial force microscope. [6]

Multi-layered Composite Paint Films A mild steel substrate coated with five paint layers was analyzed across each layer using an interfacial force microscope (IFM). The elastic modulus was seen to vary from 0.2 GPa to 1.2 GPa and was a function of the particular layer. The average elastic moduli for each layer were then used in a finite element static stress analysis for comparison to a film of equivalent thickness but having a homogenous elastic modulus of 0.84 GPa. Significant differences in the stress and strain profiles were observed between the two cases. The FEM analysis demonstrated the importance of using actual elastic modulus profiles to predict the failure location in multi-layer automotive paint systems. [2]

Metal Matrix Composites Metal matrix composites (MMCs) combine the properties of metal and ceramic or intermetallic materials. Common examples of metal matrix composites are Cu-Al₂O₃, SiC-Al, Al-Al₂O₃, Al-B₄C, and Ni-NiAl₃. Mechanical or thermal properties, such as strain-stress behavior, or thermal expansion coefficient can be tailored by changing the content of the reinforcing phase. The most common techniques of measuring mechanical properties of composite materials rely on macroscopic approach. During the past fifteen years, a significant effort has been made to develop various techniques of measuring mechanical properties on a microscopic level. These techniques include atomic force microscope (AFM) and depth sensing indentation techniques, based on Hertzian contact mechanics. However, it is still a challenge to measure reliably and quantitatively the Young's modulus and Poisson's ratio of individual phases as well as properties at the interfaces. This presentation will focus on fundamental aspects of measuring of mechanical properties of metal matrix composites at nano-scale using Interfacial Force Microscopy (IFM). The IFM is a scanning probe microscope, which utilizes a unique self-balancing capacitance force sensor. Force-displacement curves obtained with the IFM are analyzed using Hertzian contact mechanics to extract the Young's moduli of the individual phases and interface region with high spatial resolution. The properties of Cu-Al₂O₃, Al-SiCₚ composites will be discussed in detail. Furthermore, a comparison of experimental data with mechanical properties calculated from first principles will be discussed. [5]

Scientific Productivity The results of this work were in many cases the first results of their kind ever reported. As such they have been disseminated broadly to the scientific community. The following is a compilation of Publications, Presentations, Human Resource Development and Grants that have been a direct result of this work.

Publications

Presentations

Human Resource Development

Two graduate students and six undergraduates were at least partially supported by this project either through salaries or equipment use. The names, degrees, programs and year of graduation for each student are:

- Haining Liu, PhD, Materials Engineering and Science (2002)
- Craig Steffan, MS, Chemical Engineering (2003)
- James Anderson, BS, Chemical Engineering (2001)
- Robert Cunningham, BS, Chemical Engineering (2000)
- Timothy Goodson, BS, Chemical Engineering (1999)
- Jamie Ha, BS, Chemical Engineering (2001)
- Jessica Kienow, BS, Chemical Engineering (2002)
- Deborah Morgan, BS, Chemistry (2000)

Grants

The results from this project and the expertise developed as a result of the project were used as a foundation for several successful proposals. PI information, grant title, agency, time frame and award amount is provided below.

2. “Camille and Henry Dreyfus Scholar/Fellow Program,” the Camille and Henry Dreyfus Foundation, Inc., 11/00-10/02, awarded $60,000
3. with J.M. White (UT-Austin) and K. Liechti (UT-Austin), “Nanomechanics and Interphase Chemistry of Interfacial Fracture,” National Science Foundation, 9/00-8/03, awarded $442,079.
4. with J. Kellar (PI), D. Heglund, S Farwell, L. Kjerengtroen, “Acquisition of a Research-Grade FT-IR Spectrometer,” National Science Foundation, 6/00-5/03, awarded $126,290.

Collaborations Several collaborations with scientist at the Sandia National Laboratories was established as a result of this project. In addition, several industrial and university collaborations were also developed as a direct outcome of the SNL collaborations and this project. A list of the collaborators name and location and a description of the project is given below.

Dr. J.E. Houston
Sandia National Laboratories, Albuquerque, NM
Development and novel application of the Interfacial Force Microscope
Dr. K.T. Gillen
Sandia National Laboratories, Albuquerque, NM
Interfacial Force Microscope Analysis of Multi-Layered Thin Film Systems
Interfacial Force Microscope Analysis of Elastomers and Elastomeric Composites

Dr. L.M.G. Minier
Sandia National Laboratories, Albuquerque, NM
Interfacial Force Microscope Analysis of Mock Propellants

Dr. E. Tirrell
Goodyear
Interfacial Force Microscope Analysis of Elastomeric Composites

Dr. S. Khanna
University of Missouri at Columbia
Development and Manufacturing of Highly Damage Resistant Fiber Glass Reinforced Window Panels for Buildings in Hurricane Prone Areas

Dr. K.M. Liechti
University of Texas at Austin
Nanomechanics and Interphase Chemistry of Interfacial Fracture

Dr. J.M. White
University of Texas at Austin
Nanomechanics and Interphase Chemistry of Interfacial Fracture