The Application of CFD to Ventilation Calculations at Yucca Mountain

PDF Version Also Available for Download.

Description

This paper presents the results of the application of CFD to ventilation calculations at Yucca Mountain using MULTIFLUX. Seven cases were selected to study the effect of the heat transport coefficient on the drift wall temperature distribution. It was concluded that variable heat transport coefficients such as those given by the differential-parameter CFD used in MULTIFLUX are considered the most appropriate approach of all cases presented. This CFD model agrees well with FLUENT results and produces the lowest temperature results, which is favorable to ventilation performance.

Physical Description

11 pages

Creation Information

Danko, G. & Bahrami, D. February 27, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper presents the results of the application of CFD to ventilation calculations at Yucca Mountain using MULTIFLUX. Seven cases were selected to study the effect of the heat transport coefficient on the drift wall temperature distribution. It was concluded that variable heat transport coefficients such as those given by the differential-parameter CFD used in MULTIFLUX are considered the most appropriate approach of all cases presented. This CFD model agrees well with FLUENT results and produces the lowest temperature results, which is favorable to ventilation performance.

Physical Description

11 pages

Source

  • Waste Management 2002 Symposium, Tucson, AZ (US), 02/24/2002--02/28/2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: none
  • Office of Scientific & Technical Information Report Number: 828960
  • Archival Resource Key: ark:/67531/metadc786932

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 27, 2002

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 27, 2016, 1:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Danko, G. & Bahrami, D. The Application of CFD to Ventilation Calculations at Yucca Mountain, article, February 27, 2002; Tucson, Arizona. (digital.library.unt.edu/ark:/67531/metadc786932/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.