Reactivity of Primary Soil Minerals and Secondary Precipitates beneath Leaking Hanford Waste Tanks

PDF Version Also Available for Download.

Description

Since the late 1950s, leaks from 67 single-shell tanks at the Hanford Site have released about 1 million curies to the underlying sediments. At issue is the distribution of contaminants beneath the tanks, and the processes that led to their current disposition and will control their future mobility. The high ionic strength, high pH, and high aluminum concentrations in the tank liquids can significantly alter the vadose zone sediments through dissolution of primary minerals and precipitation of secondary minerals. Dissolution and precipitation directly influence (1) the flow paths that control contaminant transport and (2) the reactivity of the solid matrix ... continued below

Physical Description

vp.

Creation Information

Nagy, Kathryn L.; Serne, R. Jeff & Yabusaki June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Since the late 1950s, leaks from 67 single-shell tanks at the Hanford Site have released about 1 million curies to the underlying sediments. At issue is the distribution of contaminants beneath the tanks, and the processes that led to their current disposition and will control their future mobility. The high ionic strength, high pH, and high aluminum concentrations in the tank liquids can significantly alter the vadose zone sediments through dissolution of primary minerals and precipitation of secondary minerals. Dissolution and precipitation directly influence (1) the flow paths that control contaminant transport and (2) the reactivity of the solid matrix that controls contaminant mobility. The impact of these processes, however, depends on mineral reaction kinetics and the dynamic interaction of the reactions with the flow field and contaminant sorption, neither of which are well-known for this extreme chemical system. Data obtained will be directly useful to other EMSP projects addressing contaminant mobility in the vadose zone. We are addressing three specific issues: (1) Recognized factors that control the kinetics of dissolution and precipitation must be quantified for the unnatural system of tank solutions mixing with soils, including effects of high pH, high ionic strength (especially NaNO3 solutions), temperature, and saturation state. (2) A clear understanding of the roles of nucleation mechanism, nucleation sites on soils minerals, and the role of reactive surface area in simultaneous dissolution and precipitation reactions are the key unknown components in comprehending this contaminated soil system. (3) Results obtained will help build a mechanistic understanding of how tank fluids migrate through the vadose zone. Local changes in porosity and permeability will dictate preferential flow paths which directly regulate the transport of later arriving chemical species. Changes in mineral surface area affect sorption site distribution. A comprehensive model is needed that integrates these feedback mechanisms with all the critically available data.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-70070--2001
  • Grant Number: FG07-99ER15009
  • DOI: 10.2172/833513 | External Link
  • Office of Scientific & Technical Information Report Number: 833513
  • Archival Resource Key: ark:/67531/metadc787006

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 6:53 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nagy, Kathryn L.; Serne, R. Jeff & Yabusaki. Reactivity of Primary Soil Minerals and Secondary Precipitates beneath Leaking Hanford Waste Tanks, report, June 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc787006/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.