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Abstract

Femtosecond Nonlinear Spectroscopy at Surfaces:

Second-Harmonic Probing of Hole Burning at the Si(111)7×7 Surface

and Fourier-Transform Sum-Frequency Vibrational Spectroscopy

by

John Andrew McGuire

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yuen-Ron Shen, Chair

The high temporal resolution and broad bandwidth of a femtosecond laser system are

exploited in a pair of nonlinear optical studies of surfaces.

The dephasing dynamics of resonances associated with the adatom dangling bonds of the

Si(111)7×7 surface are explored by transient second-harmonic hole burning, a process that

can be described as a fourth-order nonlinear optical process. Spectral holes produced by a

100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs

pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing

times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero

probe detuning show a linear dependence of the hole width on pump fluence, which suggests

that charge carrier-carrier scattering dominates the dephasing dynamics at the measured

excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero

excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary

spectral hole indicates that scattering of the surface electrons with surface optical phonons

at 570 cm−1 occurs within the first 200 fs after excitation.

The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum-

frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we

demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields

a greater signal when implemented with a stretched visible pulse than with a femtosecond



visible pulse. However, when compared with multichannel spectroscopy using a femtosec-

ond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an

inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates

the constraints on the Fourier-transform approach.

Professor Yuen-Ron Shen

Dissertation Committee Chair
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Chapter 1

Introduction

Surfaces and interfaces play a central role in the physical and life sciences and technology.

As the dimensions of a system shrink, the properties of its surfaces become increasingly

important and can eventually determine many of the bulk properties. This can be seen

clearly in such systems as quantum dots, in which the surface directly influences the bulk

properties as the size of the dot decreases [1, 2]. In other systems, it is the surface properties

that are of greatest importance. For example, in chemical systems, catalysis frequently

occurs at surfaces (e.g., oxidation of CO by platinum) [3]. In living systems, the properties

of interfaces in the form of membranes are fundamental.

The variety of problems in surface science barely exceeds the variety of techniques by

which they are studied. Some of the most common techniques involve the scattering of

charged particles, notably the scattering of electrons in LEED, RHEELS, and Auger spec-

troscopy. Other massive particles, such as He atoms, are also used to study surface struc-

tures. Optical approaches include reflectivity measurements. Techniques combining both

photons and massive particles include photoemission spectroscopy and its inverse. The

preceding techniques usually probe regions large on the atomic scale, either because they

are fundamentally reciprocal-space measurements or because of focusing limitations. In

recent years the local probes scanning tunnelling microscopy and atomic force microscopy

(AFM) have become ubiquitous. However, with the exception of purely optical techniques

and AFM, all of these approaches share a severe limitation: they require the surface under

1



study to be located in an ultrahigh vacuum (≤ 10−8 mbar). Although AFM does not face

such a limitation, AFM does not provide spectroscopic information, i.e., it does not provide

information about the energy levels or density of states of a system, nor does it provide

direct information about dynamics on the fastest timescales.

Optical techniques can probe surfaces in almost any environment. That advantage exists

because of the relatively weak interaction of photons with matter, which is also the reason

for one of the main disadvantages of applying many optical techniques to surfaces; the

weak interaction of photons with matter means that photons travel far without scattering

and interact largely with the bulk in a material system. Consequently, application of most

optical techniques to surfaces requires one to be able to discriminate against a large bulk

signal and generally implies ambiguity about the source (surface or bulk) of the detected

signal. However, this difficulty can often be surmounted by means of even-order nonlinear

optical techniques.

In this dissertation we report nonlinear optical investigations of surfaces using femtosec-

ond lasers. Femtosecond pulses of coherent radiation can probe the dynamics of surfaces

on timescales shorter than the period of vibrational resonances and approaching the funda-

mental timescales of electronic processes. Despite the broad bandwidth of such sources, we

can also perform more familiar second-order frequency-resolved measurements of surface vi-

brational spectra by adopting Fourier transform techniques. We begin, in Section 1.1, with

a brief discussion of surface nonlinear optics. After explaining the limitations on the infor-

mation that can be obtained by second- versus fourth-order optical process, in Section 1.2

we present a cursory discussion of electron dynamics at surfaces. The laser system and

electronics common to both sets of work in this dissertation are presented in Section 1.3.

We conclude with a brief outline of the body of the dissertation.

1.1 A Brief Review of Surface Nonlinear Optics

Under excitation by a strong electric field, the polarization of a medium displays deviations

from a linear response to the field. These deviations are the basis of nonlinear optics. As

the basic theory of nonlinear optics has been studied extensively [4, 5], we shall merely
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discuss it in general terms. Strong electric fields give rise to nonlinear source terms (charge

and current densities) in the Maxwell equations. These terms generally include both local

and nonlocal terms and can be described by a generalized polarization. For electric fields

that are not too strong, the generalized polarization of the medium can be expanded in a

power series in the total electric field:

~P (ω) =
∞∑

n=1

~P (n)(ω), (1.1)

where

~P (n)(~k, ω) = χ(n)(~k = ~kn + ~kn−1 + · · ·+ ~k1; ω = ωn + ωn−1 + · · ·+ ω1) ~E(~kn, ωn)

× ~E(~kn−1, ωn−1) · · · ~E(~k1, ω1), (1.2)

and χ(n)(~k = ~kn +~kn−1 + · · ·+~k1; ω = ωn + ωn−1 + · · ·+ ω1) is the nth-order susceptibility.

Alternatively, by a similar power-series expansion in the time domain,

~P (n)(~r, t) =
∞∫

0

dτn

∞∫

0

dτn−1 · · ·
∞∫

0

dτ1

∫
d~rn

∫
d~rn−1 · · ·

∫
d~r1R

(n)(~r, ~rn, ~rn−1, . . . , ~r1;

t, τn, τn−1, . . . , τ1) ~E(~rn, τn) ~E(~rn−1, τn−1) · · · ~E(~r1, τ1), (1.3)

where R(n)(~r, ~rn, ~rn−1, . . . , ~r1; t, τn, τn−1, . . . , τ1) is the nth-order response function. In the

dipole approximation, the response is completely local (~rm = ~r for all m). In a quantum

mechanical approach, the nonlinear susceptibilities or, equivalently, the nonlinear response

functions can be calculated in terms of a perturbation expansion of the density matrix.

For our purposes in this dissertation, there are three particularly important features of

the nonlinear response functions or susceptibilities. The first important feature concerns

their basic symmetry properties. In particular, all response functions and susceptibilities

of even order are exactly zero in the dipole approximation for systems that are centrosym-

metric. For such systems, the inversion symmetry breaking that necessarily exists at an

interface makes even-order nonlinear optical techniques (e.g., second-harmonic generation

and sum-frequency generation) surface-specific for centrosymmetric systems in which the

dipole approximation holds [6, 7]. The second important feature relates to information

about the timescales of the dynamics of a system. In the limit in which the perturbations
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of a system by a bath can be divided into processes on very fast timescales and static

timescales, the broadening of spectral features is described respectively in terms of homoge-

neous and inhomogeneous broadening. The two contributions to the broadening cannot be

separated by linear spectroscopy; one must go to at least third-order processes (e.g., photon

echo and hole burning) to separate the homogeneous from the inhomogeneous contribution

to a line’s width. The final feature of primary concern to us is obvious from the forms of

Equations (1.2) and (1.3): in general, the information (about resonances or the temporal

evolution of the system) of an nth-order response function exceeds that of lower-order re-

sponse functions. From the first and last points, we see that to obtain as much dynamic or

spectral information about a surface as one would obtain by nonlinear optical measurements

of an equivalent bulk system, one must generally go to higher-order processes at the surface

than one would use in the bulk. For example, whereas infrared absorption spectroscopy

(a linear technique) yields the vibrational spectrum of a system, sum-frequency generation

(SFG, a second-order technique) yields a surface-specific vibrational spectrum.

The first measurements of surface-specific second harmonic generation (SHG) in the

group of Y.R. Shen ushered in a new era in surface science [8]. Since then, SHG and SFG

have been applied to the study of a multitude of interfaces and problems including studies of

liquid-liquid and liquid-solid interfaces [9], the surface melting of ice [10], chemical reactions

at surfaces [11], and surface diffusion of molecules [12].

Despite the power of second-order nonlinear optical techniques, there are significant

constraints on the information that can be obtained by such techniques. As indicated above,

from the perspective of measurements of the coherent dynamics of a system, second-order

techniques are largely equivalent to linear measurements insofar as they cannot separate

homogeneous and inhomogeneous broadening. To isolate the homogeneous contribution to

the broadening of a surface spectral line one must generally use a process of at least fourth

order. Guyot-Sionnest measured the homogeneous broadening of the vibrational stretching

mode of the monohydride Si-H bond of a hydrogen-terminated Si(111)1×1 surface by such

a photon-echo technique [13]. However, in most cases fourth- and higher-order processes are

expected to be feeble, and beyond Guyot-Sionnest’s photon-echo measurements, there have

4



been only a handful of studies of surfaces using fourth-order nonlinear optical processes [14,

15, 16, 17].

In general, the weakness of nonlinear optical signals from surfaces (due to the relatively

small number of particles probed) places an even greater premium on high intensities than is

the case for nonlinear optical signals from many bulk systems. The need for high intensities

is one factor leading to the use of pulsed lasers in surface nonlinear optics. However,

even with pulses as short as tens of picoseconds, one is often limited in the intensity that

can be applied to a sample by sample heating, which can modify the spectral response

or damage a sample. This problem suggests moving to the femtosecond regime, where a

given peak intensity can be obtained using less energy per unit area. With pulses shorter

than the timescales for thermalization of a sample, damage due to absorption of transiently

populated excited states also may be reduced. However, increasing the peak intensity by

using shorter pulses does not necessarily result in larger signals.

Given a set of laser pulses characterized by a certain energy, Ui, and spot size, A, the

scaling of various nonlinear optical signal strengths with pulse length, τ , can readily be

determined. In particular, suppose we have a one-photon resonance characterized by a

resonance frequency ωba, a dipole transition matrix element µba, a homogeneous linewidth

T2 and an inhomogeneous Gaussian distribution of frequencies characterized by a linewidth

1/T ∗2 FWHM such that the total linewidth is 1/T ′2. We suppose that we have a coherent

pulse of radiation of frequency ω1 = ωba and another coherent pulse of radiation of frequency

ω2 such that ω2 and ωSF = ω2 + ω1 are far from any one-photon resonances in the system.

This is the case that most commonly holds for IR-visible vibrationally resonant SFG. The

coherent excitation of a two-level system by a short (τ < T2) pulse of resonant radiation

can be characterized by the tipping angle on the Bloch sphere: θi = µba
h̄

∫
dt Ei(t) ¿ π,

where Ei(t) is the electric field envelope. Based on the mixing of a second field with the

resulting polarization at ωba, for pulses shorter than the inverse linewidth and such that

θ ¿ π, the SFG signal scales as SSF ∝ U1U2τ
A . Alternatively, for pulses longer than the

inverse linewidth, the SFG signal scales as SSF ∝ U1U2T ′22
Aτ . In the case of a surface photon-

echo measurement in which a pair of pulses (α and β) at frequency ω1 produce a rephasing
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(echo) of the polarization at ωba (This requires using pulse lengths τ < T2), for tipping

angles θi = µba
h̄

∫
dt Ei(t) ¿ π, where Ei(t) is the electric field envelope, the signal strength

scales as Secho ∝ U1,aU
2
1,bU2τ

2min(τ, T ∗2 )/A3 [13, 18]. In the photon echo measurements

of Guyot-Sionnest, the homogeneous and inhomogeneous vibrational dephasing times were

both found to be nearly 100 ps, making picosecond pulses much more suitable for their

study than femtosecond pulses [13]. In general, for frequency-domain studies of vibrational

spectra at surfaces, the optimal pulse length is often of the order of 1 ps. However, for

electronic transitions in condensed media, dephasing times are typically much shorter than

1 ps, and measuring electronic dynamics generally requires femtosecond pulses.

1.2 Electron Dynamics at Surfaces

Measurements of electron dynamics yield important information on the timescales for both

elastic and inelastic scattering. On a fundamental level, electron dynamics are related

to such physical phenomena as charge and heat transport. Electron dynamics are inti-

mately connected to charge screening [19, 20, 21] and can also play important roles in phase

transitions [22]. From a technological perspective, electron dynamics are central to device

performance.

The role of electron dynamics at interfaces is as important as their role in the bulk.

Besides relating to the transport of charge across interfaces [23], electron dynamics at in-

terfaces play an increasingly prominent role in the bulk behavior of a system as the system

size decreases to a scale comparable to the electronic mean free path. Electron dynamics

also play an important role in photochemistry at surfaces [24, 25, 26, 27]. Although in the

preceding examples it is often the incoherent electron dynamics that are most significant,

coherent dynamics are also manifested in various surface phenomena. For example, coher-

ent transfer of electronic excitations between a Cu(111) substrate and adsorbed Cs atoms

has been observed [28]. More generally, measurements of coherent dynamics provide insight

on the nature of the fastest timescale perturbations of a system.

The rapid (subpicosecond) timescales typical of coherent electron dynamics make tech-

niques employing femtosecond lasers well suited to their study. Two-photon photoemis-
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sion with femtosecond lasers has been used to study the dephasing of image-potential

states [29, 30, 31]. Interferometric two-photon photoemission with 10 fs pulses has been

employed to study dynamic dephasing at Cu surfaces [28, 32]. Compared to all-optical tech-

niques, two-photon photoemission has the advantage of being able to provide a complete

characterization of the photoemitted electrons in terms of both energy and momentum.

However, photoemission is generally restricted to conductors and semiconductors under low

excitation densities and ultrahigh vacuum conditions.

Even-order nonlinear optical techniques are applicable to any interface accessible to

optical radiation. Particularly in cases in which surface states are only slightly dispersive

or localized, nonlinear optical techniques are well suited to studying ultrafast dynamic

dephasing. To date, only one publication has described an attempt at nonlinear optical

measurement of dynamic electronic dephasing at a surface [15]. The short timescales of

electronic dephasing present a great difficulty in measurements of surface photon echoes.

This is easily seen in the simplest model for photon echoes: an inhomogeneously broadened

Lorentzian oscillator. For such a model, the photon echo signal decays exponentially with

respect to the delay τ1 between the first (exciting) and second (rephasing) pulses with a

time constant of T2/4. For dephasing times of the order of 20 fs, one must use pulses of

length < 5 fs to be able to resolve the rapid decay of the photon echo. Such pulses are at the

very limits of what has been generated in the optical region [33, 34, 35, 36]. For such rapid

processes, 100 fs pulses are almost continuous wave. Herein, we use an alternative approach

based on transient spectral hole burning to measure the dynamic electronic dephasing at

the Si(111)7×7 surface.

1.3 Experimental Setup

The workhorse for the experiments presented in this dissertation is a femtosecond Ti:sapphire

laser system operating at repetition rates of 1 kHz. The demand for such lasers has grown

dramatically over the last decade. Although these lasers have bandwidths exceeding the

typical widths of features in vibrational nonlinear spectroscopy, these systems offer many

attractive features compared to typical Nd:YAG-based systems producing pulses of 10’s of
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picoseconds. In particular, commercial Ti:sapphire systems are now completely solid state,

which contributes to their extremely high stability (< 1% rms shot-to-shot fluctuations)

over hours of operation. Moreover, by a variety of techniques that allow for sub-laser-line-

width resolution, such lasers allow one to perform both ultrafast time-resolved spectroscopy

and frequency-resolved spectroscopy with the same spectral resolution as obtained with pi-

cosecond lasers [37, 38]. As discussed in Section 1.1, on a per-pulse basis a picosecond laser

may provide higher signal levels in many nonlinear optical measurements. However, typical

Nd:YAG-based systems operate at repetition rates of the order of 10 Hz with pulse energies

of the order of several 10’s of mJ, which results in limits on the peak intensities that may

be applied to a sample due to sample heating and damage constraints. Furthermore, the

estimates of Section 1.1 were based on the lasers being tuned to resonance. In typical non-

linear vibrational spectroscopic measurements, one obtains spectra over hundreds of cm−1

with resonant features occupying only part of that range. Therefore, the difference in time

required to obtain, for example, a vibrationally resonant SFG spectrum with a femtosecond

laser system versus the time required with an equivalent picosecond laser system is not as

great as suggested by the estimates at the end of Section 1.1.

Generation of energetic pulses begins with a Ti:sapphire oscillator [39, 40] (Kapteyn-

Murnane Laboratories, L.L.C. Model TS Ti:sapphire laser kit) pumped by 4.0 W of 532 nm

radiation from a diode-pumped, continuous-wave, intracavity-doubled Nd:YVO4 laser (Spec-

tra Physics Millennia V). Dispersion by the Ti:sapphire crystal in the oscillator is compen-

sated by a pair of Brewster-angle prisms. Kerr lensing in the crystal results in self-mode-

locking, which is favored over cw operation when the laser cavity length is adjusted such

that the resonator is unstable when operated cw but is stable when producing short pulses

(due to the extra wavefront curvature produced by self-focusing) [40, 41]. The mode-locked

output is an 80 MHz train of ∼7 nJ pulses with a spectrum centered at a wavelength of

800 nm with a bandwidth of about 35 nm FWHM. In fact, the bandwidth can be increased to

∼70 nm FWHM. Operation at 35 nm is a compromise between stable mode-locking, which

is aided by shorter pulses, and producing high spectral intensity within the bandwidth of

the amplifier.
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Output pulses from the oscillator are amplified to the ∼1 mJ level by a chirped pulse

amplifier (Positive Light Spitfire). The seed pulses from the oscillator are stretched to

several 100 ps by chirping the pulses by diffracting them four times off a grating, between

which diffraction steps the beam propagates a distance of ∼1 m. This permits amplification

of the pulses to the ∼1 mJ level without giving rise to the large intensities that would

damage the crystal were the unchirped seed pulses to be directly amplified. The stretched

seed is sent to the regenerative amplifier cavity, where a Ti:sapphire crystal is pumped

by 10 W of 527 nm radiation from an arc-lamp-pumped, intra-cavity-frequency-doubled,

Q-switched Nd:YLF laser (Positive Light Merlin). One Pockel’s cell makes the cavity high-

Q for the seed pulses. After the seed has been amplified to the point of saturation, a

second Pockel’s cell is fired to dump the pulse. A signal from a fast photodiode detecting

a higher-order diffracted beam from the stretcher grating allows for synchronization of the

switching of the two Pockel’s cells so that only about 1 in 82,000 seed pulses is amplified

through more than one round trip in the regenerative cavity. The 1 kHz output from the

regenerative cavity goes to a compressor inverse to the stretcher. The path length of the

compressor is adjusted for the optimal compensation of the chirp imposed by the stretcher

and regenerative amplifier cavity to produce pulses that are 100 fs FWHM. The pulse energy

stability is < 1% peak-to-peak and < 0.5% rms.

Despite the stability of the output energy of the amplifier, fluctuations in SHG from

the 800 nm fundamental can exceed 20% peak-to-peak. These fluctuations are presumed

to be due to pulse-length fluctuations. Pulse-length fluctuations can arise due to unequal

fluctuations in the optical path length, and hence the accumulated phase, of different fre-

quencies within the ∼150 cm−1 bandwidth of the pulses arising from variations in the index

of refraction of the air along the different paths travelled by different frequencies within

the pulse stretcher and compressor. Assuming that the spatial profile of the pulse does

not fluctuate, the fluctuations in the SHG give a direct measure of the fluctuations in the

pulse length. Such pulse-length fluctuations can produce dramatic fluctuations in nonlinear

signals and the output of an optical parametric amplifier (OPA) pumped by the amplifier

output. The average OPA output energy can also exhibit drift of ±10% over timescales from
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seconds to minutes on account of such fluctuations. These fluctuations can be minimized

by inserting construction paper baffles in the regenerative amplifier box to reduce air flow

and by moving the high voltage power supply for the Pockel’s cells (a mild heat source for

convective airflows) outside the amplifier box. These measures reduced the fluctuations in

the SHG from the 800 nm fundamental to below 6% peak-to-peak and below 5% rms.

Most of the output of the amplifier is usually used to pump an OPA. The design on

which we eventually settled is based on a design by R.A. Kaindl and P. Hamm and their

collaborators [42, 43]. The design, shown in Figure 1.1, is simple with only two passes

through a single β-BaB2O4 (BBO) crystal (4 mm long, cut for Type-II phase matching:

θ = 26◦, φ = 30◦). Continuum generation from focusing ∼2 µJ of 800 nm radiation into

a c-cut sapphire crystal (1 mm long) provides the seed for the signal in the first pass.

Only ∼25 µJ of 800 nm light is focused just after the BBO crystal as a pump. In the

second pass, the signal (separated from the idler and first-pass pump by a dichroic mirror)

is reflected slightly out of the plane normal to the axis of rotation of the BBO crystal (to

allow the amplified radiation to be picked off without disturbing the seed input path) and

amplified by a fresh pump of ∼600 µJ that was aligned along the same out-of-plane path

as the retroreflected product of the first pass. The pump in the second pass is about three

times as energetic as that used by Kaindl and Hamm, and their design is not truly scalable

since the need to maintain a single-filament white-light continuum limits the amount of

energy in the seed. Despite initial concerns about scalability, we do not find any significant

degradation of performance when we scale our OPA to three times their pump energies.

The largest conversion efficiency obtained in the second pass reached 38%. At conversion

efficiencies exceeding about 30%, we observe rms shot-to-shot fluctuations of 2-3% and drift

in the average output of < 1% over timescales of minutes. However, the pump levels needed

to obtain such high conversion efficiency eventually damage the dichroic mirrors nearest the

crystal. To reduce the likelihood of damage to the dichroic mirrors, the second pass pump

is telescoped less tightly resulting in a conversion efficiency of about 25% in the second pass

with fluctuations within a factor of two of those cited for the highest conversion efficiencies.

In any photon counting experiments, the shot-to-shot fluctuations in photon counts due to
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Figure 1.1: White-light-seeded double-pass OPA design used for most of the experiments in
this dissertation. All unlabelled elements in the figure are dielectric mirrors for p-polarized
broadband 800 nm radiation. DM1 and DM2 are dichroic mirrors to reflect p-polarized
800 nm radiation and transmit s-polarized radiation from 0.95 to 1.6 µm and p-polarized
radiation from 1.6 to 5 µm. DM3 is a dichroic mirror to reflect s-polarized radiation from
0.95 to 1.6 µm and transmit p-polarized radiation from 1.6 to 5 µm. The focal lengths of
the lenses are (f1, f2, f3, f4, f5)=(75 mm, 25 mm, 450 mm, 175 mm, -50 mm). The dashed
beam path from Au1 to Au2 is out of the plane of the page and directly above the path of
the continuum seed. For KTP the dashed beam is in the plane of the page, as drawn, and
the crystal is tuned by rotation about an axis in the plane of the page.

the statistical nature of photon counting exceed the shot-to-shot fluctuations of the amplifier

and OPA outputs, so the most important parameter is the long-term stability of the OPA

average output energy. As long as the room temperature is stable to better than 0.5◦ C,

the average amplifier and OPA output remain stable. The range of frequencies produced

by this OPA is 1.2-2.5 µm, which is limited by absorption in BBO at λ > 2.5 µm.

To generate wavelengths as long as 3.5 µm, the BBO crystal can be replaced by a

KTiOPO4 (KTP) crystal (5 mm long, cut for Type-III phase matching: θ = 41◦, φ =

0◦). The lower damage threshold of KTP requires pumping with lower intensities (∼ 15%
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conversion efficiency). However, this scheme could still produce stable output greater than

20 µJ at 3.3 µm (i.e., in the CH stretch region for vibrational spectroscopy).

The signals in our experiments are detected with photomultiplier tubes (PMTs) in the

case of surface-specific signals and photodiodes for bulk signals. The signal from the detector

is sent to a boxcar amplifier (Stanford Research Systems Model SR250). Readout of the

boxcar signals as well as all experimental control is performed by LabView software via

a PC DAQ board (National Instruments LAB-PC-1200), which is usually triggered by a

1 kHz TTL synchronization trigger output from the Spitfire amplifier synchronization and

delay generator. In the case of surface-specific signals, all of the data in this dissertation was

obtained by using the PMTs in photon counting mode. We count photons only indirectly

through counting photoelectron pulses, the generation of which at a PMT photocathode is

governed by Poisson statistics. If the average number of photoelectrons produced at a PMT

photocathode per pulse is n̄, then the probability that n photoelectrons are generated at

the cathode is given by

Pn(n̄) =
n̄n

n!
e−n. (1.4)

The probability Pcount that there is at least one photoelectron pulse from the PMT is then

given by

Pcount = 1− P0(n̄) = 1− e−n̄. (1.5)

The photon counting data (average number, n̄, of photons counted by a PMT per pulse)

presented in this dissertation are determined from the probability, P, that a pulse from the

PMT is detected via the equation n̄ = − ln (1− Pcount) .

Experimental details relevant only to particular experiments are described in later chap-

ters.

1.4 Outline

The rest of this dissertation describes two sets of experiments that make use of the unique

properties of femtosecond laser pulses to probe alternately the second- and fourth-order

nonlinear responses of surfaces. In Chapter 2 we take advantage of the short length of
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100 fs pulses to probe the dynamic dephasing of the Si(111)7×7 surface. By using the

second harmonic of a probe beam as a surface-specific probe of the spectral hole produced

by a pump beam at 800 nm, we measure the homogeneous linewidth of a surface electronic

transition and its dependence on the density of excited carriers. In Chapter 3 we exploit

the broad bandwidth of femtosecond pulses by developing a Fourier-transform technique for

obtaining arbitrary resolution of vibrational resonances in IR-visible sum-frequency gener-

ation spectroscopy. This technique allows the operation of ultrafast lasers as tools for both

time- and frequency-resolved spectroscopy.
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Chapter 2

Second-Harmonic Hole Burning at

the Si(111)7×7 Surface

The Si(111)7×7 surface is of interest for numerous scientific and technological reasons.

Hydrogen adsorption on the silicon surface is important in the passivation of etched silicon

surfaces [44, 45] and has been studied as a model for chemisorption on semiconductor

surfaces [46]. The oxidation of silicon surfaces plays a crucial role in the fabrication of

semiconductor devices and has been a subject of extensive study [47]. In particular, the

initial oxidation of the Si(111)7×7 surface has been studied in great detail, though many

questions remain open [48, 49]. The chemistry of hydrocarbons on silicon is of interest for

its relevance to the growth of silicon carbide [50, 51]. In all of these cases, the behavior of

the silicon surface is determined by the interplay of surface spatial structure, phonons and

electronic structure.

The importance of studying electron dynamics at surfaces has already been discussed in

Chapter 1. Understanding coherent electronic dynamics at the Si(111)7×7 surface should

yield a greater understanding of charge-carrier interactions at the surface and the phenom-

ena that they influence. To measure these dynamics, we implement a surface-specific varia-

tion of hole-burning spectroscopy, a common technique used to measure dynamic dephasing

in bulk systems, in which we measure the second harmonic generated by the interaction

of the probe fundamental with the surface as a function of the detuning of the probe rel-
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ative to the pump. By varying the pump fluence, we can measure the effect of changing

charge-carrier densities on electronic dephasing. This can yield clues about the dominant

dephasing processes.

The organization of this chapter is as follows. We begin with a review of the results of

studies of the Si(111)7×7 spatial and electronic structure with particular attention to those

aspects that are related to our optical studies. The review concludes with a discussion

of the SHG spectrum of the Si(111)7×7 surface and a discussion of previous studies of

electron dynamics at Si surfaces. This review is followed by a discussion of the basic

theory of transient spectral hole burning probed by second-harmonic generation in order

to understand what information can be gained by such an approach to measuring dynamic

dephasing. We then discuss the details of the experimental setup. Finally, we present the

experimental results, explain their analysis, and discuss their implications.

2.1 The Si(111)7×7 Surface: Spatial and Electronic Struc-

ture

The 7×7 reconstruction of the Si(111) surface was first observed by low-energy electron

diffraction (LEED) in 1959 [52]. However, interpretation of LEED is usually dependent on

calculations that are model-dependent, and the large size of the unit cell of the Si(111)7×7

surface poses serious challenges to calculations. Although various models were proposed [53,

54, 55], conclusive evidence in favor of any one was lacking [56]. The surface was also stud-

ied in reciprocal space by ion backscattering [57] and in real space by scanning tunnelling

microscopy [58], but it was the analysis of transmission electron diffraction (TED) mea-

surements by Takayanagi et al. that finally yielded the dimer-adatom-stacking fault (DAS)

model shown in Figure 2.1 [56]. Further studies such as the X-ray diffraction study by

Robinson et al. [60], the LEED study by Tong et al. [61], and the STM study by Hamers

et al. [62] confirmed and refined this model, which is now widely accepted.

The 7×7 reconstruction represents a dramatic balancing act between the decrease of

the electronic energy resulting from reduction of the number of dangling bonds and the
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Figure 2.1: Real space structure of the Si(111)7×7 surface (From [59]). Figure B is a view
in the [011̄] direction of the mirror symmetry plane.

increase in the lattice strain produced by the reconstruction. By forming back bonds with 3

atoms in the rest-atom plane, the 12 adatoms reduce the number of dangling bonds by 24.

The stacking fault arising from a shift from staggered to eclipsed stacking in one triangular

half of the unit cell allows for the formation of dimers in the rest-atom bilayer along the

boundaries between triangular subunits; this further reduces the number of dangling bonds

by 6. As will be discussed below, the electronic states of the rest-atom dangling bonds are

lower in energy than those of the adatoms. Electron transfer from the adatoms to the rest

atoms results in lone pairs in the rest-atom dangling bonds. Electron transfer from the

adatom dangling bonds to the corner-hole dangling bonds may further reduce the number

of electrons not in doubly occupied dangling bonds to five, though whether this is actually
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the case is as yet unclear [63]. The corner-hole dangling bonds may instead be half filled,

leaving six electrons in the adatom-dangling-bond-derived states.

The electronic structure of the Si(111)7×7 surface has gradually been established over

many years of research. The locations and dispersion of the surface electronic bands have

been established by photoemission spectroscopy and inverse photoemission spectroscopy.

Photoemission spectra clearly show the presence of three occupied bands S1, S2, and S3

centered at energies of about -0.2 eV, -0.9 eV, and -1.9 eV relative to the Fermi level [63,

64, 65, 66, 67]. A weaker feature, S′1, has also been reported at about 0.5 eV below the

Fermi level [67]. Inverse photoemission shows unoccupied states U1 and U2 at about 0.5

eV and about 1.6 eV above the Fermi level [66, 68, 69, 70]. Measurements of the dispersion

of these bands show dispersive widths of about 0.3 eV for S1 [63], 0.05 eV for S′1 [67],

0.12 eV for S2 [66, 67, 71], 0.4 eV for S3, and 0.2 eV for U1 [72]. The dispersion of the

U2 band has not been measured in detail. These data are tabulated in Table 2.1. Clear

indications of band dispersion are also seen in electron energy loss (EELS) spectra [64,

65, 73]. Comparisons with scanning tunnelling spectroscopy demonstrate that S1 and U1

are associated primarily with the adatoms, S2 is associated primarily with the rest atoms,

and S3 and U2 are associated primarily with the adatom backbonds [62, 74, 75]. Although

the S′1 band has not been seen distinctly in STM measurements, S′1 is also conjectured to

correspond to adatom dangling bonds [67]. This is summarized in Figure 2.2, where the

width and location of each band is based on the most recent data for each band given

in Table 2.1. The basic features of the electronic structure are reproduced in theoretical

calculations [76, 77].

There remain details of the electronic structure that are unclear, in particular the elec-

tronic structure near the Fermi level [63]. Naively, the odd number of electrons in the

7×7 unit cell should produce a metallic surface. Photoemission (inverse photoemission)

spectra of the surface electronic structure show nonzero intensity up (down) to the Fermi

level [63, 66, 67, 70]. Photoemission and inverse photoemission measurements also indicate

that the Fermi level position of the Si(111)7×7 surface is strongly pinned within the bulk

band gap for both n- and p-type doping of the bulk at the position EF = EV + 0.65 eV,
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band location (E − EF )(eV) dispersion FWHM resolution reference

U2 1.6 - 0.4 0.3 [68, 69, 70]

U1 0.5 0.23 0.5 0.35 [72]

0.5 - - 0.3 [70]

S1 -0.15 0.3 0.2 0.027 [63]

-0.15 0.06 0.2 0.05 [67]

-0.20 0.1 0.2 0.15 [66]

S′1 -0.50 0.05 0.2 0.05 [67]

S2 -0.90 0.12± 0.03 0.4 0.05 [67]

∼ −0.95 0.15 0.3 0.15 [66]

∼ −0.8 0.1 0.3 0.2 [71]

S3 ∼ −1.9 0.4 0.5 0.15 [66]

−1.75 0.3 0.6 0.2 [71]

Table 2.1: Summary of the most recently published values of the locations, dispersions,
and widths of the surface electronic bands of the Si(111)7×7 surface. The dispersion is
the entire range of dispersion of the photoemission or inverse photoemission peak location
(i.e., the dispersion of the peak about the specified location is ± half of the noted disper-
sion value). The column FWHM gives the approximate full-width-at-half-maximum of the
photoemission (inverse photoemission) peaks obtained for a particular choice of electron
momentum in the surface plane as judged from the data curves presented in the references.
The resolution is the combined electron and photon resolution of the equipment used in the
studies. All quantities are given in eV.

where EF is the Fermi level and EV is the bulk valence band maximum [63, 78]. Electron

energy loss spectra also display characteristics of infinitesimal transitions across a Fermi

level, namely loss features at very low energies [64, 65, 79]. All of these observations sug-

gest that the surface is indeed metallic. Otherwise, one would expect a gap in the surface

electronic structure near the Fermi level. In the case of a nonzero gap, photoemission would

yield electrons only up to an energy of the surface valence band maximum EV,s, and inverse

photoemission would yield photons with maximum energies equal to the difference of the in-

put electron energy Ei and the surface conduction band minimum EC,s. With EC,s 6= EV,s,
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Figure 2.2: Electronic bands of the Si(111)7×7 surface and their source (adatom dangling
bonds, adatom back bonds, and rest-atom dangling bonds). The darker region of each band
indicates the dispersive range of the peaks measured in angle-resolved photoemission and
inverse photoemission, and the dotted region indicates roughly the combined dispersion and
measured photoemission linewidth after accounting for the resolution of the measurements
listed in Table 2.1. The solid lines labelled EV and EC indicate respectively the locations
of the bulk valence band maximum and bulk conduction band minimum. The solid arrows
represent the presumed optical transitions probed in this work with the left pair representing
SHG via a one-photon resonance between rest-atom dangling bonds and adatom dangling
bonds and the right pair representing SHG via a two-photon resonance between adatom
back-bond states.

one could not have both processes (photoemission and inverse photoemission) indicating

transitions from (photoemission) or to (inverse photoemission) the Fermi level. Likewise, if

there were a gap at the surface, although the Fermi level might still be pinned for a given

type of doping (n- or p-type), the location of the pinning would be different according to

whether the sample was n- or p-type [80]. Finally, if there were a surface gap, then the

lowest surface EELS feature would also correspond to the surface gap. Therefore, if there

is a gap between the occupied and unoccupied states at the surface, the gap is expected to

19



be very small.

However, there are indications that the surface might not be conducting or at least is

a poor conductor. Direct measurements of the surface conductivity by different techniques

have yielded widely varying results [81, 82, 83]. NMR measurements of 8Li atoms at low

coverage on the Si(111)7×7 surface hint at correlation times associated with fluctuating

electron spins that are at least an order of magnitude greater than those typical of met-

als [84]. EELS measurements at low temperatures suggest that there may be a very narrow

(∼2 meV wide), partially occupied state at the Fermi level [64, 65]. This has been inter-

preted as evidence of a Mott insulator. In fact, as demonstrated by such highly correlated

systems as Mott insulators, a non-zero density of states at the Fermi level is not necessarily

evidence of metallic character [63, 64, 65, 84]. Theoretical calculations [77] also suggest

that the correlation times of the electron gas at the surface may exceed those typical of

classical metals [84].

For optical spectroscopy, it is not only the locations of the energy bands and their disper-

sion that matter but the selection rules for transitions between bands. In EELS, scattering

in the specular direction is dominated by long-range dipole scattering and hence yields the

same information as obtained by reflection-absorption infrared spectroscopy (RAIRS) but

with greater surface sensitivity. (In contrast, off-specular scattering involves short range

interactions and is not restricted to dipole-allowed transitions.) Low temperature EELS

spectra of specularly scattered electrons show well defined loss features associated with the

clean Si(111)7×7 surface at 95, ∼210, ∼340, ∼900, and ∼1500 meV [64, 65, 73, 85, 86]. A

detailed study of the loss feature at ∼1.5 eV in which the input electron energy and output

detection angle were varied yielded a dispersive energy loss spectrum from about 1.0 to

1.7 eV (about 1.5 eV near zero in-plane wave-vector transfer, ∆k|| = 0, i.e., for negligible

in-surface-plane momentum transfer as occurs in a purely optical transition) [73]. Based

on the locations of the surface bands discussed above and shown in Figure 2.2, the EELS

features at ∼ 210 and ∼340 meV were attributed to transitions from the S1 state to unoccu-

pied surface states within about 50 meV above the Fermi level. Likewise the loss feature at

about 900 meV corresponds to transitions between the S2 band and states within 50 meV

20



of the Fermi level [64, 65]. The dispersive loss feature from 1.0 to 1.7 eV is interpreted

as being due to a transition between the S2 and U1 states [73]. These results from EELS

studies indicate that one should observe dipole-allowed optical transitions in the range from

about 0.9 to 1.7 eV. Indeed, a peak at 1.8 eV is seen in differential reflectivity measurements

of the Si(111)7×7 surface [87, 88, 89]. Theoretical calculations qualitatively reproduce the

main features of EELS and differential reflectivity studies and assign a calculated EELS

and differential reflectance feature at 1.5 eV to transitions from the S2 to the U1 band [90].

In the case of nonlinear optical measurements, the symmetry of the surface is particularly

important in determining which sets of input and output polarizations will yield nonzero

signals and which independent susceptibility tensor elements contribute to the signal for

a given set of polarizations. The Si(111)7×7 surface has the same symmetry as the unre-

constructed Si(111) surface, namely C3v. If we define our coordinate system such that the

z-axis is perpendicular to the surface and the x-axis is normal to the mirror plane (i.e., the

x-axis is parallel to the [011̄] axis in Figure 2.1), then the nonzero second-order susceptibility

tensor elements are [4, 7]

χzzz ≡ χ⊥⊥⊥,

χxzx = χyzy ≡ χ‖⊥‖,

χxxz = χyyz ≡ χ‖ ‖⊥,

χyyy = −χyxx = −χxxy = −χxyx ≡ χ‖ ‖ ‖, (2.1)

where, from left to right, the indices refer respectively to the output frequency, the higher

input frequency, and the lower output frequency, and ‖ and ⊥ correspond respectively to

directions in the surface plane and perpendicular to the surface. In the case of second-

harmonic generation, which is the case of interest to us in the following, χ‖⊥‖ = χ‖ ‖⊥. It is

worth noting that for an isotropic surface the second-order nonlinear susceptibility tensor

elements that are allowed by symmetry to be non-zero include χ⊥⊥⊥, χ‖⊥‖, and χ‖ ‖⊥,

whereas for an isotropic surface, χ‖ ‖ ‖ = 0. Hence, the element χ‖ ‖ ‖ is often referred to as

the anisotropic element.

Several groups have published second-harmonic spectra of the Si(111)7×7 surface [91, 92,

93, 94, 95]. The spectra are all consistent in their basic features. One such spectrum taken at
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Figure 2.3: SHG spectrum of the magnitude of the anisotropic nonlinear susceptibility
element χ

(2)
‖ ‖ ‖ of the Si(111)7×7 surface in a range of fundamental photon energies of about

1.2 to about 1.7 eV at a temperature of 80 K (From reference [91]).

the same temperature as the experiments to be described below is shown in Figure 2.3. The

SH spectrum of Si(111)7×7 is dominated by a broad feature extending from a fundamental

photon energy below 1.0 eV to about 1.6 eV and a narrower feature extending from a

fundamental photon energy of about 1.6 eV to about 1.8 eV. The broad feature from

1.0 to 1.6 eV disappears upon adsorption of atomic hydrogen, but the feature at 1.7 eV

(corresponding to a second-harmonic photon energy of 3.4 eV) shows little sensitivity to the

adsorption of hydrogen. A similar feature is seen in SHG spectra of the hydrogen-terminated

Si(111)1×1 structure [96]. Theoretical calculations of the SHG spectrum expected from the

H-terminated Si(111)1×1 surface (a surface with a unit cell of a single atom and so more
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amenable to calculation than the Si(111)7×7 surface) indicate that this feature arises from

the surface-modified bulk states. A two-photon resonance at a second-harmonic energy of

about 3.4 eV is also seen in SHG spectra of the Si(100) surface [91, 95, 97]. Moreover, the

bulk E1 transition between the uppermost valence and lowest conduction bands is at 3.4

eV [98]. All of these observations indicate that the feature seen at a fundamental photon

energy of 1.7-eV in the SHG spectra of the Si(111)7×7 surface has little to do with the

adatom dangling bonds but is due to a two-photon transition of the strained bulk structure

near the surface or between the S3 and U2 bands arising from the bonding and antibonding

states of the adatom backbonds. In contrast, the extreme sensitivity of the lower energy

resonance between 1.0 and 1.6 eV indicates that this feature is due to transitions involving

the adatom dangling bonds. From Table 2.1, the sum of the dispersion widths and the

photoemission linewidths minus the resolution for S2 and U1 indicate that one would expect

transitions between these bands to occur for energies from about 1.0 to about 1.8 eV. As

with electron energy loss spectra in the range from 1.0 to 1.7 eV, the correspondence of the

energy range of the feature in the SHG spectrum to the range of energy differences between

the S2 and U1 bands shown in Figure 2.2 indicates that the lower-energy feature in the SHG

spectrum is likely due to transitions between the S2 and U1 bands.

2.2 Ultrafast Electron Dynamics at the Si Surface

Although the surface electronic structure and the corresponding second-harmonic gener-

ation spectra of the Si(111)7×7 surface have been characterized in some detail, as noted

in Chapter 1 the intrinsic dephasing processes are much more difficult to determine at a

surface. To date, there have been a limited number of studies of ultrafast electron dynamics

at Si surfaces, and most of these studies have focused on incoherent (population) electron

dynamics. Transient-grating techniques have been used to probe the near-surface region

of silicon [99]. However, these measurements do not actually address what happens at the

surface, particularly in the surface states, but rather probe the bulk within a distance from

the surface equal to about a reduced optical wavelength. Early two-photon photoemission

experiments on Si(100) probed electron dynamics on the picosecond to tens of picoseconds
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timescales [100, 101]. Only recently have experiments been performed with subpicosecond

resolution at the Si(100) surface [102, 103].

Measurements of subpicosecond carrier dynamics at the Si(111)7×7 surface by U. Höfer

and his collaborators include the only prior study of coherent electronic dynamics at a

silicon surface [15, 104, 105]. Using 800 nm radiation, Voelkmann, et al. measured a

fourth-order transient-grating signal at the Si(111)7×7 surface [15, 105]. However, since

the estimated homogeneous dephasing time of only 20 fs yields a photon-echo decay time

of 5 fs, even with their 14 fs pulses, an echo signal could not be clearly distinguished,

and it was difficult to determine the dephasing time. In such a case, the choice of a

population grating complicates matters, since the observed signal arises from both phase

and population gratings. Moreover, the energies available even from their cavity-dumped

Ti:sapphire oscillator operated at the reduced repetition rate of 10 MHz were so limited

that the range of carrier excitation densities studied was limited to a single point.

2.3 Theory of Second-Harmonic Hole Burning

By using the 100 fs output of a regeneratively amplified Ti:sapphire laser system and OPA,

we have access to pulses that, despite their broad bandwidth, have narrow bandwidth

compared to the spectral features of interest, as is required for hole-burning spectroscopy,

yet (as will be seen later) are still shorter than the timescales of the population dynamics of

the surface transitions around 1.5 eV. These considerations make spectral hole burning an

attractive option for obtaining a clearer measurement of ultrafast dynamic dephasing at a

surface than can readily be obtained with photon-echo measurements. Moreover, the large

pulse energies produced by such a system allow us to explore a range of pump fluences so

as to investigate the effect of changing charge-carrier densities on the electronic dephasing.

Before going into mathematical details of the analysis of hole burning, we discuss some

general issues in hole burning and photon-echo spectroscopy, to which hole burning is re-

lated, at a surface. In its simplest manifestation, photon-echo spectroscopy from a bulk

sample is a two-pulse experimental technique in which a first pulse (at time 0) of length

shorter than the homogeneous dephasing time T2 excites a coherent polarization of the
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medium and a second short (again compared T2) pulse at time T leads to a reversal of the

temporal evolution of the system so that the polarization of the medium becomes rephased

(or echoes) at time 2T . This echo is manifested in a pulse of radiation at time 2T . At

sufficiently low excitation intensities that a perturbation expansion of the material response

can be terminated at third order in the fields, a photon echo is described in terms of one

interaction between the medium with the first pulse field and a pair of interactions between

the medium and the second pulse field. Spectral hole burning in a bulk sample is also a two

pulse technique. However, in the case of hole burning, one uses a pair of pulses of band-

width narrower than 1/T2 (In elementary descriptions, continuous wave fields are typically

assumed). In this case, one measures not an echo at a delayed time but rather the change

produced by the first (pump) pulse in the material response (absorption) to the second

(probe) pulse as a function of the spectral detuning of the probe relative to the pump.

This process can be described as the modification of the first-order response of the medium

to the probe by the pump. In a perturbation expansion of the material response that is

limited to third order, one can regard this process as arising from two interactions between

the medium and the pump field and a single interaction between the medium and the probe

field. The generation of a photon echo is a fully coherent process, while the hole-burning

signal is largely incoherent. However, as will be seen below, both photon echo and spectral

hole burning can be treated by the same, unified formalism. The basic difference between

the two techniques is in the timescales of the pulses used and the parameters that are tuned.

In photon-echo spectroscopy one must use pulses short compared to T2 and vary their delay,

while in hole-burning spectroscopy one must use pulses long compared to T2 and vary their

detuning.

In many cases, photon echoes and spectral hole burning at a surface can be treated

exactly like their bulk counterparts. As noted in Chapter 1, in terms of perturbation

expansions of the material response, one must go one order higher at a surface compared to

the bulk to get the same dynamic or spectral information. Suppose that we are dealing with

a two-level system with resonant frequency ωba in both the bulk and at the surface. One

way to look at photon-echo spectroscopy at a surface is that (at least) a pair of input pulses
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of carrier frequency ω1 ≈ ωba produce a rephasing in the surface and bulk polarization at

ωba at time 2T . At time 2T there will be an echo of coherent radiation at frequency ωba from

both the bulk and the surface. By the simple two-pulse photon-echo approach, the echo at

frequency ωba from the surface will be overwhelmed by the echo from the bulk. However, a

third pulse at carrier frequency ω2 and time 2T that spatially overlaps the other pulses will

interact with the (polarized) material to yield a fourth-order response at frequency ω2+ωba.

The pulse at ω2 will upconvert the surface polarization at ωba to ω2+ωba. Since this response

is even-order (at least fourth-order) in the input fields, the echo signal observed at ω2 +ωba

will be due to the surface alone (in the dipole approximation). Likewise, for a surface hole-

burning signal, instead of measuring the change in absorption of a probe pulse at frequency

ω2 due to a pump pulse at ω1, which would be due overwhelmingly to the bulk response, one

can look at the change in second-harmonic generation of the probe (ωSHG = 2ω2). Again,

this can be viewed as a selective upconversion of the surface polarization at ω2 to 2ω2.

More generally, one can observe photon echoes from the bulk (surface) using more than

two (three) pulses and spectral holes using more than two pulses. In the lowest orders of

perturbation theory that can account for these phenomena (third order for bulk and fourth

order for surfaces) one can use three (four) separate input fields to observe these processes

from the bulk (surface).

2.3.1 Continuous-Wave Treatment

We gain a basic understanding of transient second-harmonic hole burning by following the

traditional, continuous-wave analysis of bulk hole burning in terms of a system consisting of

an inhomogeneous distribution of oscillators with homogeneous Lorentzian lineshapes [4].

In this picture, we regard the second harmonic of the probe as being generated by a second-

order process involving a second-order nonlinear susceptibility modified by the pump. In

the absence of a pump pulse, the probe second harmonic in reflection from a surface is given

by

I(2ω) =
32π3ω2sec2θ2ω

c3ε1(ω)ε1/2
1 (2ω)

∣∣∣χ(2)
eff (2ω; ω)

∣∣∣
2
I2(ω), (2.2)
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Figure 2.4: Energy level scheme used to model the second-harmonic hole-burning response
of the Si(111)7×7 surface at fundamental pump and probe photon energies of about 1.5 eV.
Solid arrows represent optically allowed transitions. Wavy arrows represent relaxation path-
ways. The model is explained in the text.

where ε1 indicates the dielectric function of the medium from which the fundamental beam

is incident and θ2ω is the angle of the second-harmonic beam in reflection [6]. The effec-

tive second-order susceptibility of the surface is related to the second-order susceptibility

χ(2)(2ω; ω) by

χ
(2)
eff (2ω;ω) =

[↔
L (2ω) · ê2ω

]
· ↔χ(2)

(2ω; ω) :
[↔
L (ω) · êω

] [↔
L (ω) · êω

]
, (2.3)

where
↔
L and ê denote respectively the tensorial Fresnel factor and the unit polarization

vector for the corresponding field.

In general, the second-order susceptibility is a sum of various contributions, both resonant

and nonresonant, and it helps to have a particular model in mind. Based on the surface

states depicted in Figure 2.2 and the SHG spectrum shown in Figure 2.3, we adopt the model

shown in Figure 2.4. The levels |a〉 and |a′〉 represent the occupied states of the system

out of which optical transitions can be made using radiation at about 1.5 eV, namely the

rest-atom dangling-bond band S2 and the adatom back-bond band S3. Levels |b〉 and |b′〉
represent the unoccupied states into which these electronic transitions occur, namely the

unoccupied adatom dangling-bond band U1 and the unoccupied adatom back-bond band
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U2. Level |i〉 represents virtual states involved in the nonresonant steps in the SHG process.

The transition from |a〉 to |b〉 models the transitions giving rise to the broad one-photon

resonance observed below a fundamental photon energy of 1.6 eV in the SHG spectrum of

the Si(111)7×7 surface, and the transition from |a′〉 to |b′〉 models the surface transitions

giving rise to the two-photon-resonance feature observed at fundamental photon energies

just above 1.6 eV in the SHG spectrum of the surface [91]. For our present discussion,

the important features of this model are that there are two uncoupled sets of energy levels

giving rise to SHG: the unprimed levels, which yield SHG through a one-photon resonance,

and the primed levels, which yield SHG through a two-photon resonance.

If we assume that the frequency ω is in the vicinity of a single one-photon resonance at

frequency ωba and that there is no inhomogeneous broadening of the resonance at ωba, then

the susceptibility can be written as

χ(2)(2ω; ω) = χ(2)
res(2ω;ω) + χ

(2)
NR(2ω; ω), (2.4)

where

χ(2)
res(2ω; ω) = A

η∆ρ

ω − ωba + iΓba
(2.5)

is the resonant contribution of interest, A is a constant, ∆ρ = ρaa − ρbb, ρaa and ρbb are

the populations of the lower and upper states of the resonant transition, η is the number

density of oscillators at frequency ωba, and χ
(2)
NR includes all other resonant and nonresonant

contributions to the second-order susceptibility (i.e., the two-photon resonance between

levels b′ and a′ of Figure 2.4).

We now add a pump beam. We assume that only the resonance at ωba is affected by the

pump, while χ
(2)
NR is unaffected. In the case that we use short pulses and do not temporally

overlap the pump and probe, the effect of the pump is merely to modify the populations

ρaa and ρbb, so that in the presence of the pump,

χ(2)(2ωpr; ωpr; ωpu) = χ(2)
res(2ωpr;ωpr;ωpu) + χ

(2)
NR(2ωpr;ωpr), (2.6)

where

χ(2)
res(2ωpr;ωpr;ωpu) = A

η∆ρ(ωpu)
ωpr − ωba + iΓba

, (2.7)

28



∆ρ(ωpu) = ∆ρ(0)

/ (
1 +

Γ2
baI/Is

(ωpu − ωba)2 + Γ2
ba

)
, (2.8)

IS = ch̄2Γba

/ [
8πn(ωpu)|~µba · êωpu |2T1

]
is the saturation intensity, n(ωpu) is the index of

refraction at the pump frequency, µba is the transition dipole matrix element, êωpu is the

unit vector in the direction of the pump electric field, and T1 is the population relaxation

time [4]. (Note that there is a logical inconsistency in stipulating that two continuous

wave beams do not overlap temporally. The artifice of not overlapping the beams is merely

used to neglect coherent effects that arise from their overlap. However, for I/IS
<∼ 1 these

coherent effects are small [4].) In the case of a pump intensity well below the saturation

intensity, i.e., I/Is ¿ 1, the population difference becomes

∆ρ(ωpu) = ∆ρ(0)

(
1− Γ2

baI/Is

(ωpu − ωba)2 + Γ2
ba

)
. (2.9)

We further assume that any effect of the pump on the Fresnel factors is negligible, in which

case we can write

χ
(2)
eff (2ωpr; ωpr; ωpu) =

[↔
L (2ωpr) · ê2ωpr

]
· ↔χ(2)

(2ωpr;ωpr;ωpu)

:
[↔
L (ωpr) · êωpr

] [↔
L (ωpr) · êωpr

]
. (2.10)

We now consider an inhomogeneous distribution g(ωba) of resonant frequencies ωba. The

resonant contribution of interest in the second-order susceptibility becomes the integral over

the inhomogeneous distribution of χ
(2)
res in the absence of inhomogeneous broadening

χ(2)
res(2ωpr;ωpr;ωpu) = A η ∆ρ(0)

∞∫

−∞
dωba g(ωba)

1
ωpr − ωba + iΓba

(
1− Γ2

baI/Is

(ωpu − ωba)2 + Γ2
ba

)
,

(2.11)

If the distribution g(ωba) is much broader than Γba, then we can pull the term g(ωba) outside

the integral:

χ(2)
res(2ωpr;ωpr; ωpu) = Aη ∆ρ(0)g(ωpu)

∞∫

−∞
dωba

1
ωpr − ωba + iΓba

(
1− Γ2

baI/Is

(ωpu − ωba)2 + Γ2
ba

)
.

(2.12)

The preceding integral is easily evaluated, and we obtain

χ
(2)
eff (2ωpr;ωpr;ωpu) = χ

(2)
NR, eff(2ωpr; ωpr) + (2.13)

χ
(2)
res, eff, 0(2ωpr; ωpr)

{
1− i

I

Is

Γba

ωpr − ωpu + i2Γba

}
,
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where χ
(2)
res, eff, 0(2ωpr;ωpr) is the effective second-order nonlinear susceptibility in the absence

of the pump beam. Hole burning is found to yield a deviation from the unpumped nonlinear

susceptibility characterized by a Lorentzian line with a half width at half maximum of 2Γba.

The preceding yields the basic result for spectral hole burning of the second-order non-

linear susceptibility. However, the derivation is based on a steady-state approach. For a

better understanding of transient hole burning at a surface, one should implement a formal-

ism using time-domain response functions. A fully coherent treatment in the time domain

also illustrates the connections between hole burning and photon-echo spectroscopy and the

limitations of hole-burning spectroscopy.

2.3.2 Transient Second-Harmonic Hole Burning

The theoretical framework for understanding transient second-harmonic hole burning at

a surface that is presented here is drawn from the established theory for bulk hole burn-

ing [5, 106, 107]. The approach is based on an expansion of the density operator in powers

of the field-matter interaction. Between interactions, the evolution of the density matrix

is determined by the system and system-bath interaction Hamiltonians. Once the value

of the density matrix at a given time is known, the material polarization is also known.

The polarization can be formally expressed in terms of a response function that relates the

polarization to the electric field at the sample. Even if the system Hamiltonian is known,

the system-bath interaction presents a major impediment to a detailed calculation of the

evolution of the system. However, we can find a solvable model that still illuminates general

features of hole burning and other spectroscopic techniques. For the system Hamiltonian,

we use the simple model of Figure 2.4 in Section 2.3.1, which captures the essential features

seen in second-harmonic and sum-frequency spectroscopy of the Si(111)7×7 surface. By

modelling the system-bath interaction through a stochastic variation of the system eigen-

frequencies, we can treat phenomena on a wide range of timescales and thereby move beyond

the assumption that the timescales of the system-bath interaction are either much shorter

or much longer than all relevant experimental timescales, in contrast to the continuous-wave

derivation above. We can characterize the polarization of the system in terms of correlation
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functions of matrix elements of the dipole operator for both transient hole burning and

photon-echo spectroscopy, which illustrates their similarities and differences. By assuming

perturbations of the system by the bath to be strictly separated into very fast (compared to

the field envelopes) and very slow (compared to all experimental timescales) perturbations

and making similar assumptions as were made in the continuous-wave derivation of hole

burning, we obtain the same basic result as we found in the preceding treatment.

General Formalism

The temporal evolution of the density operator, ρ̂, under the Hamiltonian, Ĥ is described

by the Liouville equation:
dρ̂

dt
= − i

h̄
[Ĥ, ρ̂]. (2.14)

We write the Hamiltonian as

Ĥ(t) = Ĥ0 + Ĥint(t) + Ĥsb(t), (2.15)

where Ĥ0, Ĥint(t), and Ĥsb(t) represent respectively the Hamiltonians of the system, which

is assumed to be exactly solvable; the field-matter interaction; and the interaction between

the system and the bath. We begin by setting Ĥsb(t) = 0. We make the dipole approxima-

tion for the interaction Hamiltonian:

Ĥint(t) = −E(~r, t) · µ̂, (2.16)

where E(~r, t) is the perturbing electric field and µ̂ is the dipole operator. We expand the

density operator in powers of the perturbing field:

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2)(t) + ρ̂(3)(t) + · · · . (2.17)

From the Liouville equation, we find that ρ̂(n)(t) is related to ρ̂(t0) by

ρ̂(n)(t) =
(

i

h̄

)n
t∫

t0

dτn

τn∫

t0

dτn−1 · · ·
τ2∫

t0

dτ1E(~r, τn)E(~r, τn−1) · · ·E(~r, τ1)

×Û(0)(t, t0) [µ̂I(τn), · · · [µ̂I(τ2), [µ̂I(τ1), ρ̂(t0)]] · · ·] Û †
(0)(τt, t0), (2.18)

where

µ̂I(τ) = Û †
0(τ, t0)µ̂Û0(τ, t0) (2.19)
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and Û0(t2, t1) is the time-evolution operator with respect to the system Hamiltonian:

Û0(t2, t1) = exp+


− i

h̄

t2∫

t1

dt Ĥ0


 . (2.20)

The + sign in Eq. (2.20) indicates the positive-time-ordered exponential, i.e., for each term

in the power series expansion of the operator, each Ĥ0(tn) occurs temporally after all Ĥ0(ti)

terms to its right. In terms of this formal expression for the nth-order contribution to the

density operator, we can write a formal expression for the nth-order polarization.

The material polarization is given by

P (~r, t) = η Tr[µ̂ρ̂(t)], (2.21)

where η is the number density of particles constituting the system. From this point onward,

we will generally dispense with explicitly writing vectors and tensors as such. The vector or

matrix character of fields, matrices and operators can always be accounted for later. The

nth-order contribution to the polarization is then given by

P (n)(~r, t) =
∞∫

0

dtn

∞∫

0

dtn−1 · · ·
∞∫

0

dt1R
(n)(tn, tn−1, . . . , t1)E(~r, t− tn)

×E(~r, t− tn − tn−1) · · ·E(~r, t− tn − tn−1 − · · · − t1), (2.22)

where R(n)(tn, tn−1, . . . , t1) is the nth-order response function, which is given by

R(n)(tn, tn−1, . . . , t1) = η

(
i

h̄

)n

Tr {µ̂I(t) [µ̂I(t− tn), [µ̂I(t− tn − tn−1),

· · · [µ̂I(t− tn − tn−1 − · · · − t1), ρ̂(−∞)] · · ·]]} . (2.23)

In Eqs. (2.22) and (2.23), we have switched the temporal variables to the time between

interactions, i.e., ti = τi+1 − τi, and we have set t0 → −∞, at which time the system is

in equilibrium and no pulses have yet arrived. Note that one can see explicitly that the

nth-order nonlinear response function is directly related to a sum of (n+1)-point correlation

functions of the dipole operator µ̂I .

In the case of second-harmonic hole-burning spectroscopy we are interested in the second-

harmonic signal of a probe fundamental beam as a function of the arrival time of the probe
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pulse at the sample relative to the arrival time of a pump pulse. Assuming plane-wave

fields, we write the pump and probe electric fields as

Epu(~r, t) = Epu(t)ei(~kpu·~r−ωput) + c.c. (2.24)

and

Epr(~r, t) = Epr(t)ei(~kpr·~r−ωprt) + c.c., (2.25)

with the envelope functions Epu(t) and Epr(t) describing pulses. The total field appearing

in Eq. (2.22) is

E(~r, t) = Epu(~r, t) + Epr(~r, t). (2.26)

We can now write for the fourth-order contribution to the polarization with wave vector

2~kpr

P (4)(2~kpr, t) = ei(2~kpr·~r−2ωprt)

∞∫

0

dt4

∞∫

0

dt3

∞∫

0

dt2

∞∫

0

dt1R
(4)(t4, t3, t2, t1)

×
[
ei(2ωprt4+ωprt3−ωput1)Epr(t− t4)Epr(t− t4 − t3)Epu(t− t4 − t3 − t2)

×E∗pu(t− t4 − t3 − t2 − t1) + other time orderings
]
. (2.27)

The meaning of the various temporal variables is illustrated in Figure 2.5, where for later

reference we illustrate the most general case in fourth-order spectroscopy of four separate

pulses (For second-harmonic hole burning we will treat the case in Figure 2.5 of τpump =

τprobe = 0, Epump,1 = Epump,2 ≡ Epu, and Eprobe,1 = Eprobe,2 ≡ Epr). Henceforth, we shall

drop the argument 2~kpr of the nonlinear polarization and assume it to be understood. In the

following, our task will be the calculation of the fourth-order nonlinear response function

R(4)(t4, t3, t2, t1) or, equivalently, the corresponding five-point correlation function of the

dipole operator.

Model Hamiltonian

We now analyze the fourth-order polarization in terms of a simplified model for the elec-

tronic levels and transitions at the Si(111)7×7 surface presented in Figure 2.4. The system

Hamiltonian is

Ĥs =
∑

ν=a,a′,b,b′,i
h̄ων |ν〉〈ν|. (2.28)
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Figure 2.5: Electric-field envelopes and temporal variables for a fourth-order process involv-
ing four separate pulses. In the case of spectral hole burning, there are only two separate
pulses, and τpump = τprobe = 0.

The interaction Hamiltonian is

Ĥint(t) = E(t)
(
µba|b〉〈a|+ µib|i〉〈b|+ µia|i〉〈a|+ (2.29)

µb′a′ |b′〉〈a′|+ µia′ |i〉〈a′|+ µib′ |i〉〈b′|
)

+ c.c.

At this point we take the system-bath interaction Hamiltonian Ĥsb to be nonzero and

model the effect of this perturbation as a sum of a dissipative term and a term representing

a stochastic shift h̄∆ν(t) in the energies h̄ων of the eigenstates |ν〉:

Ĥsb(t) =
∑

ν=a,a′,b,b′
h̄(∆ν(t)− i

γν

2
)|ν〉〈ν|, (2.30)

where ∆ν(t) is a random function, while γν accounts for relaxation of population from level

|ν〉 [106, 107]. This model, specifically the stochastic variation of the eigenfrequencies by

∆ν(t), is chosen because it provides a straightforward means of accounting for dephasing

processes on arbitrary timescales, as will be seen below [108]. The terms γν give rise to the

population damping traditionally characterized by the time T1 and the dephasing to which

such population damping gives rise, while the terms ∆ν(t) give rise to pure dephasing. (To
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get an idea of how such a Hamiltonian can represent the physical process of dephasing, we

consider the example of collisions in an atomic vapor. One way to look at the effect of

an elastic collision is as a rapid shift in the positions of the energy levels of the outermost

electronic orbitals due to their deformation by the interaction with the other atom(s) during

the course of the collision. In the elastic case, no energy relaxation takes place; all that

occurs is a change in the phase of oscillations of the atoms at their resonant frequencies

relative to the case in which no collision takes place and phase evolves only due to the

temporal evolution imposed by the system and interaction Hamiltonians. This change in

phase relative to the bath-free evolution results in a loss of coherence because collisions

occur randomly. In a collision-broadened vapor, these collision-induced shifts in phase

account for the homogeneous dephasing time T2.) We take γa = γa′ = 0, as |a〉 and |a′〉
represent the fully occupied states of the system in the ground state. It is assumed that the

only processes that produce significant fourth-order response are those that are maximally

resonant, i.e., those that create a fourth-order coherence in the density operator through

three resonant steps. This is a reasonable assumption given the expected weakness of a

fourth-order response. This means that only levels |a〉 and |b〉 are involved in the fourth-

order response, whereas both processes shown in Figure 2.4 contribute to the second-order

response.

The preceding system-bath interaction Hamiltonian accounts for the evolution of the

phase of a system due to both population decay and pure dephasing, but it does not fully

account for the evolution of the population of the system. Although population decay

terms are included, we have not specified to where the population decays. Specifically, the

Hamiltonian does not account for the stipulation in our model that population in state |b〉
decays to state |a〉. Although we can properly account for such decay by adding off-diagonal

terms to the system-bath interaction Hamiltonian, for calculating the evolution of diagonal

terms of the density matrix, it is easier to simply work with a master equation for those

terms:
d

dt
ρaa = − d

dt
ρbb = γbρbb(t), (2.31)
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for which the solutions are

ρaa(t) = ρaa(0) + (1− e−γbt)ρbb(0)

ρbb(t) = e−γbtρbb(0). (2.32)

The Fourth-Order Nonlinear Response Function

In light of the preceding model, for a probe pulse arriving after the pump pulse, all of

the triply resonant processes that can contribute to the fourth-order polarization in the

direction of the probe second harmonic are shown in Figure 2.6. To be specific, in the case

of hole burning, we take the two pump field envelopes to overlap in time and be peaked at

time t = 0, while the two probe field envelopes are also taken to overlap in time and peak

at a later time t = T . For the present, we leave the pulse lengths unspecified other than

stipulating that the pump and probe pulses do not overlap. In the general case of fourth-

order photon-echo spectroscopy, which can be treated by the same formalism outlined below

for fourth-order hole burning, one would temporally (and usually spatially) separate all of

the pulses, as illustrated in Figure 2.5. Of the diagrams shown in Figure 2.6, only diagrams

(a) and (b) produce the rephasing that is characteristic of techniques such as hole burning

and photon echoes (Rephasing will only occur if there are two periods in which the phase

of the density matrix evolves oppositely, e.g., a period in which the system is described by

the coherence ρab and another period in which it is described by the coherence ρba). These

rephasing processes dominate the others, which will be neglected in our calculations. The

two rephasing diagrams yield the following contribution (labelled with the subscript 1γ to

indicate that it is due to processes involving the one-photon resonance between states |a〉
and |b〉) to the fourth-order response function:

R
(4)
1γ (t4, t3, t2, t1) = η µaiµibµbaµabµba

(
i

h̄

)4

〈Gia(t4 + t3 + t2 + t1, t3 + t2 + t1)

×Gba(t3 + t2 + t1, t2 + t1) [ Gbb(t2 + t1, t1) + Gaa(t2 + t1, t1) ]Gab(t1, 0)〉, (2.33)

where Gmn(tj , ti) describes the evolution of the density operator |m〉〈n| (or equivalently

the density operator matrix element ρmn) from time ti to time tj under the interaction of

the system and system-bath interaction Hamiltonians. For resonantly excited off-diagonal
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Figure 2.6: Double-sided Feynman diagrams contributing to the fourth-order response func-
tion of the system shown in Figure 2.4.

elements (m 6= n), these terms are determined by substituting Eqs. (2.19) and (2.20) into

Eq. (2.23):

Gmn(tj , ti) = 〈m|Û(tj , ti)|m〉〈n|Û †(tj , ti)|n〉

= 〈m|exp−


 i

h̄

tj∫

ti

dt
(
Ĥs + Ĥ†

sb

)

 |m〉〈n|exp+


+

i

h̄

tj∫

ti

dt
(
Ĥs + Ĥsb

)

 |n〉,(2.34)

where exp− indicates a negative time-ordered exponential. The response of the system to

far-off-resonance excitation is assumed to be instantaneous. The evolution of the diagonal

terms is determined from the master equation (2.31). The angled brackets in Eq. (2.33)

indicate a trace over the stochastic processes modelling the system-bath interaction. Via
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the equivalence of temporal and ensemble averages, this trace is equivalent to a trace over

the states of the system and bath.

To include the fact expressed in the master equation (2.31) that population decays from

the state |b〉 to the state |a〉, we must add to the sum Gbb(t2 + t1, t1) + Gaa(t2 + t1, t1) in

the square brackets of Eq. (2.33) a term −Gaa,bb(t2 + t1, t1) that describes the decay of the

population |b〉〈b| in the diagram of Figure 2.6a to |a〉〈a|. (The minus sign arises from the

fact that the evolution of this term is determined initially by the first two interactions of

the diagram of Figure 2.6a and then, after relaxation from |b〉〈b| to |a〉〈a|, by the evolution

specified after the first two interactions of Figure 2.6b. In terms of the translation of

a Feynman diagram to a mathematical equation, each interaction from the left carries

a factor of −1 compared to a factor from the right, and this extra term has three such

interactions on the bra side of the density matrix, rather than the two such interactions in

Figures 2.6a and 2.6b.) From the solution (Eq. (2.32)) of the master equation (2.31), we see

that Gaa(tj , ti) = 1, Gbb(tj , ti) = exp [−γb(tj − ti)], and Gaa,bb(tj , ti) = 1− exp [γb(tj − ti)].

Therefore,

Gaa(t2 + t1, t1) + Gbb(t2 + t1, t1)−Gaa,bb(t2 + t1, t1) = 2e−γbt2 . (2.35)

There are two types of off-diagonal terms whose evolution is of interest: the non-resonant

coherences ρia and the resonant coherences ρba. As noted above, for the non-resonant

coherences we assume an instantaneous response

Gia(tj , ti) = g δ(tj − ti). (2.36)

The evolution of the resonant terms of the density matrix are determined by using the

model Hamiltonians of the previous section in Eq. (2.34):

Gmn(t2, t1) = θ(t2 − t1) exp

[
− (γm/2 + γn/2)(t2 − t1) (2.37)

−i(ωm − ωn)(t2 − t1)− i

h̄

t2∫

t1

dt h̄
(
∆m(t)−∆n(t)

)]
,

where θ(t) is the Heaviside step function

θ(t) =





1 , t > 0

0 , t < 0
. (2.38)
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Inserting Eqs. (2.35), (2.36), and (2.37) into Eq. (2.33) yields

R
(4)
1γ (t4, t3, t2, t1) = Aδ(t4) e−γbt2 e−γb(t1+t3)/2e−iωba(t3−t1)C(t3, t2, t1), (2.39)

where A = 2η µaiµibµbaµabµba

(
i
h̄

)4
g, and

C(t3, t2, t1) =

〈
exp



−i




t3+t2+t1∫

t2+t1

dτ ∆ba(τ)−
t1∫

0

dτ ∆ba(τ)








〉
. (2.40)

Comparison with Eq. (2.23) shows that C(t3, t2, t1) is just the five-point correlation func-

tion of the dipole operator, except that we have stripped out all constants and the time-

dependent terms that do not originate from the system-bath interaction Hamiltonian. In

general, a fourth-order process measures a five-point correlation function, but our assump-

tion of an instantaneous response to the nonresonant fourth field term means that, for our

model, the fifth point is equal to the fourth point (i.e., t4 = 0), which reduces the corre-

lation function to a four-point correlation function (described by three delays t1, t2, and

t3). By stripping out the exponential decay due to the system Hamiltonian, we are left

with a function that describes the evolution of the correlations of the dipole operator due

to the interactions of the system with the bath. In particular, if the autocorrelation of the

function ∆ba(τ) decays on a timescale much longer than t3 + t2 + t1, then

C(t3, t2, t1) ≈
〈

exp



−i∆ba(0)




t3+t2+t1∫

t2+t1

dτ −
t1∫

0

dτ








〉

= 〈exp {−i∆ba(0) [((t3 + t2 + t1)− (t2 + t1))− ((t1)− 0)]}〉

= 1, (2.41)

and there is no significant loss of coherence due to interactions of the system with the bath.

To go further we need to make assumptions about the stochastic fluctuations in the

system eigenfrequencies produced by the bath. We suppose that the perturbations of the

bath can be split into processes on three timescales:

∆ba(t) = ∆s(t) + ∆i(t) + ∆f (t), (2.42)

where the functions labelled s, i, and f refer respectively to slow perturbations with cor-

relation times that are much longer than all relevant experimental timescales, intermediate
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perturbations with correlation times shorter than the time between pump and probe pulses

but longer than the pump and probe pulse lengths, and fast perturbations with correla-

tion times much shorter than all pulse lengths. We assume that the slow coordinates are

uncorrelated with the intermediate and fast ones, in which case

C(t3, t2, t1) =
〈
e−i∆s(t3−t1)

〉
∆s

CD(t3, t2, t1), (2.43)

where CD(t3, t2, t1) is the dynamic four-point correlation function

CD(t3, t2, t1) =

〈
exp



−i




t3+t2+t1∫

t2+t1

dτ (∆i(τ) + ∆f (τ))−
t1∫

0

dτ (∆i(τ) + ∆f (τ))








〉
.

(2.44)

To understand the significance of Eq. (2.43), we note that the slow variables can include

static contributions to the system-bath interaction. Static perturbations account for such

effects as the Doppler width of an atomic vapor or the different local environments of im-

purities in a crystal, two traditional inhomogeneously broadened systems. Eq. (2.43) shows

that in the optical processes considered here, the effects of inhomogeneous broadening are

eliminated at t3 = t1. For |t3 − t1| greater than the width of the instantaneous distribution

of the slow coordinates, the rapidly oscillating term e−i∆s(t3−t1) averages to zero. Physically,

oscillators in different environments (and consequently having different resonant frequen-

cies) can only oscillate coherently with one another for a time corresponding to the inverse

of the total width of the resonant feature constituted by those oscillators. In the case of an

inhomogeneously broadened system, this width is dominated by essentially static perturba-

tions by the bath. If the evolution of the individual oscillators induced by an initial resonant

excitation is reversed, then at t3 ≈ t1, the oscillators at different frequencies (in different

local environments) will all be in phase as long as oscillators at each frequency have not yet

decohered with oscillators at the same frequency (irreversible decoherence). The oscillators

at different frequencies can all radiate coherently at this time (t3 ≈ t1). However, after a

time corresponding to the inverse of the frequency-domain width of the static distribution

of coordinates the oscillators at different frequencies will again be out of phase with one

another. In other words, an inhomogeneously broadened system rephases at t3 ≈ t1, but

the resulting echo only lasts for a time of about the inverse inhomogeneous linewidth, as is
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known from derivations of the photon echo starting from the optical Bloch equations [18].

Interaction between the probe field and the material excitation at this time will basically

upconvert the rephased polarization and create a material polarization at 2ωpr that gives

rise to the detected signal at 2ωpr. We assume that the system is predominantly inhomo-

geneously broadened within the spectral range of interest, as this is the expected case for

the Si(111)7×7 surface, given the different local environments of the different adatoms and

the broad linewidth (of order 1 eV) of the feature around a fundamental photon energy of

1 eV in the second-harmonic generation spectrum of Si(111)7×7. For simplicity, we treat

the system as having a uniform instantaneous distribution gs of values of ∆s(t), in which

case Eq. (2.43) becomes

C(t3, t2, t1) = gsδ(t3 − t1) CD(t3, t2, t1). (2.45)

This is equivalent to the assumption in the continuous wave case that the distribution

g(ωba) is much broader than the homogeneous linewidth Γba and so can be pulled outside

the integral in Eq. (2.12). Finally, inserting Eq. (2.45) in Eq. (2.39), we obtain for the

fourth-order response function

R
(4)
1γ (t4, t3, t2, t1) = Ags δ(t4)δ(t3 − t1) e−γbt2 e−γb(t1+t3)/2e−iωba(t3−t1)CD(t3, t2, t1). (2.46)

Inserting the preceding in Eq. (2.27) and integrating over t4 and t3 yields for the fourth-order

polarization

P (4)(t) = ei2~kpr·~r
∞∫

0

dt2

∞∫

0

dt1Ags e−γbt2 e−γb t1CD(t1, t2, t1) (2.47)

×ei(ωpr−ωpu)t1Epr(t)Epr(t− t1)Epu(t− t2 − t1)E∗pu(t− t2 − 2t1).

Only at this point do we need to make assumptions about the pulse lengths. In particular,

for hole burning we assume that the pulse envelopes are long compared to the timescale of

the decay time of CD(t1, t2, t1) in t1. This will be seen below to be equivalent to assuming

that the pulse lengths are greater than the homogeneous dephasing time. (In contrast, in

the case of photon echoes, one tries to use pulses that are shorter than the decay time of

CD(t1, t2, t1) in t1.) From the perspective of the field envelopes, the decay of CD(t1, t2, t1)
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is virtually instantaneous at t1 ≈ 0, and the dependence of the fields on t1 can be neglected

in the integrand:

P (4)(t) = ei2~kpr·~rAgs E2
pr(t)

∞∫

0

dt2

∞∫

0

dt1 e−γb(t2+t1)CD(t1, t2, t1) ei(ωpr−ωpu)t1 |Epu(t− t2)|2 .

(2.48)

In contrast, for both hole burning and photon-echo spectroscopy, we assume that the

electric-field envelopes are short compared to the decay time of CD(t1, t2, t1) in t2. In

this case, the fields appear approximately as delta functions from the perspective of the

variation of CD(t1, t2, t1) in t2, so we can neglect the variation of CD(t1, t2, t1) with respect

to t2 in the integrand:

P (4)(t) = ei2~kpr·~rAgs E2
pr(t)



∞∫

0

dt2 |Epu(t− t2)|2

 e−γbT C̃ ′

D(ωpr − ωpu, T ), (2.49)

where

C̃ ′
D(ωpr − ωpu, T ) =

∞∫

0

dt1 ei(ωpr−ωpu)t1 e−γbt1CD(t1, T, t1) (2.50)

and T is the delay between the peaks of the pump and probe pulses as shown in Figure 2.5.

It is worth reiterating that our only assumptions about the pulse lengths regard their lengths

relative to the decay times of the correlation function CD(t1, t2, t1) in t1 and t2.

In the most general case of photon-echo spectroscopy, we use four separate pulses as

shown in Figure 2.5. The only difference in our assumptions about the pulse lengths is that

the field envelopes are assumed to be much shorter than the decay time of CD(t1, t2, t1) in

t1. If we approximate these short pulses by delta functions at times t = −τpu, 0, T, and

T + τpr (e.g., the last pulse would be given by Epr,2(t) = Eprδ(t − T − τpr)), respectively,

then at τpu = τpr = τ , Eq. (2.47) yields

P (4)(t) ∝ E2
pr|Epu|2δ(t− T − τ)e−γb(T+τ)CD(τ, T, τ). (2.51)

We will refer to the case in which the delay between the second and third pulses is nonzero

(T 6= 0) as the stimulated photon echo and the case of T = 0 as the simple photon echo,

as the latter is the case that is usually treated in elementary introductions to photon-echo

spectroscopy in which there is also no fourth input field since the case of usual interest is the
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photon echo from the bulk. As seen from Eqs. (2.49), (2.50), and (2.51), the contribution

of the fourth-order polarization to the hole-burning signal is simply proportional to the

Fourier transform with respect to τ of the product of exp(−γbτ) and the dynamic correlation

function CD(τ, T, τ) that appears in the fourth-order polarization of the photon echo.

To clarify the connection with simpler pictures of hole burning, as in Section 2.3.1, and

photon-echo spectroscopy, we consider the simple case of a system in which there is a strict

separation of timescales, so that the slow fluctuations in Eq. (2.42) for the system-bath inter-

action are static and the intermediate-timescale fluctuations are zero. If the random pertur-

bations ∆f are sufficiently weak, then for times t2−t1 À τc, where τc is the correlation time

of the fluctuations of ∆f , it can be shown that exp

[
− i

h̄

t2∫
t1

dt ∆f (t)

]
= exp [−(t2 − t1)/T2] ,

where T2 is the (homogeneous) dephasing time [108, 109]. ‡ This is just the traditional

picture of a Lorentzian homogeneous spectrum broadened into an inhomogeneous spectral

feature. In this case, Eq. (2.44) for the dynamic four-point correlation function yields

CD(t3, t2, t1) = e−(t3+t1)/T2 , (2.52)

and we can drop the variable t2. Inserting this in Eq. (2.50) yields (again dropping the

variable T )

C̃ ′
D(ωpr − ωpu) =

i

(ωpr − ωpu) + i (γb + 2/T2)
. (2.53)

Therefore, the fourth-order polarization in a hole-burning measurement is characterized by

a Lorentzian lineshape with a full-width at half-maximum of 4/T2. Likewise, we see from

Eq. (2.51) that the fourth-order polarization in a measurement of a photon echo is given by

P (4)(t) ∝ E2
pr|Epu|2δ(t− T − τ)e−γbT e−(γb+2/T2)τ . (2.54)

The signal that is detected (at time T + τ) in a photon-echo experiment is proportional

to
∣∣∣P (4)

∣∣∣
2
, so the photon-echo signal decays with respect to τ as e−(2γb+4/T2)τ . Excluding

‡This is a simple consequence of a perturbation analysis of the Liouville equation (Eq. (2.14)) in which the

Hamiltonian appearing in that equation is the Hamiltonian Ĥrand describing the random perturbations of

the system by the bath under the following set of assumptions: 1. the random perturbations are fluctuations

that average to zero (〈Ĥrand(t)〉 = 0); 2. the random processes are stationary ( ∂
∂t
〈Ĥrand(t)Ĥrand(t+τ)〉 = 0);

3. the random process are random with a correlation time τc (〈Ĥrand(t)Ĥ(t + τ)〉 = 0 for τ > τc); 4. the

perturbations are sufficiently weak that we can limit ourselves to second-order perturbation theory [108, 109].
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effects due to population relaxation, the rate of decay of the photon-echo signal is four times

the homogeneous dephasing rate 1/T2, exactly as found in elementary treatments of photon

echoes.

Eq. (2.44) for the dynamic four-point correlation function shows that, in the general

case (∆i 6= 0), both hole burning and the stimulated photon echo are sensitive to perturba-

tions of the system by the bath on intermediate timescales through their T -dependence. A

simple photon echo is sensitive to dynamics on intermediate timescales only if the delay τ

becomes comparable to the correlation time of those dynamics. A stimulated photon echo

reflects the presence of system-bath interactions on multiple timescales in an echo decay rate

with respect to τ that changes when T changes [110, 111] (In the absence of intermediate

timescale interactions, fixing T at T = T ′ yields the same exponential dependence of the

echo decay on τ as is seen when T is fixed at T = T ′′ 6= T ′). In hole-burning measurements

the presence of multiple timescales is reflected in a T -dependent hole width, a phenomenon

known as spectral diffusion [112, 113]. However, as hole-burning measurements are per-

formed with pulses that are long compared to the τ -dependence of the dynamic correlation

function CD(τ, T, τ), hole-burning measurements may yield apparent homogeneous dephas-

ing times shorter than those measured by photon-echo measurements if there are dynamics

on timescales intermediate between the lengths of the pulses used in a photon-echo mea-

surement and the length of the pump and probe pulses used in a hole-burning measurement.

Likewise, the definition of the fast fluctuations that comprise the system-bath interaction

will depend on the length of the pulses used in an experiment.

The Second-Harmonic Hole-Burning Signal

The preceding discussion illustrates the essential features of the fourth-order contribution

to a second-harmonic hole-burning measurement, but the signal that is measured in a hole-

burning experiment is the result of interference between the fourth-order polarization P (4)(t)

written above and the second-order polarization P (2)(t), which also gives rise to a signal

at frequency 2ωpr in the same direction as the fourth-order signal. In the simple model of
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Figure 2.4,

P (2)(t) = P
(2)
1γ (t) + P

(2)
2γ (t), (2.55)

where the terms labelled 1γ and 2γ are due respectively to transitions in the unprimed

levels, attributed to a one-photon resonance, and those in the primed levels, attributed to

a two-photon resonance. Calculations of P
(2)
1γ (t) and P

(2)
2γ (t) are performed in the same

manner as for P (4)(t). The 1γ contribution to P (2)(t) is given by

P
(2)
1γ (t) = ei(2~kpr·~r−2ωpr)t

∞∫

0

dt2

∞∫

0

dt1R
(2)
1γ (t2, t1)ei(2ωprt2+ωprt1)Epr(t− t2 − t1)Epr(t− t2),

(2.56)

where

R
(2)
1γ (t2, t1) = µaiµibµba

(
i

h̄

)2

〈Gia(t2 + t1, t1)Gba(t1, 0)〉 . (2.57)

Based on our model for the system, we can write

R
(2)
1γ (t2, t1) = µaiµibµba

(
i

h̄

)2

g δ(t2)

〈
exp



−iωbat1 − i

t1∫

0

dt′∆ba(t′)− γbt1/2





〉
.

(2.58)

As above, taking a uniform instantaneous distribution gs for the perturbation ∆s(t), yields

R
(2)
1γ (t2, t1) = µaiµibµba

(
i

h̄

)2

g gs δ(t2)δ(t1)

×
〈

exp



−iωbat1 − i

t1∫

0

dt′
(
∆i(t′) + ∆f (t′)

)− γbt1/2





〉
. (2.59)

Inserting this in Eq. (2.56) yields

P
(2)
1γ (t) = ei2~kpr·~rµaiµibµba

(
i

h̄

)2

g gs E2
pr(t). (2.60)

Adding the second- and fourth-order (Eq. (2.49)) terms due to the one-photon resonance,

we obtain

P
(2)
1γ (2ωpr, t) = P1γ,0(2ωpr, t)(1−∆nba(ωpr − ωpu, T, t)), (2.61)

where

P
(2)
1γ,0(2ωpr, t) = ei2~kpr·~rµaiµibµba

(
i

h̄

)2

ggsE2
pr(t) (2.62)
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is the polarization at frequency 2ωpr in the absence of the pump, and

∆nba(ωpr − ωpu, T, t) = 2µabµba

(
1
h̄

)2

C̃ ′
D(ωpr − ωpu, T ) e−γbT

∞∫

0

dt2 |Epu(t− t2)|2 . (2.63)

For non-overlapping pump and probe pulses (for which E(t−t2) = 0 when t2 < 0), the lower

limit in the integral can be extended to −∞, and ∆nba(ωpr − ωpu, T ) then is independent

of t. The notation ∆nba is chosen in analogy to the term in Eq. (2.13), derived on the

basis of a cw approach, due to the change in population induced by the pump. However,

as discussed above, in the present approach, we have included the possibility of spectral

diffusion due to perturbations of the system by the bath on intermediate timescales. The

2γ contribution to P (2) is described by

P
(2)
2γ (2ωpr, t) = ei2~kpr·~rµa′b′µb′iµia′

(
i

h̄

)2

g′g′sE2
pr(t), (2.64)

where g′ and g′s are the terms for the 2γ process corresponding respectively to the terms g

and gs of Eqs. (2.36) and (2.45).

Based on our model, in which the 1γ and 2γ processes are uncoupled and in which the

pump does not significantly change the populations of |a′〉 and |b′〉, to fourth order the

polarization at the second harmonic of the probe is now given by

P (2ωpr, ωpu, T, t) = P
(2)
1γ,0(2ωpr, t) [1−∆nba(ωpr − ωpu, T, t)] + P

(2)
2γ (2ωpr, t). (2.65)

The signal, S(2ωpr, ωpu, T ), that is ultimately detected is the integral of the radiated inten-

sity:

S(2ωpr, ωpu, T ) ∝
∞∫

−∞
dt |P (2ωpr, ωpu, T, t)|2 . (2.66)

Inserting Eqs. (2.61) and (2.64) into this equation yields

S(2ωpr, ωpu, T ) =
∞∫

−∞
dt |Epr(t)|4 |α1γ [1−∆nba(ωpr − ωpu, T, t)] + α2γ |2 , (2.67)

where α1γ and α2γ are constants of proportionality. As explained immediately after

Eq. (2.63), if the delay between pump and probe exceeds the pulse lengths, then we can

rewrite Eq. (2.67) as

S(2ωpr, ωpu, T ) = |α1γ [1−∆nba(ωpr − ωpu, T )] + α2γ |2
∞∫

−∞
dt |Epr(t)|4

∝ |α1γ [1−∆nba(ωpr − ωpu, T )] + α2γ |2 , (2.68)
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where

∆nba(ωpr − ωpu, T ) = 2µabµba

(
1
h̄

)2

C̃ ′
D(ωpr − ωpu, T ) e−γbT

∞∫

−∞
dt |Epu(t)|2 . (2.69)

We see explicitly that, other than a contribution from the population relaxation described

by e−γbT , ∆nba(ωpr − ωpu, T ) as a function of the detuning of the probe relative to the

pump has the same shape as C̃ ′
D(ωpr − ωpu, T ). Within the limits already discussed, by

measuring ∆nba(ωpr − ωpu, T ) we measure the timescales for dynamic dephasing in the

system of interest.

As discussed in the preceding section on the fourth-order polarization, in the case that

there is a strict separation of the timescales of the perturbations of the system by the

bath into very fast and slow timescales and the fast dynamics are due to a sufficiently

weak perturbation, we find a Lorentzian form for C̃ ′
D(ωpr − ωpu, T ). Inserting Eq. (2.53) in

Eqs. (2.69)

∆nba(ωpr − ωpu, T ) = −i 2
|µba|2

h̄2




∞∫

−∞
dt |Epu(t)|2


 e−γbT

1
(ωpr − ωpu) + i(γb + 2Γba)

,

(2.70)

where Γba = 1/T2 is the homogeneous dephasing rate. We see that Eqs. (2.68) and (2.70)

yield the same functional form for the transient second-harmonic hole-burning signal as a

function of detuning ωpr − ωpu as does Eq. (2.13).

2.4 Experimental Setup

The experiments to be described rely on the ability to measure very weak, transient second-

order signals over a range of a few thousand wave numbers from the dangling bonds of a well

ordered Si(111)7×7 surface. At the powers used in these experiments, the signal can be as

weak as tens of photon counts per second, which means that the sample must remain clean

for the thousands of seconds that can be required for a single data scan. These constraints

require both tunable femtosecond laser pulses and ultrahigh vacuum conditions.

A schematic representation of the UHV chamber is shown in Figure 2.7. The base

pressure obtained within two days after baking the chamber was below 1.0 × 10−10 mbar.
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Measurements were usually performed at pressures of 5.0 − 8.0 × 10−11 mbar. A com-

bined four-grid retarding-field low-energy electron diffraction (LEED)/Auger electron spec-

troscopy (AES) instrument (Perkin Elmer Φ15-120 LEED optics, Φ11-020 LEED electronics

and Φ11-500A Auger system controller) allowed for in situ inspection of the sample surface

condition.

The sample was mounted in the UHV chamber on a holder based on the design used

in the group of U. Höfer [114]. A schematic of the holder is shown in Figure 2.8. The

sample temperature could be controlled by resistive heating of the liquid-nitrogen-cooled

sample. Cooling of the holder via a liquid N2 flow cryostat maintained the temperature of

the sample holder near the insulating sapphire plate at below 110 K even at the highest

sample temperatures of over 1300 K. The sample temperature was measured with a type

K (NiCr/NiAl) thermocouple attached by ceramic adhesive to a thin layer of the ceramic

adhesive that was previously applied to the back of the sample to prevent direct contact

between the thermocouple and sample. The thermocouple voltage was measured by the

amplifier circuit shown in Figure 2.9 over the entire temperature range from 80 K to over

1300 K. The thermocouple readings at high temperatures were within ±10 K of the readings

from an optical pyrometer.

The material used in these experiments was single-crystal, Czochralski-grown (Cz) Si

(WaferNet, Inc.) doped with phosphorus (n-type) such that the resistivity was specified to

be between 1 and 2 Ω cm, corresponding to a phosphorus concentration of nP ∼ 3×1015 cm3.

The nominally flat 4-inch diameter wafers were of 525µm thickness and polished on a single

side along the [111] direction. Samples of dimensions 50× 10mm2 were cut from the wafers

with a diamond scribe and mounted on the sample holder such that the [21̄1̄] crystallographic

axis was perpendicular to the optical plane. The samples were blown free of dust with a

rubber bulb and wiped with a piece of lens paper and a drop of reagent-grade methanol

before being placed in the chamber. Any remaining contaminants were desorbed with the

native oxide in the UHV chamber.

Clean, well ordered Si(111)7×7 surfaces were prepared in the UHV chamber by resistive

heating and protected by passivation with hydrogen. During baking of the chamber at
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Figure 2.7: Schematic representation of the ultra-high vacuum system. The abbreviations
are explained in Table 2.2.

IGP Ion getter pump: Perkin-Elmer, 500 l/s
TP1, TP2 Turbomolecular pumps: Balzers TPU-240, 230 l/s;

Pfeiffer TPU-110, 170 l/s
RP Rotary vane pump: Edwards E2M-18
FT Foreline trap

DPF Differentially pumped feedthrough
RGA Residual gas analyzer: Ametek Dycor LC100MS

IG Ionization gauge
TG Thermocouple gauge
CM Capacitance manometer
D1 Doser with tungsten filament
PV Pneumatic protection valve
LV Leak valve

AV, GV Angle valve, gate valve

Table 2.2: List of vacuum components represented in the schematic of the ultra-high
vacuum system shown in Fig. 2.7.
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Figure 2.9: Diagram of the amplifier circuit used to measure the thermocouple voltage. The
circuit consists of a precision low-voltage micropower operational amplifier followed by a
unity gain isolation amplifier and an output buffer.

430 K, the sample temperature was maintained at about 550 K. After baking the chamber,

the native oxide was removed from the sample by a series of heating ramps in which the

sample temperature was increased at about 3.0 K/s and then decreased at about 1.5 K/s.

The peak temperature of each current ramp was gradually increased so that the chamber

pressure did not exceed 1 × 10−9 mbar, except at the highest temperatures, where the

pressure did not exceed 3 × 10−9 mbar. The maximum sample temperature was about

1310 K. This procedure resulted in a clean, well ordered 7×7 reconstructed surface. A LEED

image of the Si(111)7×7 surface at a primary electron energy of 91 eV is shown in Fig. 2.10.

The AES spectrum in Fig. 2.11 shows that any impurities are below the detection limit of the

Auger analyzer. To protect the sample surface from contamination by the constituents of

the chamber background pressure between experiments, the sample surface was passivated

by exposure to molecular hydrogen at a pressure of about 2× 10−7 mbar in the presence of

a hot tungsten filament (TW = 1800 ± 75K) that dissociates the molecular hydrogen into

its atomic form, which readily bonds with the dangling bonds of the Si(111)7×7 surface.

The sample temperature was ramped to 1310 K at the same rates described above at the

beginning of each day of measurements (so as to remove the passivating hydrogen and

reorder the surface) and then after approximately 0.3Langmuir (1 L = 10−6 torr·s) exposure
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Figure 2.10: LEED image of clean, reconstructed Si(111)7×7 surface.

to the background chamber pressure.

The optical layout for the SH hole-burning experiments is illustrated in Figure 2.12. All

the measurements were carried out with fundamental photon energies of about 1.55 eV (λ =

800 nm). This range was chosen both because it corresponds to the output of the Ti:sapphire

amplifier described in Chapter 1, which contributed to stability and simplicity compared

to any other choice of photon energy, and because it is in the spectral region in which the

broad dangling-bond-derived resonance in the SHG spectrum of the Si(111)7×7 surface is

strong and dominates other contributions to the second-order nonlinear susceptibility (See

Figure 2.3). The pump beam was directly from the output of the amplifier. One minor

problem with the laser system was that the broad (FWHM∼35 nm) seed pulses from the

oscillator made it difficult to control the center wavelength of the amplifier output from

one day to the next. Consequently, the pump center wavelength varied over a range from

798 nm to 810 nm. The probe beam was generated by doubling the signal (for positive probe

detunings) or idler (for negative detunings) from the BBO-based OPG/OPA described in

Chapter 1 in a second BBO crystal (length=2 mm, θ = 22.8◦, θ = 0◦). This readily

produced probe pulses of 20 µJ, which was more than enough energy even after spectral

filtering and traversal of many optical elements to yield the pulses of approximately 2 µJ

needed for the experiments. A pair of prisms designed for compression of 800 nm pulses (i.e.,
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Figure 2.11: Auger electron spectrum of a clean Si(111)7×7 surface at 80 K obtained with a
primary electron energy of 2.9 kV. The energies of electrons emitted from the silicon LMM,
carbon KLL, and oxygen KLL transitions are indicated.

prisms cut at the Brewster angle for 800 nm radiation) compress the probe pulse, thereby

providing nearly optimal temporal resolution and increasing the SHG signal intensity at a

given signal fluence. To prevent degradation of the spectral resolution of the experiment,

a slit (not shown) near prism Pr2 was used to reduce the bandwidth of the probe, since

the processes of generation of signal and idler and their subsequent doubling can lead to

significant increase of the probe bandwidth. Just before the UHV chamber, a fused silica

plate was used to reflect part of the probe beam to a crystalline KTP sample of 5 mm

thickness for normalization against fluctuations. In both the signal and reference arms,

a combination of Schott glass filters and monochromators suppressed background light at

frequencies other than the probe SH.

Since this investigation aims to compare the fluence-dependence of the sample dephasing
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Figure 2.12: Optical layout for SH hole-burning measurements. The abbreviations refer to
the following elements: BBO, crystal for doubling OPA signal or idler to produce probe;
KTP, crystal for generating reference SHG; P1, Glan laser polarizer for separating signal
and idler; P2, Glan laser polarizer for rejecting OPA output used to produce probe; P3
and P4, Glan laser polarizers for defining probe and pump input polarizations; P5, Glan
Thompson polarizer; θB, Berek compensator; Pr1 and Pr2, probe compressor prisms; F1
and F3, Schott glass filters for blocking probe SH while transmitting fundamental beams;
F2 and F4, Schott glass filters for blocking fundamental of probe and transmitting probe
SH; Mc1 and Mc2, signal and reference monochromators.

dynamics, it is crucial to have an accurate measurement of the pump fluence in the probe

region, especially as the pump spatial mode deviates somewhat from a TEM00 mode, the

probe spatial mode often displays significant structure, and the spatial modes of both beams
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vary from day to day. A flip-up mirror (not shown) immediately before the UHV chamber

entry window was used to reflect the pump and probe beams at ∼ 90◦ to a CCD camera

positioned with its CCD array at the same distance from the mirror as was the sample.

The pump energy was adjusted so that the most intense region containing 25% of the pump

energy was located in an elliptical area of major and minor axes both approximately 1.3

mm perpendicular to the beam. Likewise, the probe beam was focused such that the most

intense region contained about 60% of the probe energy in an elliptical area perpendicular to

the beam of major and minor axes with a geometric mean of approximately 0.7 mm. With

the pump and probe beams respectively oriented at 47◦ and 43◦ from the sample normal,

their energies were adjusted such that, within the projections of the aforementioned ellipses

onto the sample, the average pump fluence was set alternately to 1600, 800, 400, and

200 µJ/cm2, while the average probe fluence was about 120 µJ/cm2.

The preceding choices of beam sizes and angles allowed for sufficiently high signals at

the fluences used but at the cost of some degradation of the temporal resolution of the

experiments. For beams with Gaussian spatial and temporal profiles with the preceding

spatial characteristics and with intensity envelopes of 100 fs FWHM, the FWHM of a

SFG cross-correlation between the pump and probe beams is expected to be about 190 fs

rather than 140 fs, as would be expected for pulses at the same incident angle (and as was

observed if the beams were reduced in size so that transit effects became insignificant and the

probe pulses were well compressed). Variations in the probe profile and suboptimal probe

compression led to SFG cross correlations typically in the range of 200-250 fs. However, on

account of hole-burning measurements being higher order than SFG, the temporal resolution

of the hole-burning measurements was better than that of the SFG cross-correlation. For

100 fs (FWHM) pulses with Gaussian profiles at equal incidence angles, an instantaneous

fourth-order response would result in a pulse-limited temporal resolution of 100 fs, rather

than the 140 fs limit of the SFG cross-correlation. In practice, the temporal resolution of

our measurements was typically about 200 fs.

The polarizations of the input pump and probe beams were p and s, respectively. With

the input beams polarized perpendicularly to one another, no population gratings were
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formed that might contribute to the probe SH signal. An analyzer in the signal detection

arm was set to detect s polarization, so that the second-order nonlinear susceptibility was

probed in the s-in/s-out polarization combination, and only the anisotropic element (χ(2)
‖ ‖ ‖)

of the second-order nonlinear susceptibility was probed.

2.5 Experimental Results and Analysis

The ultimate goal of our experiments was the determination of the homogeneous dephasing

time of the transitions giving rise to the broad dangling-bond-derived peak in the SHG

spectrum of the clean Si(111)7×7 surface of Figure 2.3 at photon fundamental energies of

about 1.5 eV. Hole burning is observed simply by comparing the probe SHG after the arrival

of the pump pulse to the probe SHG before the arrival of the pump pulse over a range

of probe-pump detunings. One can carry out complete temporal pump-probe scans and

thereby obtain a picture of the temporal evolution of the spectral hole, which is determined

by the evolution of the quantity ∆nba(ωpr − ωpu, T ) with respect to T (See Eq. (2.68)).

Such temporal scans provide valuable information about population dynamics and spectral

diffusion. However, as seen in the discussion of Section 2.3, it is the value of ∆nba(ωpr −
ωpu, T ) at the smallest positive T that is relevant. As our primary interest is measurement

of the fastest timescale dynamics to which we have access, we focus on measurements of the

spectral hole in the probe SHG at the smallest times at which there is minimal overlap of

the pump and probe pulses (T ≈ 200 fs).

Extraction of an accurate measurement of the homogeneous dephasing time from the

observed spectral hole requires ancillary measurements. As seen from the SHG spectrum

from the passivated Si(111)7×7 surface of Figure 2.3, there is a second contribution to the

SHG spectrum in the vicinity of 1.5 eV. The simple model of Section 2.3 yields Eq. (2.68)

from which we clearly see that the second-harmonic hole-burning signal does not directly

yield the function ∆nba(ωpr − ωpu, T ). To determine ∆nba(ωpr − ωpu, T ), we must deter-

mine the relative amplitude and phase of α2γ and α1γ of Eq. (2.68). In practice this is

done by measuring the probe SHG as a function of exposure of the surface to hydrogen,

which selectively passivates the dangling-bond feature. In particular, from measurements
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at different wavelengths of the SHG signals corresponding to the completely unterminated

surface, the completely terminated surface, and the partially terminated surface yielding

the minimum SHG, one obtains two independent ratios that can be used to determine the

two unknown quantities |α1γ/α2γ | and φ2γ = −i ln
(

α1γ/α2γ

|α1γ/α2γ |
)

. Once these relative ampli-

tudes and phases are known, we can model our data. In particular, we find that we can

fit most of our data with a simple, Lorentzian model for ∆nba(ωpr − ωpu, T ). The two

parameters for a Lorentzian fit are its amplitude and width. The latter is directly related

to the homogeneous dephasing time T2.

The discussion of the data is organized as follows. We begin with a presentation of tem-

poral pump-probe scans in which we detect the evolution of the probe second harmonic as

a function of delay relative to the pump. These measurements illustrate several important

points. They indicate the extent of the validity of some of our assumptions made in Sec-

tion 2.3. In particular, the temporal pump-probe scans show that we probe the system on

timescales and with temporal resolution short relative to the population dynamics. These

data also illustrate that at positive detunings a slightly more complicated picture of the

surface electronic transitions is needed. Similar measurements on the hydrogen-terminated

surface and linear reflectivity measurements also demonstrate that the pump-probe signals

from the clean Si(111)7×7 surface are due primarily to surface rather than bulk processes.

We then present the measurements of the probe SHG as a function of surface passivation

that allow us to determine the relative amplitudes and phases of the two contributions to

the probe SHG. These measurements also lead to a discussion of a complication due to a

pump effect that persists on the millisecond timescale. Finally, we present data from the

measurement of the spectral hole in the probe SHG at short delays and present fits to a

simple, essentially cw model. The fit to the data reveals a pair of contributions to the

hole-burning spectra. By measuring the spectral hole at the pump frequency at multiple

pump fluences, we find a linear dependence of the homogeneous dephasing rate on the pump

fluence.
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2.5.1 Pump-Probe Second-Harmonic Generation

Figures 2.13 and 2.14 show the probe SHG signal as a function of delay relative to the

pump pulse at several pump fluences for a pair of negative detunings and a pair of positive

detunings, respectively. As noted in Section 2.4, the center wavelength of the pump pulses

varied somewhat from day to day. However, these variations were within the full-width-at-

half-maximum of the pump bandwidth, which was much narrower than all the spectral holes

to be discussed later. Consequently, this variation in pump center wavelength was deemed

insignificant. The main features of the data (except at the largest positive detuning,

the data for which are displayed in Figure 2.14b) are the rapid initial change in the probe

SH, which typically reaches its maximum deviation at a delay of about 200 fs, and the

recovery of the signal on a timescale of about 500 fs. Except in magnitude, the data

shown in Figures 2.13 and 2.14a are representative of the phenomena observed across the

explored range of detunings. The data for different negative detunings show qualitatively

similar recovery of the pump-induced decrease of the probe second harmonic as seen in

Figure 2.13. At negative detunings different than those shown one only sees a change in the

magnitude of the pump-induced decrease of the probe signal that diminishes at negative

detunings of greater magnitude. The data of Figure 2.14a illustrate (ignoring for the moment

the data for a pump fluence of 1600 µJ/cm2 in Figure 2.14a) the typical recovery of the

positively detuned probe second-harmonic signals. For all data except that of Figure 2.14b,

the probe SHG quickly relaxes to a level below the unpumped level. The timescale for

complete recovery of the signal was not fully investigated, but the signal remained at this

decreased level up to the maximum measured time (data not shown) of tens of picoseconds.

This latter observation was also made by Voelkmann et al. [15, 105]. This observation is

not surprising given that the Si(111)7×7 surface electronic band structure is not highly

dispersive and given the timescales of mechanisms for relaxation of excited carriers back to

the ground state such as radiative recombination, which is expected to occur on nanosecond

timescales.

With a dramatic pump-induced increase in the probe SH signal, the data for the largest

positive detuning (Figure 2.14b) shows qualitatively different behavior than the data at all
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Figure 2.13: Pump-SHprobe scans for a pair of positive detunings for several pump fluences.
Figure (a) is for a detuning of -29 meV (-231 cm−1), and Figure (b) is for a detuning of
-72 meV (-581 cm−1). The solid curve is the SFG cross-correlation. The data for the pump
fluences of 800 µJ/cm2 and 400 µJ/cm2 in Figure (b) are offset by 0.05 and 0.10 for clarity.
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Figure 2.14: Pump-SHprobe scans for a pair of positive detunings for several pump fluences.
Figure (a) is for a detuning of 93 meV (751 cm−1), and Figure (b) is for a detuning of
136 meV (1096 cm−1). The solid curve is the SFG cross-correlation. The short horizontal
lines indicate the offset of the zero signal level for the probe at 762 nm.

60



other detunings. Such an increase is not necessarily inconsistent with the pump-induced

dip observed at other detunings. Recalling Eq. (2.68), which states that the probe SHG

signal is given by

S(2ωpr, ωpu, T ) ∝ |α1γ [1−∆nba(ωpr − ωpu, T )] + α2γ |2

∝
∣∣∣∣∣[1−∆nba(ωpr − ωpu, T )] +

∣∣∣∣∣
α2γ

α1γ

∣∣∣∣∣ e
iφ2γ

∣∣∣∣∣
2

,

we see that, depending on the values of |α1γ |; |α2γ |; φ2γ , the relative phase between α2γ and

α1γ ; and ∆nba(ωpr − ωpu, T ), one may observe a pump-induced rise in the probe SH. For

example, if |α2γ/α1γ | > 1 and φ2γ = π, then any ∆nba > 0 yields a probe SH signal increase.

Alternatively, if 1/2 < |α2γ/α1γ | < 1 and φ2γ = π, then ∆nba > 2 (1− |α2γ/α1γ |) also

yields a probe SH signal increase. In the former case, the relaxation of the system towards

equilibrium results in a monotonic decrease of the probe SH signal back to its original

level before the arrival of the pump pulse. In the latter case, the relaxation of the system

is not monotonic but rather first falls towards zero as ∆nba approaches 2 (1− |α2γ/α1γ |)
and then rises back towards the level prior to the arrival of the pump pulse. In principle,

such a situation could account for the local increase in the probe SH signal observed at a

probe delay of about 50 fs in the data corresponding to a pump fluence of 1600 µJ/cm2

in Figure 2.14a. However, a more careful look at the population dynamics shows that the

explanation is not this simple.

The recovery of the signal data yields information on the population dynamics of the

system. Excluding for the moment the data shown in Figure 2.14b and the data for a pump

fluence of 1600 µJ/cm2 in Figure 2.13a, in all cases in which the data was not too noisy

(including the data from the many pump-probe scans not shown here), the initial (partial)

recovery of the probe SH could be fit with a single exponential. The time constants for

the initial population dynamics were found to be 700 ± 150 fs for negative detunings and

450 ± 75 fs for positive detunings at pump fluences of 800 and 1600µJ/cm2, at which the

signal-to-noise ratios were highest. In contrast, as seen in Figure 2.14b, the recovery of the

pump-induced increase at a probe fundamental wavelength of 740 nm occurs on a timescale

of about 150 fs essentially determined by the temporal resolution of our measurements. If

the rise in probe SH signal seen in Figure 2.14a were due to the possibilities raised in the
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preceding paragraph, then the recovery times would be expected to be the same for both the

pump-induced decreases and increases of Figures 2.13 and 2.14. Therefore, the data suggest

that in the frequency range explored there are at least two transitions that are pumped.

The dangling bonds appear to play a crucial role in the transition responsible for the

pump-induced increase in the data of Figure 2.14b, as passivation of the surface with hy-

drogen results in a far less dramatic pump-induced increase of the probe SHG at the largest

positive probe detuning (Figure 2.15). We note that the photon energies at which this fea-

ture first becomes apparent as a distinct peak (h̄ωpump = 1.54 eV and h̄ωprobe = 1.63 eV in

Figure 2.14a) and at which it becomes dominant (h̄ωpump = 1.54 eV and h̄ωprobe = 1.68 eV

Figure 2.14b) are such that the sum h̄ωpump + 2h̄ωprobe is 4.80 eV in the former case and

4.90 eV in the latter. These energies are to be compared to the work function measured

from a clean Si(111)7×7 surface of 4.85 eV [78, 115]. This suggests that the initial state for

the transitions involved may be the adatom dangling bond states just below the Fermi level.

However, the exact nature of this second pumped transition is otherwise unclear. Despite

the presence of this unanticipated transition, this transition appears to be significant only

at the largest positive detunings. Therefore, in discussing our hole-burning data later, we

will focus our attention on the data for negative and small positive detunings, where the

simple model described in Section 2.3 is still expected to hold.

A study of the population dynamics was not the focus of this study, but besides indicating

that our assumption of a single pumped transition is no longer valid at our largest positive

detuning, their measurement highlights a few important points. The data demonstrate

that we are able to probe the system on timescales short compared to the population

dynamics. On longer timescales, the perturbations responsible for the population dynamics

could obscure the fastest timescale dynamics, i.e., spectral diffusion due to simple population

dynamics could obscure the dephasing dynamics. Were we to study spectral hole burning on

longer timescales, then some interactions that contribute to population dynamics would shift

from being intermediate or slow contributions to the perturbation of the system to being

fast perturbations and would then obscure the faster dynamics. To measure the fastest

dynamics via spectral hole burning, we need to look at the spectral hole formed at the
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earliest times. Moreover, the data for the population dynamics illustrate the importance of

using femtosecond pulses to obtain a high signal-to-noise ratio in such a study; femtosecond

pulses of a given fluence create a greater modulation of the probe SHG by the pump than

picosecond pulses that would necessarily average over the recovery time of the signal. As

discussed in Chapter 1, for a case such as this, where the dephasing times of the system

are shorter than the 100 fs pulses used, the SHG signal level obtained with the same pulse

energy and spot size would be markedly lower with picosecond pulses than with 100 fs

pulses.

That the pump-induced changes in the probe SH are due to pump-induced changes in

the surface states rather than rapid, pump-induced changes in the bulk dielectric constant

or SHG signals originating in the bulk response (e.g., from higher multipole contributions

to SHG) can be seen from ancillary measurements. Except at large positive detunings,

probe SHG measurements from the hydrogen-passivated surface displayed only very small

changes within the first couple of picoseconds after the arrival of the pump, as can be

seen in Figure 2.15. Moreover, as will be shown in Section 2.5.2, the probe SHG signals

from the passivated surface were much smaller than those from the clean surface, so any

relative changes in signal that appear in the data of Figure 2.15 would produce much smaller

relative changes in the signal from the clean surface. The results of pump-probe SHG scans

at other wavelengths displayed the same features as the data for the wavelengths shown

in Figure 2.15, namely negligible change within the first few hundred femtoseconds after

the arrival of the pulse at all but the shortest wavelengths. At the shortest wavelengths

(largest positive detunings), there was a pump-induced increase of up to about 20% at

the highest pump fluences. A possible explanation for this effect at short wavelengths will

be discussed below, but for most of the range of wavelengths explored, this effect is not

observed. In addition to the pump-probe SHG measurements on the passivated surface,

measurements of the reflected probe fundamental did not show any pump-induced change

in the probe reflectivity above the signal-to-noise ratio of the measurements. An example

of such a pump-probe reflectivity scan is shown in Figure 2.16. These results are consistent

with what one would expect from the weak absorption by Si in the wavelength region
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Figure 2.15: Pump-SHprobe scans from the passivated Si(111)7×7 surface for the same pump
and probe wavelengths as in Figures 2.13 and 2.14.

investigated, where the absorption coefficient at room temperature ranges from 780 cm−1

at 1.5 eV to 1800 cm−1 at 1.7 eV [116].

2.5.2 Relative Phase Measurements of One- and Two-Photon-Resonance

Contributions to SHG

From Eq. (2.68) we see that, to determine the quantity ∆nba(ωpr − ωpu, T ) from the hole-

burning data, it is necessary to know the relative magnitudes and phases of the terms α1γ ,

attributed to transitions between the S2 and U1 bands of Figure 2.2, and α2γ , attributed to a

two-photon resonance between the S3 and U2 bands. These relative phases and magnitudes

can be determined by means of passivating the Si(111)7×7 surface with atomic hydrogen.

A variety of studies have shown that H initially reacts with the Si(111)7×7 adatom dangling
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bonds [46, 87]. Only as the adatom dangling bonds become saturated does H start to react

with the adatom back bonds, eventually leading to a bulk 1×1 termination of the rest atom

layer with preservation of the stacking fault and, hence, the 7×7 unit cell [46]. Therefore,

it is expected that as the surface is passivated by exposure to hydrogen, α1γ will gradually

disappear, while α2γ will remain unchanged. This is clearly suggested by Figure 2.3, which

shows that under H adsorption the SHG spectral peak below a fundamental photon energy

of 1.6 eV disappears, while the SHG spectral peak at about 1.7 eV remains unchanged.

We assume that α1γ = 0 when the adatom dangling bonds are fully passivated and that H

adsorption does not change φ2γ . In the absence of a pump, the probe SH signal from the

unpassivated surface is given by Eq. (2.68) as

S(2ωpr, θ = 0) = k |α2γ |2
∣∣∣∣∣

∣∣∣∣∣
α1γ(θ = 0)

α2γ

∣∣∣∣∣ + eiφ2γ

∣∣∣∣∣
2

, (2.71)

where θ is the surface coverage, k is a constant of proportionality, and φ2γ is the relative

phase between α2γ and α1γ . For cases in which φ2γ > π/2 and |α2γcosφ2γ | < |α1γ |, as α1γ

is gradually eliminated by H adsorption there will be a minimum in the probe SH signal at
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θ = θSpr,min :

S(2ωpr, θ = θSpr,min) = k |α2γ |2
∣∣∣∣∣∣

∣∣∣∣∣∣
α1γ

(
θSpr,min

)

α2γ

∣∣∣∣∣∣
+ eiφ2γ

∣∣∣∣∣∣

2

= k |α2γ |2 sin2 φ2γ . (2.72)

Once the dangling bonds are completely passivated (at a coverage of θterm ∼ 0.4), the

nonlinear response should derive solely from the back bond response:

S (2ωpr, θterm) = k |α2γ |2 . (2.73)

Therefore, the phase of the back-bond contribution to the nonlinear response relative to the

dangling-bond contribution is given by

φ2γ = arcsin

√√√√S
(
2ωpr, θSpr,min

)

S (2ωpr, θterm)
. (2.74)

With the relative phase known, we can determine the relative magnitudes of α1γ and α2γ by

comparing the probe SH from the unpassivated surface to the probe SH from the passivated

surface. Combining Eqs. (2.71) and (2.73), we obtain for the ratio of the magnitudes of the

dangling-bond and back-bond contributions to χ(2)

∣∣∣∣∣
α1γ

α2γ

∣∣∣∣∣ = −cosφ2γ +

√
cos2 φ2γ − 1 +

Spr(2ωpr, θ = 0)
Spr(2ωpr, θterm)

. (2.75)

This is illustrated in Figure 2.17, which shows as an example the SHG signal from the

Si(111)7×7 surface at a fundamental photon wavelength of 762 nm and a cartoon of the

evolution of χ(2)(2ωpr; ωpr) with hydrogen coverage. In general, the values of φ2γ and

|α1γ/α2γ | vary with frequency. Figure 2.18 shows the probe SHG signal as a function of

hydrogen dosing for the range of probe fundamental wavelengths studied in which there was

a minimum in the probe SH at θSpr,min 6= 0.

Applying Eqs. (2.74) and (2.75) to the data in Figure 2.18 yields the values for
∣∣∣χ(2)

db /χ
(2)
bb

∣∣∣

and φ2γ shown in Figure 2.19 (χ(2)
db and χ

(2)
bb are the contributions to the second-order sus-

ceptibility corresponding respectively to α1γ and α2γ , to which they are proportional). At

the shortest probe wavelength investigated there was no longer a minimum in probe SHG

observable at nonzero θ, which indicates that either the phase φ2γ was no longer greater than
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π/2 and/or |α1γ | < |α2γcosφ2γ |, so a relative amplitude could no longer be confidently de-

termined by this procedure. Consequently, values for λpr = 740 nm are not included in Fig-

ure 2.19. Strictly speaking, by this method we can only narrow the value of the phase φ2γ to

two possible values (π±δ, where δ > 0). For our experiments, the choice is unimportant, and

in Figure 2.19, we choose π− δ. The values of the relative phases and magnitudes between

the 1γ and 2γ contributions yield ratios for
∣∣∣χ(2)(2ωpr;ωpr; θ = 1)/χ(2)(2ωpr; ωpr; θ = 0)

∣∣∣

that are very close to those of the SHG spectra of Figure 2.3, and the calculated value of

φ2γ is consistent with measurements made by others [93, 117].

One point that should be addressed is that the inset in Figure 2.19 shows a difference

in the value of
∣∣∣χ(2)(2ωpr; ωpr; θ = 1)/χ(2)(2ωpr;ωpr; θ = 0)

∣∣∣ according to whether the pump

was blocked during passivation or incident on the sample with the probe pulse preceding

the pump pulse derived from the same pulse from the Ti:sapphire amplifier. A significant
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effect of the pump on the phase was not observed, but the effect on the magnitudes was

marked. This effect results from changes in the probe SHG signal due to pump-induced

changes in the material response caused by preceding laser pulses and persisting on the

millisecond timescale between pulses from the Ti:sapphire amplifier. Figure 2.20 shows the

effect for clean and passivated surfaces. The effect is not due to sample damage, since

blocking the pump always resulted in recovery to the unpumped signal level. Although the

signal-to-noise ratio of these measurements is not as high as for the measurements of the

relative phases and magnitudes of the 1γ and 2γ contributions to the second-order nonlinear

susceptibility, the basic trends are clear. In the case of the passivated surface, there is a

pump-induced decrease in the probe SHG that is observed on a millisecond timescale and
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and the relative phase between the two contributions plotted against probe fundamental
photon energy. The solid symbols are derived from data for which the pump beam was
blocked. The inset shows the ratio Rpump/Rno pump, where Rpump is the value of R when a
pump pulse with a fluence of Fpump = 200µJ/cm2 was incident at a delay of 1 ps relative
to the probe and Rno pump is the ratio for Fpump = 0.

is especially pronounced at the shortest probe wavelengths (largest positive detunings). In

the case of the clean surface, the change in the probe SHG is within about ±10%, except at

the shortest probe wavelengths. One possible origin of this effect is drift of carriers created

in the space-charge region. In particular, the adatom back bonds overlap greatly with

the surface-projected bulk band structure, and diffusion of photogenerated charge carriers

into the bands formed by the adatom back bonds would be expected to reduce the probe

SHG signal due to the two-photon transition between the adatom back-bond bands S3 and
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U2 via phase-space filling (i.e., occupation of the otherwise unoccupied final states for the

transition). This process would be slow compared to picosecond timescales and so would not

appear in picosecond-scale pump-probe scans. Where the 2γ contribution to the nonlinear

response is dominant, i.e., at large positive detunings, particularly as the probe approaches

resonance with the two-photon S3-U2 transition, and on a hydrogen-terminated sample, one

would expect a decrease in the probe SHG even when the probe precedes the pump. Where

the 1γ contribution is dominant, i.e., at wavelengths longer than about 760 nm on a clean

(unpassivated) Si(111)7×7 surface, one would expect the pump to produce a relatively

small increase in the probe SHG signal when the probe precedes the pump because the

2γ contribution, which is almost 180◦ out of phase with the 1γ contribution will decrease

and thereby less effectively cancel the 1γ term. These phenomena qualitatively describe

our observations. Photoemission measurements of photovoltage decays due to generation

of carriers at the hydrogen-terminated Si(111) surfaces with 20 ns pulses of laser light

(λ = 510 nm) by Long et al. revealed photogenerated photovoltage changes persisting

beyond tens of microseconds even at fluences much less than 1 µJ/cm2 [118]. The absorption

coefficient of Si at a wavelength of 510 nm is about 20 times that at 800 nm, so one would

expect that the effects observed by Long et al. could be observed using 800 nm radiation

at fluences of 20 µJ/cm2, well above our standard fluences.

2.5.3 Dynamic Electronic Dephasing Times at the Si(111)7×7 Surface

The data for the pump-induced changes in the probe SH signal and the relative magnitudes

and phases of the terms α1γ and α2γ provide the basic elements for a determination from

Eq. (2.68) of the function ∆nba(ωpr − ωpu, T ), where T is the delay of the probe relative

to the pump. However, given the signal levels seen in Figures 2.13 and 2.14, the time

required to determine the entire T -dependent evolution of the pump-probe signal with

an adequate signal-to-noise ratio to obtain an accurate measurement of the evolution of

∆nba(ωpr−ωpu, T ) with respect to T would be prohibitive. As already noted at the beginning

of Section 2.5, for the measurement of the most rapid dynamics, it is the hole width at the

smallest delays T that is of greatest interest to us. To obtain precise values for the spectral
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width of the pump-induced change in the probe SH, we performed two-point pump-probe

scans in which the pump was scanned back and forth between an arrival time 500 fs after

the probe and 200 fs before the probe (times chosen such that the probe pulse arrived

well before or immediately after the pump pulse). In this way, there was sufficient time to

acquire enough counts that the error due to the statistical nature of photon counting was

below the 1% level before the sample could be exposed to 0.3 L of the residual chamber

pressure.

The ratio of the probe SHG signal at a probe delay of 200 fs (after the pump) to the probe

SHG signal at a probe delay of -500 fs (before the pump) are shown by the filled squares in

Figure 2.21. Having determined the relative magnitudes and phases of the one- and two-

photon resonances, we are now in a position to determine the dynamic electronic dephasing

time. In accordance with our simple model of a single inhomogeneously broadened oscillator

producing the 1γ contribution to the second-order nonlinear response, we model the quantity

∆nba(ωpr − ωpu, T ) from Section 2.3 by a single Lorentzian (as in Eq. (2.70)) of the form

∆nba(ωpr − ωpu, T ) = −i AF
1

ωpr − ωpu + i 2ΓF
, (2.76)

where AF and ΓF are fluence-dependent amplitude and damping parameters. This yields

the fits given by the open circles in Figure 2.21 and characterized by the parameters given

in Table 2.5.3. Although our model fits well the data at negative detunings, there is a

significant discrepancy at positive detunings.

To fit both the negative- and positive-detuning data, we must modify our model. The

simplest modification is to suppose that the 1γ contribution to the second-order nonlinear

response is due to a pair of inhomogeneously broadened oscillators. This is a reasonable

possibility given that the Si(111)7×7 surface band structure is not known in sufficient detail

to determine whether the surface bands are indeed single bands or separate, narrow, closely

spaced bands. To account for such a modification, we can add a second Lorentzian term with

a resonant frequency higher than the pump frequency. Leaving the parameters of the first

Lorentzian fitting term unchanged and adding a second Lorentzian at 570 cm−1 above the

pump frequency and characterized by the fluence-dependent amplitudes and phases given

in Table 2.5.3 yields the fit given by the open triangles in Figure 2.21. (Good fits for the
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Figure 2.21: The solid squares show the measured values of
SHprobe(τprobe=200 fs)

SHprobe(τprobe=−500 fs) as a

function of detuning and pump fluence. The open circles are the results of a fit using a
single Lorentzian centered at zero detuning. The open triangles are the results of a two-
Lorentzian fit in which the same parameters as in the one-Lorentzian fit are used for a
Lorentzian centered at the pump frequency, while the second Lorentzian is centered at
570 cm−1 above the pump frequency. For illustrative purposes, the solid and dashed-dotted
lines show the absorptive parts of Lorentzian lines with the same linewidths as used in
fitting the data.

second hole could be obtained for choices of the second Lorentzian within about ±40 cm−1.)

The Si(111)7×7 reconstruction has a surface optical phonon band at 570 cm−1 [119, 120],

so the extra term in the fit may be a manifestation of scattering of photoexcited electrons

or holes by optical phonons to a third band or to a different point in k-space of the ground

or excited band giving rise to the hole at zero detuning. Although the fits involving the

second Lorentzian term are fairly good, we must be cautious about the interpretation of
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−i AF

ωpr−ωpu+i 2ΓF

BF eiφF

ωpr−(ωpu+2π570 cm−1)+i 2∆F

Fluence (µJ/cm2) AF [cm−1] ΓF /2π [cm−1] BF [cm−1] φF ∆F /2π [cm−1]

1600 132 (±11) 387 (44) 200 (54) -98 (3) 271 (45)

800 73 (7) 251 (31) 101 (10) -85 (5) 103 (23)

400 30 (2) 158 (14) 90 (6) -85 (2) 87 (10)

200 14 (3) 107 (23) 61 (5) -91 (5) 86 (19)

Table 2.3: Parameters for the Lorentzian curves used to model the pump-induced change
in the second-order nonlinear susceptibility that are used in fitting the data for the pump-
induced hole in Figure 2.21.

the fit. In particular, while both Lorentzian terms contribute significantly to the fit at

positive detunings, we cannot readily measure any potential phase difference between two

contributions to the 1γ term (i.e., the two transitions giving rise to the separate holes of Fig-

ure 2.21) in the second-order response. Moreover, there remain open questions about what

is causing the pump-induced change in the probe SH signal from the hydrogen-terminated

surface at the largest positive detunings (Figure 2.15) as well as the implications of the

millisecond-timescale effect of the pump on the probe SH signal at large positive probe

detunings.

Before identifying the linewidths of the Lorentzian fits with homogeneous linewidths of

the transition, we must address the possibility of saturation broadening. The SH response

of the surface was observed to depend on the square of the fluence of the fundamental

(S(2ω) ∝ U2(ω)) up to the maximum fluences used. However, for short pulses, this is

not a sufficient indication of the absence of saturation, since only the portion of the SH

signal from the later portions of a pulse are expected to see the full saturation induced

by the early portions of the same pulse. An estimate from the case of cw spectral hole

burning suggests that saturation can be neglected in relation to the errors indicated in

Table 2.5.3. First, we note that in a cw measurement of hole burning in an absorptive

feature, the observed linewidth (HWHM) Γ̃ is related to the true homogeneous linewidth

(HWHM) Γ2 by Γ̃ = Γ2

[
1 +

(
1 + I

IS

)1/2
]
, where IS is the saturation intensity, and the

depth of the differential absorption hole at zero detuning is given by 1−1/ (1 + I/IS)1/2 [4].
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Based on the parameters of Table 2.5.3, application of the cw equations for hole burning

suggest that our values for ΓF overestimate the homogeneous linewidth by less than 10%

at pump fluences of 1600 and 800 µJ/cm2 and by less than 5% at pump fluences of 400 and

200 µJ/cm2. Of course, our measurements are not cw, so application of the cw results for

saturation on a two-level system is open to question. For short dephasing times, one can

show that the evolution of the population difference ∆ρ = ρaa − ρbb is governed by

d

dt
∆ρ = − L I

T1IS
∆ρ− 1

T1
(∆ρ−∆ρeq), (2.77)

where L = 1/
(
1 + ((ω − ωba)T2)2

)
and T1 is the population relaxation time [18]. Assuming

that at time t = 0 the system is in its equilibrium state and that its value in the equilibrium

state is ∆ρeq = 1, the solution to Eq. (2.77) in the case of constant I is [18]

∆ρ(t, ω) =
1

LI/Is + 1
+

(
1− 1

LI/Is + 1

)
e−(LI/Is+1)t/T1 . (2.78)

By setting ω = ωba, we can use this equation to estimate I/IS at 200 fs based on the peak

of our Lorentzian fit. This value of I/Is can then be inserted into Eq. (2.78) to determine

∆ρ(−200 fs, ωpr), the width of which can be compared to the width of the unsaturated

Lorentzian characterized by the value of ΓF obtained by the original fits. By means of this

approach, we find very similar results as obtained by using the continuous-wave equations

for saturation. The values of ΓF in Table 2.5.3 overestimate the value of 1/T2 by 11%, 9%,

6%, and 4% at pump fluences of 1600, 800, 400, and 200 µJ/cm2, respectively.

The linewidths of the two Lorentzians are plotted against the probe fluence in Fig-

ure 2.22. The linear fit for the hole at ωpump is characterized by a slope of (3.36± 0.27)×
10−5 cm2µJ−1fs−1 and intercepts the vertical axis at 0.0144±0.0016 fs−1. The spectral hole

centered at ∼ 570 cm−1 appears to maintain a constant width at the three lower pump flu-

ences and only increases in width at the highest pump fluence. However, the error bars for

the hole at ∼ 570 cm−1 are large enough to accommodate the possibility of a continuous rise

in hole width with fluence. In the following, our discussion will focus on the contribution

to the spectral hole due to the term that we fit by a Lorentzian at ωpump.

One must initially ask whether the magnitudes of the derived linewidths are reasonable.

Transient-grating measurements at the Si(111)7×7 surface with a total fluence of about
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Figure 2.22: Plot of the homogeneous dephasing rates of the two Lorentzians used to fit
the data in Figure 2.21 versus pump fluence. The points for the hole centered at ωpump

include corrections for the saturation effects discussed in the text. Also shown is a linear
fit to the dephasing time corresponding to the hole width of the hole at zero detuning:
1/T2

[
fs−1

]
= 0.0144 + 3.36× 10−5Fpump

[
µJ/cm2

]
.

400 µJ/cm2 suggest the possibility of a dynamic dephasing time of approximately 20 fs [15,

105]. This is in qualitative agreement with our results at a pump fluence of 400 µJ/cm2,

where we obtain a value T2 = 34 ± 3 fs. The quantitative difference of a factor of less

than 2 may be due to various factors. Firstly, it must be noted that the rapid dynamics

observed in the transient-grating experiment make quantitative analysis of the transient-

grating data strongly dependent on the details of the model used to interpret the data;

in fact, both a completely homogeneous model and a primarily inhomogeneous model can

account for their data [15, 105]. Secondly, there may be differences between the two sets of

experimental results due to differences in the repetition rates of the lasers. The transient-
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grating experiment used a repetition rate of about 10 MHz, which is four orders of magnitude

greater than the repetition rate used in our hole-burning experiments. In experiments on

the Si(100)c(4×2) surface performed at 76 MHz, Weinelt et al. have seen steady-state

population of narrow surface states by population transfer from directly excited surface

states [103]. The surface states they observed to be populated in a steady-state manner

were identified as surface excitons, but surface defects can also be populated in a steady-

state manner. Moreover, surface heating effects could be much more significant in the

experiments of Voelkmann et al. given the orders of magnitude greater cw power per unit

area deposited in the illuminated region. In light of the differences in the repetition rates at

which the experiments were carried out, a slight difference in deduced dynamic dephasing

times would not be surprising. It is worth pointing out that these factors may also account

for the observed differences in SHG recovery rates, which yield the population dynamics,

between our experiments and those of Voelkmann et al. In particular, Voelkmann et al.

observed SHG recovery times of 200 fs. In contrast to Voelkmann’s measurements, pump-

probe SHG measurements at a fundamental photon wavelength of 800 nm performed in the

same group (that of U. Höfer) by M. Mauerer but using a 1 kHz laser system displayed SHG

recovery times of about 500 fs at the lowest pump fluence of 1.75 mJ/cm2 [15, 105, 117].

The magnitude of the observed dephasing times is also consistent with what one would

expect based on measurements of dynamic electronic dephasing at surfaces by time-resolved

two-photon photoemission. Measurements of quantum beats from the interference of the

n = 3 and n = 4 image-potential states at the clean Cu(100) surface yielded pure de-

phasing rates of hundreds of femtoseconds [29, 121]. Linewidth analysis of time-resolved

two-photon photoemission spectra of image-potential states at the Cu(111) surface showed

low-temperature dephasing rates of about 30 fs for the n = 1 state [122]. The order of mag-

nitude difference between these dephasing rates has to do with the reduced penetration into

the bulk of the higher-n image-potential states and the fact that the energies of the image-

potential states discussed are in the band gap of the surface-projected bulk band structure

of the Cu(100) surface but overlap with the surface-projected bulk band structure of the

Cu(111) surface. Interferometric time-resolved two-photon photoemission experiments on
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the Cu(111) surface found a homogeneous dephasing rate of 20 fs for a transition between an

occupied surface state about 0.4 eV below the Fermi level and a surface state located in the

bulk band gap [32]. However, approximately 85% of the probability density of the occupied

surface-state wave function extends several layers into the bulk [122]. As can be seen from

Figure 2.2, the energies of the dangling-bond states giving rise to the S2 and U1 bands of the

Si(111)7×7 surface are below the bulk valence-band maximum and partly above the bulk

conduction-band minimum respectively. Consequently, one might expect dephasing times

for the transitions we probe to be similar to the dephasing time observed in photoemission

for transitions involving the occupied surface state near the Fermi level of Cu(111). In con-

trast, one might expect more rapid dephasing of the Si(111)7×7 dangling bonds than of the

image-potential states of higher quantum number n at the Cu(100) surface, since the latter

states are not only energetically located within the bandgap of the surface-projected bulk

band structure but also have a probability density that extends largely into the vacuum.

Another issue that must be addressed is the fluence-dependence of the dynamic de-

phasing rate. As shown in Figure 2.22 and Table 2.5.3, the deduced dynamic dephasing

rate increases linearly with pump fluence. This immediately suggests that the dominant

dephasing mechanism at the pump fluences investigated is scattering between charge car-

riers so that T2 ∝ N−1 ∝ F−1
pump, where N is the photoexcited carrier density and Fpump

is the pump fluence. Carrier-carrier scattering has been investigated extensively in bulk

(three-dimensional) systems. Of greater relevance to our studies are the many investiga-

tions of carrier-carrier scattering in two-dimensional electron gases created in quantum-

well structures [123, 124, 125, 126]. Ultrafast photon-echo measurements in GaAs-GaAlAs

quantum-well structures yielded photon-echo decay times from about 16 fs to about 50 fs

(corresponding to homogeneous dephasing times of 64 to 200 fs) with echo decay times at

low excitation densities showing an inverse-square-root dependence on excitation density

(Techo ∝ N−1/2) [123]. This carrier-density dependence is indicative of strong Coulomb

screening of carriers so that carriers effectively interact only with their nearest neigh-

bors [123]. Similarly, ultrafast optical measurements of k-space scattering dynamics in

bulk GaAs displayed the equivalent N−1/3-dependence of the scattering time expected for
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a strongly screened three-dimensional system [124]. The inverse linear dependence on the

pump fluence of the deduced homogeneous dephasing time in our case (T2 ∝ N−1) indi-

cates that, at the fluences investigated, Coulomb screening does not play a major role in the

dynamic electronic dephasing at the Si(111)7×7 surface. This is not surprising given the

relatively narrow dispersion of the Si(111)7×7 surface states and the consequently expected

low mobility of the surface charge carriers.

Extrapolation of the observed linear dependence of the homogeneous dephasing rate on

pump fluence to zero fluence yields an intrinsic homogeneous dephasing time of about 70

fs. The femtosecond timescale of the measured dynamic dephasing immediately excludes a

number of dephasing mechanisms. Without even considering the barriers for diffusion out

of surface states that may not overlap strongly with the bulk wave functions, diffusion of

carriers near the surface into the bulk is found to occur on roughly µs timescales [118]. Mea-

surements of carrier diffusion by transient gratings in the near-surface region of the Si(111)

surface yield diffusivities of order 10 cm2/s [99, 127], so lateral diffusion of the carriers out

of the illuminated region is insignificant on the timescales of our experiment. As radiative

recombination in bulk semiconductors occurs on timescales of nanoseconds or longer, ra-

diative recombination can presumably be excluded as a source of femtosecond dephasing

times at a surface. The centrosymmetry of the bulk Si crystal excludes the possibility of

piezoelectric electron-acoustic-phonon interactions [128]. Assuming that the bonds at the

Si surface are only weakly polar, the piezo-electric electron-phonon interactions are unlikely

to play a major role in dephasing on the femtosecond timescale. Deformation potential

electron-acoustic-phonon interactions can occur in Si, but in the bulk such scattering takes

place on the picosecond to nanosecond timescales [129, 130, 131]. Extrapolating from the

bulk, electron-acoustic-phonon interactions are not expected to contribute significantly to

femtosecond electronic dephasing dynamics.

There remain a number of mechanisms that can potentially account for the observed fem-

tosecond zero-fluence dephasing rate. In a time-resolved two-photon photoemission study of

carrier dynamics at the Si(100)c(4×2) surface Weinelt and his collaborators concluded that

optical-phonon emission via deformation-potential scattering of electrons excited from the
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occupied D
′
up to the unoccupied Ddown surface bands (arising respectively from the raised

and lowered atoms of the buckled dimers at the surface [132, 133, 134, 135]) occurs on a

timescale of about 300 fs [103]. Scattering by optical phonons is an inelastic process that

generally plays an important role in population decay. The rates of population recovery

in our measurements (See Figures 2.13 and 2.14) might naively suggest that the optical

phonon scattering rates may be too slow to account for the wide spectral hole observed

at zero detuning. However, the spectral hole observed at 570 cm−1 indicates that scatter-

ing with the optical phonon band at 570 cm−1 is occurring on the sub-200 fs timescale.

There are also optical phonon bands at about 240 cm−1 [119, 120]. It is possible that opti-

cal phonons are contributing significantly to the deduced dephasing times. Interferometric

time-resolved two-photon photoemission studies of hole decoherence in the d bands at the

Cu(100) surface found that Auger recombination produces a hole-hole scattering rate of

about 24 fs [136]. Also, defects in the form of submonolayer coverage of a surface with

adsorbates strongly increases the dephasing and population decay rates of image-potential

states [30]. Likewise, steps were found to have a significant effect on the decay of population

in image-potential states on the Cu(119) surface [137]. However, in the case of either type of

defect, the density of defects studied was much greater than the density of defects present

on our clean surfaces. Carrier-carrier scattering is another likely source of femtosecond

dephasing times, especially given the suggestions of metallicity of the Si(111)7×7 surface.

The presence of electrons in a partially filled band at the Fermi level provides a source

of carriers for scattering even if only a small number of electron-hole pairs are created by

photoexcitation. Model calculations of the electronic properties of the Si(111)7×7 ground

state indicate that the electrons localized in the adatom dangling bonds form a correlated

two-dimensional electron gas with correlation times of about 30 fs, which is of the same

order of magnitude as the homogeneous dephasing times that we have measured [77, 84].

However, the exact relevance of such correlation times of electrons in the bands that cross

the Fermi level to the electrons occupying the bands involved in the transitions studied here

is not immediately obvious.

The preceding suggests that the mechanisms most likely to account for our observed
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dynamic dephasing times are carrier-carrier scattering, electron-optical-phonon scattering,

and Auger recombination. A definitive resolution of the matter would depend on additional

experiments, either second-harmonic hole burning at different frequencies or time-resolved

two-photon photoemission measurements. In particular, experiments at low temperatures

and at energies such that one probes transitions from occupied band maxima to unoccu-

pied band minima would eliminate dephasing mechanisms such as optical-phonon creation.

Further theoretical treatments would also help to shed light on the problem, particularly

treatments of the surface states away from the Fermi level.

Further experiments are also suggested by the measurements discussed above. It would

be interesting to perform either SHHB or photon-echo measurements at lower frequencies

involving excitation of electrons to states in the vicinity of the Fermi level, as these have been

the states studied most thoroughly by theorists. Such experiments might help to clarify the

nature of the two-dimensional adatom electron gas, particularly with regard to the degree of

correlation. However, such experiments are potentially much more challenging than those

that we have performed. At the very least, such experiments would either require two

independently tunable OPAs in the case of SHHB experiments or the generation of < 10 fs

tunable light from an OPA [138]. The most easily interpretable experiments would likely

involve excitation of electrons from just below the Fermi level to just above it, but that

would necessitate the generation of short pulses of far infrared radiation combined with

nonlinear optical techniques.

Beyond studies of the Si(111)7×7 surface, the SHHB technique holds promise for applica-

tion to other systems. In the most general sense, as an all-optical technique, SHHB is partic-

ularly well suited to the study of liquid interfaces and buried interfaces, systems not readily

amenable to most other (UHV-based) surface techniques. One particular class of systems

that might benefit from a variation of the SHHB technique would be water interfaces. Water

interfaces show a broad (of the order of hundreds of wavenumbers) hydrogen-bonded OH

stretch vibrational resonance (∼ 3µm) in sum-frequency generation experiments [139, 140].

In bulk water, the OH stretch spectrum has a full-width at half-maximum of greater than

200 cm−1. This is an inhomogeneously broadened feature, but the homogeneous width is
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still very broad. Mid-IR photon-echo experiments in the bulk display echoes decaying with

a time constant of about 30 fs, which is much shorter than the pulses typically produced at

3 µm [141]. SHHB could be a more suitable technique for studying dephasing of the bonded

OH stretch modes at water interfaces.

2.6 Conclusion

In summary, we have used second-harmonic generation as a probe of hole burning to mea-

sure dynamic electronic dephasing at the Si(111)7×7 surface. Transitions into an unoc-

cupied adatom-dangling-bond band display homogeneous dephasing times of the order of

tens of femtoseconds and varying inversely with the excitation density. Extrapolation of

the dephasing rates to zero pump fluence yields an intrinsic homogeneous dephasing time of

approximately 70 fs. Likely candidates for such fast dephasing mechanisms include carrier-

carrier scattering, scattering of charge carriers with optical phonons, and Auger recombina-

tion. The all-optical and surface-specific nature of this technique suggests application to the

measurement of homogeneous dephasing at other surfaces displaying ultrafast dynamics.
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Chapter 3

Fourier-Transform Sum-Frequency

Generation

One challenge posed by using femtosecond pulses for vibrational spectroscopy is the degra-

dation in spectral resolution by their broad bandwidth. One can always resolve spectral

features finer than the bandwidth of the excitation source, but this generally requires addi-

tional instruments or techniques. The oldest approach, predating the advent of the laser, to

resolving spectral features in the optical and infrared regions of the electromagnetic spec-

trum employs a monochromator, though nowadays one often uses a CCD array in combina-

tion with a spectrometer to perform multichannel detection. Fourier-transform spectroscopy

employing an interferometer is an alternative, and in many respects equivalent, approach.

These two approaches are also used in laser spectroscopy, though heterodyne techniques fur-

ther expand the array of tools for obtaining subbandwidth resolution in laser spectroscopy.

The paucity and expense of CCD arrays for detecting IR radiation has limited multichan-

nel detection largely to the visible spectrum. That Fourier-transform spectroscopy can be

performed with a single-channel detector has long made Fourier-transform interferometry a

powerful technique for performing multiplex spectroscopy in the IR. However, applications

of Fourier-transform spectroscopy have focused largely on linear spectroscopy.

The use of femtosecond pulses for IR-visible sum-frequency (SF) vibrational spectroscopy

poses particular challenges. In this chapter, we consider the case in which the broad band-
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width of the IR input overlaps the vibrational resonances of the system, while the visible

input and SF output are non-resonant with any material response or only in resonance with

electronic features broader than any of the laser linewidths. The primary difficulty is that

with temporally short, broadband IR and visible inputs, the SF spectrum does not directly

reflect the vibrational spectrum but is a convolution between the visible input spectrum

and the vibrational spectrum.

To overcome the problem, one approach is to narrow the visible input bandwidth [37],

which necessarily lengthens the visible pulse. A narrow-band pulse establishes a one-to-one

correspondence between the vibrational and the SF spectra. Multichannel detection of the

SF spectrum can be achieved by passing the SF output through a spectrometer equipped

with a CCD array. Such an approach has a number of attractive features including the fact

that the full spectrum is obtained in every shot, making the technique very robust against

pulse energy fluctuations. However, there are some potential disadvantages, particularly

the loss of visible power that occurs in the process of producing a narrow-band visible pulse

and the difficulty in eliminating a strong nonresonant background from the SF spectrum.

In this chapter we explore the applicability of an alternative approach based on Fourier-

transform techniques, namely Fourier-transform SFG, or FT-SFG, to obtaining vibrational

spectra with subbandwidth resolution [38].

The application of Fourier-transform spectroscopy (FTS) to nonlinear optics is not a new

idea, but here we discuss some important issues that have not been thoroughly addressed

for the broad class of nondegenerate nonlinear spectroscopic techniques. Fourier-transform

spectroscopic techniques have been adopted in the fields of multidimensional nonlinear

spectroscopy (spectroscopy in which spectra are obtained by tuning more than one input

frequency) [142, 143, 144, 145, 146]. However, previous implementations left open some

questions of relevance to the implementation of FT-SFG. Among the differences between

FT-SFG and ordinary multidimensional spectroscopy is the fact that the latter typically

involves an output degenerate in frequency with the input and also resonant with the

material normal modes. This permits the introduction of heterodyne detection schemes

using a split-off portion of the input to serve as the local oscillator [143, 144, 145, 146]. In
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contrast, FT-SFG involves an output signal at frequencies not present in the input beams,

and the IR excitation of the vibrational mode occurs through a single resonant interaction

between the medium and the field. Heterodyne detection schemes are not generally used in

surface SFG due to the difficulty of producing a stable reference beam at the sum frequency

and signal levels that are often below one signal photon per laser pulse. P.M. Felker and

his collaborators demonstrated Fourier-transform nonlinear spectroscopies akin to what we

describe here for FT-SFG insofar as the techniques involved a singly resonant excitation of

the material response followed by up-conversion to a new frequency [147, 148, 149]. However,

their investigations were on bulk systems, and while the effect of temporal variation of the

visible upconverting pulse(s) was implicitly accounted for in their theoretical treatments of

the detected signal, the physical implications of such temporal dependence on the shape of

a spectrum in which multiple resonant modes lie within the bandwidth of the exciting lasers

and so are simultaneously excited was not addressed. Moreover, important considerations

of signal-to-noise ratios were neglected.

The organization of this chapter is as follows. We begin with a discussion of the basic

features of Fourier-transform infrared (FTIR) spectroscopy with particular attention to the

effects of finite step sizes and scan lengths on the derived spectra. We then present the basic

theory of FT-SFG, where the implications of using a visible pulse to upconvert the infrared

material polarization are highlighted. Results of two experimental implementations of this

approach are discussed. Finally, we analyze the effect of noise on the spectra that can be

obtained by FT-SFG and by the alternate multichannel approach to FT-SFG mentioned

above.

3.1 Basics of FTIR

The first Fourier-transform spectroscopic technique developed was linear Fourier-transform

infrared (FTIR) spectroscopy. A typical example of FTIR spectroscopy involves determining

the spectrum of an IR source by collecting the light in a Michelson interferometer and

detecting the output of the interferometer as a function of the optical-path-length difference

between the two arms of the interferometer. As the basic issues for all Fourier-transform
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spectroscopies are the same, we begin by discussing FTIR to illustrate the fundamentals of

FT spectroscopy. We will only treat those issues necessary to yield a basic understanding

of FT spectroscopy in general and the limitations of FT-SFG in particular. Details of linear

FT spectroscopy can be found in the literature [150, 151, 152, 153, 154].

Consider a field

E(t) =
∞∫

−∞
Ẽ(ν)e−i2πνt dν, (3.1)

where we have neglected any spatial dependence or vectorial character of the field. Suppose

this field is sent through an interferometer with a time delay τ between the two arms.

Assuming a perfect 50:50 beam-splitter, the output field is then

Eout(t, τ) =
1
2

[E(t) + E(t + τ)] . (3.2)

The output energy per unit area is

S(τ) =
c

8π

∞∫

−∞
|Eout(t, τ)|2 dt. (3.3)

With Eqs. (3.1) and (3.2), it follows that

S(τ) =
c

16π

∫ ∞

−∞

∣∣∣Ẽ(ν)
∣∣∣
2
[1 + cos(2πντ)] dν. (3.4)

The τ -independent term in the integrand only yields a signal at zero frequency that is not

of any spectral interest to us. Fourier transformation of the interferogram S(τ) yields the

spectral density

S̃(ν) =
∞∫

−∞
S(τ)ei2πντ dτ

=
c

16π





∣∣∣Ẽ(ν)
∣∣∣
2
+ δ(ν)

∞∫

−∞

∣∣∣ ~E(ν ′)
∣∣∣


dν ′


 , (3.5)

where we have used the fact that Ẽ(−ν) = Ẽ∗(ν). The last term describes the signal at

zero frequency, ν = 0.

In practice, we use discrete sampling to obtain an interferogram with discrete points,

S(n δτ), instead of the continuous, infinite interferogram S(τ), with n being integers ex-

tending from −N/2 to N/2− 1 or τ = n δτ from −T/2 to T/2− δτ , where T = N δτ . The
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spectral density is then given by the estimate:

S̃(ν) ≈
N/2−1∑

n=−N/2

S(n δτ)ei2πν n δτδτ. (3.6)

For discussion of the accuracy of this approximation, we convert the above series back

into a Fourier integral

N/2−1∑

n=−N/2

S(n δτ)ei2πν n δτδτ =
∞∫

−∞
Σ(τ, δτ, T )ei2πντ dτ (3.7)

by defining

Σ(τ, δτ, T ) ≡X
(

τ

δτ

)
·Π

(
τ

T

)
· S(τ), (3.8)

where

X(x) ≡
∞∑

n=−∞
δ(x− n) (3.9)

accounts for the discreteness of the interferogram and

Π(x) ≡
{

1 : −1
2 < x < 1

2

0 : otherwise
(3.10)

accounts for the finite range of the interferogram. To determine the effect of discrete sam-

pling over a finite range of path differences, it is useful to recall an important property of

Fourier transforms, namely,

F̂ [f(t) · g(t)] = F̂ [f(t)] ∗ F̂ [g(t)], (3.11)

where F̂ indicates a Fourier transform of the function enclosed in brackets, and ∗ indicates

a convolution

f̃(ν) ∗ g̃(ν) =
∞∫

−∞
f̃(x) · g̃(ν − x) dx. (3.12)

The Fourier transform of Σ(τ, δτ, T ) with respect to τ is then

Σ̃(ν, δτ, T ) = F̂
[
X

(
τ

δτ

)]
∗

[
F̂

[
Π

(
τ

T

)]
∗ F̂ [S(τ)]

]
. (3.13)

By making use of the rescaling property of the Fourier transform

F̂ [f(τ/T )] = T f̃(ν T ), (3.14)
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we can rewrite the Fourier transform of the interferogram as

Σ̃(ν, δτ, T ) = T δτ X̃(ν δτ) ∗
[
Π̃(ν T ) ∗ S̃(ν)

]
. (3.15)

The Fourier transformed quantities that constitute Σ̃ are easily calculated (See Figure 3.1):

X̃(ν) = X(ν) (3.16)

and

Π̃(ν) = sinc(ν). (3.17)

These finally yield

Σ̃(ν, δτ, T ) = T δτ X(ν δτ) ∗
[
sinc(ν T ) ∗ S̃(ν)

]
. (3.18)

As seen from Eqs. (3.6) and (3.7),

Σ̃(ν, δτ, T ) ≈ S̃(ν). (3.19)

Equation (3.18) describes how good the approximation is. From the convolution in the

square brackets of Eq. (3.18), we see that the limited range of path differences from −T/2

to +T/2 limits the resolution of S̃(ν) to ∼ 1/T , the full spectral width at half maximum of

the sinc(νT ) function (To be precise, the full width at half maximum of sinc(νT ) is 1.2/T).

The effect of discrete sampling appears in the convolution of the spectrum in square brackets

with the function X̃(ν δτ), which is a an infinite sum of delta functions with period 1/δτ .

(This is the same as band structures in crystal lattices, where the inverse of the real-space

distance between unit cells yields the size of the unit cell in k-space, and vice versa). If

the true spectrum contains frequency components ν outside the fundamental range from

−1/2δτ to 1/2δτ , they will be aliased to frequencies ν = m/δτ inside this frequency range,

where m is an integer. Thus, if the spectrum to be probed covers the range (0, ν2) (We have

S̃(ν) = S̃(−ν)), there is an upper limit of δτ = 1/2ν2 on the step size of an interferogram

that does not alias the spectral range under investigation to lower frequencies. The preceding

discussion is illustrated graphically in Figure 3.1, which shows the case of a pair of Lorentzian

lines with frequencies of 0.30 and 0.40 and choosing δτ = 1, i.e., normal sampling.
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Figure 3.1: The figures on the left show the three functions whose product yield the finite,
discrete interferogram of Equation (3.8), with the bottom left figure being the infinite,
continuous interferogram resulting from a pair of Lorentzian spectral lines. The figures on
the right show the Fourier transforms of the corresponding time-domain functions on the
left. In the bottom right figure, the solid curve is the Fourier transform of the infinite
interferogram, and both the solid and dotted curves describe the Fourier transform of the
finite, discrete interferogram, the latter also showing the periodic aliasing of the spectrum
into all periodic spectral ranges (−0.5 + n,+0.5 + n), where n is an integer. In the figures,
the unit of time is set by δτ = 1 and the unit of frequency by 1/δτ . The plots of X(τ) and
X(ν) should be extended to negative and positive infinity along the abscissa.

If a spectrum is known to be restricted to a range (ν1, ν2), one can exploit such aliasing.

Instead of regular sampling to obtain an interferogram, one can undersample (i.e., collect an

interferogram with step size larger than 1/2ν2) by taking a step size as large as n/2ν2, where

n is the largest integer less than or equal to ν2/(ν2− ν1). The frequency period (the period

of repetition of the spectrum in the frequency domain) is now 2ν2/n ≈ 2(ν2 − ν1). The

spectrum in the frequency range
(

n−1
n ν2, ν2

)
is then aliased into the fundamental range

(
0, 1

nν2

)
. Were one to instead undersample by using a step size twice as large as that

shown in Figure 3.1, the fundamental frequency range would be reduced to the range -0.25

to 0.25 and the spectral features in the range (0.25, 0.50) ((-0.50,-0.25)) would appear in the
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range (−0.25, 0.00) ((0.00,0.25)) through aliasing. Specifically, the features at frequencies

of 0.30 and 0.40 would give rise respectively to features at frequencies -0.20 and -0.10 or,

equivalently, at frequencies 0.20 and 0.10.

One of the advantages of Fourier-transform spectroscopy, particularly in the form of

FTIR, compared to spectroscopy using a monochromator and single-channel detection is the

multiplex advantage (also known as the Fellgett advantage) [155, 156]. Since one collects

signal in the form of an interferogram from the whole spectrum throughout the entire

measurement time and only decodes the interferogram afterward (as opposed to the case

of a monochromator with single-channel detection, which only detects a narrow portion of

the signal spectrum at any given time and rejects the rest) one expects to obtain a much

better signal-to-noise ratio for a given amount of data collection time. To obtain a spectrum

over a bandwidth (ν2 − ν1) with resolution δν, in a time T , it will take N = (ν2 − ν1)/δν

steps with a time T/N at each step in the monochromator case. Since the multiplex FT

approach involves measurement of each δν interval a factor of N times longer than the

sequential monochromator case, the signal-to-noise ratio is expected to be
√

N times better

for the former if the noise is due to sources other than the signal (e.g., background blackbody

radiation). For large N , this advantage can be significant.

A second important advantage of Fourier-transform spectroscopy is the Jacquinot, or

throughput, advantage [157, 158]. Generally, an interferometer will have a much greater

energy gathering efficiency than will a conventional spectrometer. This, of course, yields a

further increase in the signal-to-noise ratio.

However, these advantages of FT spectroscopy become less appreciable in dealing with

nonlinear optical spectroscopy using ultrashort laser pulses with bandwidth exceeding the

width of spectral features of interest. First, the throughput advantage is often lost in the

case of coherent laser spectroscopy where the signal output is a collimated beam. Second, the

multiplex advantage is diminished because there is only a limited bandwidth to multiplex.

For example, consider a 100 fs pulse with a corresponding bandwidth of 150 cm−1 FWHM

used to obtain a spectrum. If we are interested in a spectral resolution of 5 cm−1, there

are only 30 steps or channels to multiplex, resulting in an improvement in signal-to-noise
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Figure 3.2: Experimental setup for performing FT-SFG measurements. BS=beam splitter,
CP=compensation plate, PD=photodiode, and PMT=photomultiplier.

ratio of about a factor of 5 for the FT case. More importantly, as we shall see later, the

multiplex advantage of FT spectroscopy is lost in comparison with multichannel detection

using a spectrometer.

3.2 FT-SFG: Introduction

The basic concept of FT-SFG as applied to a vibrationally resonant but electronically non-

resonant system is illustrated in Figure 3.2, which also illustrates the setup used in our

experimental realization of the technique. As in FTIR, the IR field is passed through an

interferometer. The IR field performs the same role as in FTIR; its passage through the

interferometer and subsequent irradiation of the sample result in a path-length-dependent

interference in the material polarization. A compensation plate in one arm of the interfer-

ometer ensures that dispersion across the IR bandwidth is the same through both arms of
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the interferometer and, hence, that the point of zero delay is the same for all frequencies.

The visible beam is directly incident on the sample and couples with the the IR material

polarization to produce a sum-frequency signal. As a second-order process, sum-frequency

generation is surface-specific if the bulk medium has inversion symmetry. Thus, one way

to look at SFG spectroscopy is by noting that the visible pulse, in converting the IR polar-

ization to the visible, essentially serves as a detector for the surface IR polarization, while

the PMT that actually detects the sum-frequency photons merely serves as an amplifier.

In the implementation of FT spectroscopy, the slow IR detectors used in FTIR detect the

IR radiation emitted during the entire lifetime of the coherent material excitations, but in

FT-SFG, the visible pulse can be short compared to the dephasing time of the IR material

excitation, in which case the visible delay must be scanned to capture the entire decay of

the coherent IR response of the system.

3.3 FT-SFG: Mathematical Treatment

The mathematical treatment of FT-SFG follows that of FTIR except that we need to include

the additional interaction, or upconversion, step due to the interaction between the medium

with the visible field. We assume here the use of a visible pulse described by Ev(tv, τv),

where τv is the time delay of the pulse relative to the later one of the two interfering IR

pulses reaching the sample. As for equation (3.3), the SF output from the sample is given

by

SSF (τ, τv) =
c

8π

∞∫

−∞
|ESF (t, τ, τv)|2 dt, (3.20)

with τ being the time delay between the two IR pulses. In terms of the nonlinear polarization

P
(2)
SF induced in the medium, we can write

SSF (τ, τv) ∝
∞∫

−∞

∣∣∣P (2)
SF (t, τ, τv)

∣∣∣
2

dt, (3.21)

where

P
(2)
SF (t, τ, τv) =

∞∫

−∞
dtv

∞∫

−∞
dtIR R(2)(t− tv, t− tIR)Ev(tv, τv)EIR(tIR, τ), (3.22)
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with EIR(tIR, τ) as in equation (3.2). R(2)(t − tv, t − tIR) is the second-order response

function of the medium . Note that we are treating R(2) and E as scalar quantities, rather

than as a tensor and vector, respectively; this can always be accounted for at the end.

Assuming an instantaneous (delta function) response of the medium to the visible field

(The visible and SF frequencies are both assumed to be far from any resonances of the

material response), the polarization becomes

P
(2)
SF (t, τ, τv) = Ev(t, τv)

∞∫

−∞
dtIR R(2)(0, t− tIR)EIR(tIR, τ). (3.23)

This can be rewritten as

P
(2)
SF (t, τ, τv) ∝ Ev(t, τv)

∞∫

−∞
dνIR χ(2)(νIR)ẼIR(νIR, τ)e−i2πνIRt, (3.24)

with

ẼIR(νIR, τ) = ẼIR(ν)
(
1 + e−i2πνIRτ

)
, (3.25)

where ẼIR(ν) is the Fourier transform of EIR(t) from the fixed arm of the interferometer

and χ(2) is the SF nonlinear susceptibility. Inserting Eq. (3.24) in Eq. (3.21) yields

SSF (τ, τv) ∝
∞∫

−∞
dt |Ev(t, τv)|2

∣∣∣∣∣∣

∞∫

−∞
dνIR χ(2)(νIR)ẼIR(νIR, τ)e−i2πνIRt

∣∣∣∣∣∣

2

. (3.26)

In comparison with Eq. (3.3), this equation illustrates how the visible pulse acts as a gate

for detecting the material response. If one were to use a cw visible pulse, then one would

have, as in Eq. (3.4),

SSF (τ) ∝
∞∫

−∞
dνIR

∣∣∣χ(2)(νIR)ẼIR(νIR, τ)
∣∣∣
2
[ 1 + cos(2πνIRτ)] , (3.27)

Fourier transformation of which would yield, as in Eq. (3.5),

SSF (ν) ∝
∣∣∣χ(2)(ν)ẼIR(ν)

∣∣∣
2
+ δ(ν)

∞∫

−∞
dν′

∣∣∣χ(2)(ν ′)ẼIR(ν ′)
∣∣∣
2
. (3.28)

The first term on the right of Eq. (3.28) gives the IR spectrum of
∣∣∣χ(2)(ν)

∣∣∣
2

upon normal-

ization by the input IR spectral intensity.
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From Eq. (3.26), it follows that a short visible pulse may distort the spectrum. To see

this more clearly, we rewrite Eq. (3.26) as

SSF (τ, τv) ∝
∞∫

−∞
dνIR

∞∫

−∞
dν

′
IR χ(2)(νIR)ẼIR(νIR)χ(2)∗(ν

′
IR)Ẽ∗

IR(ν
′
IR) (3.29)

×(1 + e−i2πνIRτ )(1 + ei2πν
′
IRτ )

∞∫

−∞
dt |Ev(t, τv)|2 e−i2π(νIR−ν

′
IR)t.

Fourier transformation of the τ -dependent term in the above equation yields the spectrum

S̃SF (ν) ∝ 2χ(2)(ν)ẼIR(ν)
∞∫

−∞
dνIRχ(2)∗(νIR)Ẽ∗

IR(νIR)F̃ (ν − νIR) (3.30)

+ F̃ (ν)
∞∫

−∞
dνIR χ(2)(νIR)ẼIR(νIR)χ(2)(ν − νIR)ẼIR(ν − νIR)

+δ(ν)
∞∫

−∞
dνIR

∞∫

−∞
dν′IRχ(2)(νIR)ẼIR(νIR)χ(2)∗(ν

′
IR)Ẽ∗

IR(ν
′
IR)F̃ (νIR − ν ′IR),

where

F̃ (ν) =
∑
τv

∞∫

−∞
dt |Ev(t, τv)|2 e−i2πνt =

∞∫

−∞
dν ′Ẽv(ν ′)Ẽ∗

v(ν ′ + ν)e−i2πντv . (3.31)

In a more compact form in terms of convolutions of Fourier transforms, Eq. (3.30) becomes

S̃SF (ν) ∝ 2χ(2)(ν)ẼIR(ν) ·
{[

χ(2)∗(ν)Ẽ∗
IR(ν)

]
∗ F̃ (ν)

}
(3.32)

+F̃ (ν) ·
{[

χ(2)(ν)ẼIR(ν)
]
∗

[
χ(2)(ν)ẼIR(ν)

]}

+δ(ν)
∞∫

−∞
dνIRχ(2)(νIR)ẼIR(νIR) ·

{[
χ(2)(νIR)ẼIR(νIR)

]
∗ F̃ (νIR)

}
.

As F̃ (ν) only has frequency components around ν = 0 with a bandwidth approximately

equal to the inverse of the visible pulsewidth, the second term in Eq. (3.32) only contributes

to spectral features near ν = 0. This term plays the same role as the delta-function term in

Eq. (3.28) for the case of a cw visible beam. When the spectrum of F̃ (ν) does not overlap

with the IR spectrum of interest, this term can be neglected. The first term in Eq. (3.32)

then dominates, and only if F̃ (ν) = δ(ν) do we recover the exact spectrum
∣∣∣χ(2)(ν)ẼIR(ν)

∣∣∣
2
.

We now consider two types of visible pulses used for up-conversion, one being a series of

equally spaced short pulses and the other a single square pulse. In the case of a series of
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short visible pulses spaced by δτv covering a total range of visible time delay from 0 to Tv,

we can write

F (t) ∝ I(t) ∗
[
Π

(
t

Tv

)
·X

(
t

δτv

)]
, (3.33)

where I(t) = |Ev(t, τv = 0)|2 and Π(t) and X(t) are as defined in Eqs. (3.9) and (3.10). We

then have

F̃ (ν) ∝ Ĩ(ν) ·
[
sinc(2νTv) ∗ X̃(ν δτv)

]
. (3.34)

The term in square brackets indicates that, to minimize the effects of aliasing, we should

choose a spacing δτv such that Ĩ
(

1
δτv

)
¿ Ĩ(0) or, equivalently, 1

δτv
À ∆HWHM , where

∆HWHM is the half-width at half maximum of Ĩ(ν). There is then little spectral content

of Ĩ(ν) outside the frequency period 1/δτv. The sinc function limits F̃ (ν) to roughly a

bandwidth of 1.2
2Tv

, and as seen in the first term of Eq. (3.32), the overall effect of F̃ (ν) is in

smearing of the quantity
[
χ(2)∗(ν)Ẽ∗

IR(ν)
]
. The final resolution of the spectrum obtained by

Fourier transforming the interferogram should be better than 1.2
2Tv

though, as the convolution

with F̃ (ν) is only on
[
χ(2)∗(ν)Ẽ∗

IR(ν)
]
, not on

∣∣∣χ(2)(ν)ẼIR(ν)
∣∣∣
2
.

The case of a single square pulse covering the range [0, Tv] is more straightforward. In this

case, F̃ (ν) = sinc(2νTv), and its convolution with
[
χ(2)∗(ν)Ẽ∗

IR(ν)
]

degrades the resolution

of
[
χ(2)∗(ν)Ẽ∗

IR(ν)
]

to ∼ 1.2
2Tv

.

3.4 Experimental Demonstration

For an experimental demonstration of FT-SFG, we used this technique to measure the

surface vibrational spectrum of a self-assembled monolayer of n-octadecyltrichlorosilane

[CH3(CH2)17SiCl3 (OTS)] on fused silica [159]. For a surface with C∞v symmetry, the

nonvanishing elements of the second-order susceptibility are χ
(2)
zzz, χ

(2)
xxz = χ

(2)
yyz, and χ

(2)
xzx =

χ
(2)
zxx = χ

(2)
yzy = χ

(2)
zyy (From left to right, the indices refer respectively to the indicated

projections of the sum-frequency, visible, and IR fields). In the last set of equalities, we

have assumed that the dispersion between the visible and sum frequencies, both being non-

resonant, is negligible so that their corresponding subindices in χ(2) can be interchanged.

The basic experimental arrangement is shown in Figure 3.2. We first describe the ex-
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Figure 3.3: OPA used for generating high-energy pulses at around 3 µm in FT-SFG ex-
periments using femtosecond pulses of 800 nm radiation. DM1=dichroic mirror to reflect
800 nm and transmit signal and idler. DM2=dichroic mirror to reflect signal and transmit
idler.

perimental arrangement that used 100 fs pulses of 800 nm radiation as our visible beam.

To probe CH stretch modes of OTS, IR pulses of ∼3 µm radiation were generated by a

β-BaBO3-KTiPO4 optical parametric generator/amplifier (Figure 3.3) pumped by the fem-

tosecond Ti:sapphire pulsed laser described in Chapter 1. The first (left) BBO crystal

serves as an OPG/OPA. The idler from the first BBO crystal is doubled in the second OPA

crystal to provide a seed at the idler frequency for the KTP stage. The final idler pulses

were tunable from 2.7 to 3.6 µm and had a spectral width of about 180 cm−1 FWHM, a

pulse temporal width of 200 fs, and an energy of 20-35 µJ/pulse. The IR beam was sent

through a Michelson interferometer and then incident upon the sample at 45◦ to the surface

normal of the sample. 120 µJ of 800 nm radiation was sent through a variable delay line and

incident upon the sample at 58◦. The two beams spatially overlapped on the sample, with

beam spot diameters of approximately 400 and 800 µm, respectively. The SF output in

reflection from the sample was passed through spatial and interference filters and detected
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by photon counting with a photomultiplier tube. Changes in path length difference between

the two arms of the IR interferometer were determined by measuring the interference fringes

resulting from the 632.8 nm beam of a He-Ne laser sent through the interferometer parallel

to the IR path.

Our later experiments using a stretched visible pulse differed only in a few details. The

100 fs pulses of 800 nm radiation from the Ti:sapphire amplifier that were not used to pump

the OPA were sent through a pair of parallel gratings with a groove spacing of 0.9 µm and

a separation of about 15 mm perpendicular to the grating faces. At an incident angle of

about 81◦ to the grating face normal, the stretched pulses had intensity profiles of ∼ 4.3 ps

FWHM. Since the pulses were lengthened merely by chirping, not by spectral narrowing,

the energy throughput was limited only by the efficiency of the gratings. The IR pulses

for the experiments performed with stretched visible pulses were generated with the KTP-

based version of the OPA described in Chapter 1 (These experiments were performed after

the experiments with compressed visible pulses at a time when we had already settled on

the OPA design of Chapter 1). The angles of the input beams were reversed relative to

the case in the experiment with the 100 fs visible pulses, i.e., the IR and 800 nm beams

were incident respectively at 58◦ and 45◦ and focused to spots of diameter about 100 µm

(perpendicular to the direction of propagation of each beam).

The interferometer was a relatively crude, homemade instrument driven only by a delay

stage controlled by an optical encoder (Oriel Instruments Model 18236). Most notably, it

lacked a continuous feedback system independent of the data acquisition system, and the

optically encoded delay stage could not make steps of a magnitude of an optical wave-

length without significant error. To address this deficiency, the interferometer was moved

in steps that were small compared to the He-Ne fringe spacing (A step size of 100 nm was

chosen). In this way we avoided accidentally skipping a HeNe fringe and thereby losing

accurate information on the interferometer optical path length difference if the steps were

too large. At each interferometer delay at which we measured the He-Ne fringe intensity

we also measured the SF signal. After collection of the SF interferogram a new, composite

interferogram was created by assigning each point in the measured SF interferogram to the
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point corresponding to the nearest peak or trough in the He-Ne interferogram and then

obtaining an average SFG signal for that point. When femtosecond visible pulses were used

to up-convert and generate the SF interferogram, one such composite interferogram was

obtained for each visible pulse delay, and the interferograms from different visible pulse de-

lays were then summed to form the complete interferogram used for Fourier transformation.

When stretched picosecond visible pulses were used, the observed SF interferogram could

be directly used for Fourier transformation. (We note that for fast Fourier transformation,

the data was further padded by adding equal numbers of points on each end of the interfer-

ogram with signal strengths equal to the average of the last ten interferogram points at the

respective end to bring the total number of points to the 2n points needed in the fast FT

algorithm. This does not alter the resolution, nor should it otherwise affect any spectral

features at non-zero frequencies, since a constant contribution to the interferogram only

yields a zero-frequency term in the Fourier transform.) In addition to requiring small steps,

there are a few other practical drawbacks of our interferometer. Most notably, we did not

have the means of establishing the true zero delay with the accuracy needed to perform a

single-sided interferometric scan (a scan from τ = 0 to τ = T/2 rather than from τ = −T/2

to τ = T/2), which resulted in a doubling of the needed data acquisition time. Of less funda-

mental importance was the fact that the very fine steps increased the data acquisition time

because of the larger number of analog-to-digital conversions required. The interferogram

was grossly oversampled in this case, but as will be seen later, oversampling does not alter

the signal-to-noise ratio as long as the data acquisition time and hence the total amount

of signal obtained in an interferogram are the same. FT-SFG can readily be implemented

with a commercial step-scan FTIR interferometer to circumvent these problems.

To confirm the accuracy of the FT-SFG technique, we compare the spectra obtained

by this technique to spectra obtained by sequential sum-frequency spectroscopy with a

picosecond laser system. The picosecond laser and OPA system has been described by

X. Wei [160]. The narrowband picosecond OPA produces an IR output with a linewidth

of ∼6 cm−1. The input angles of the narrowband picosecond IR and visible beams were

respectively 58◦ and 45◦ (i.e., the same as for our stretched-visible FT-SFG measurements
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but opposite to the angles for our femtosecond-visible FT-SFG measurements).

To roughly match our FT-SFG resolution to that of the narrowband picosecond OPA,

we chose to scan our interferometer over a range of path length differences from −0.75

mm to +0.75 mm to yield a corresponding instrument function (the function Π̃(ν) above)

with a full-width at half maximum of ∼ 1
L = 1

0.15cm = 6.7 cm−1 (To be more precise,

for no apodization, the instrument function actually has a FWHM of 1.2
L = 1.2

0.15cm =

8.0 cm−1, corresponding to the FWHM of the function sinc(νL)). For the visible pulse,

rather than using a single stretched visible pulse, we used a sequence of pulses split off from

the regenerative amplifier output with different delay times relative to the later of the two

IR pulses from the interferometer. Intuitively, our approach to the choice of visible delays

was based on the notion that, at each IR path difference, it should be sufficient to capture a

good picture of most of the decay of the surface vibrations. This means that we must scan

the visible delay both over a sufficiently large range to cover most of the range over which the

coherent surface polarization decays and that we must step the visible delay in small enough

steps to capture any beating present between different frequencies in the bandwidth of the

IR excitation. In practice, we determined the range and size of visible steps by first looking

at the SFG free induction decay (FID) from IR excitation of the monolayer to measure

the time scale on which the vibrations decohered and the time scale on which any beating

between vibrational modes took place. (Note that the beating is a manifestation of the

differences in frequencies between discrete spectral features and their decay rates are related

to the linewidths of those features, but the homodyne-detected SFG-FID does not reveal

the absolute frequencies of the resonant modes.) This approach is justified below in terms of

our earlier mathematical analysis of FT-SFG. The SFG FID for ssp and ppp polarizations

(As above, from left to right, the indices refer to the SF, visible, and IR polarizations) are

shown in Figure 3.4. Based on these FID data, which show quantum beats with half-periods

of about 250 fs and almost complete decoherence within 1 ps, and the SFG cross-correlation

between visible and IR from an Ag surface (i.e., a material giving an instantaneous response)

of about 310 fs FWHM (See Figure 3.4), we chose a series of visible delays of τv =0, 250,

500, 750, and 1000 fs (0, 75, 150, 225, and 300 µm). Assuming the 100 fs FWHM visible
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Figure 3.4: SFG measurement of vibrational free-induction decay of OTS on fused silica
and SFG cross-correlation measurement from an Ag surface.

pulses to be sech pulses (i.e., pulses with intensity profile Iv(t) ∝ sech2(1.763 t/τFWHM )),

the bandwidth as given by the FWHM of the spectral density is then about 105 cm−1 (For

a Gaussian profile (Iv(t) ∝ e−2(1.177 t/τFWHM )2) the spectral density would have a FWHM

of 150 cm−1). The bracketed portion of the function F̃ (ν) in Eq. (3.34) then consists of a

series of sinc functions of FWHM 1.2
2·0.03cm = 20 cm−1 (Recall, though, that the effective

resolution of the spectrum is finer than this) separated by intervals of 1
0.0075cm = 133 cm−1.

The spacing between sinc functions does not quite fulfill the requirement after Eq. (3.34)

that one should have 1
δTv

À ∆HWHM , as we have 1
δTv

∼ 3∆HWHM . In principle, the

spacing between visible pulses should have been somewhat less to eliminate any aliasing

from within the bandwidth of the IR, as happens in the curly brackets of Eq. (3.32) due to

the extra sinc functions arising from Eq. (3.34). However, as will be seen below, the spectra

that we measured contained spectral features only within a roughly 100 cm−1 portion within

the bandwidth of the IR, so the aliasing that could occur between features separated by

133 cm−1 did not cause any distortions of our spectra.
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Figure 3.5: (a) Interferogram from OTS on fused silica for SF, visible, and IR polarizations
s, s, and p, respectively and (c) spectrum generated by Fourier transformation of the in-
terferogram in (a). Figure (b) shows the interferogram over a short portion of the scan to
clearly illustrate the oscillations of the interferogram. Figure (c) also shows the input IR
spectrum obtained by detecting the IR through a monochromator. Figure (d) shows the
spectrum at frequencies far from the vibrational resonance, which illustrates the noise level
of the experiment.

The FT-SFG interferograms and the spectra of the square of the effective susceptibility

(
∣∣∣χ(2)

∣∣∣
2
) obtained by Fourier transformation of the interferograms obtained for ssp and ppp

polarizations are shown in Figures 3.5 and 3.6, respectively. Figures 3.5a and 3.6a show

the SFG interferograms of an OTS monolayer adsorbed on fused silica measured with an IR

pulse centered at 2900 cm−1 with a FWHM of ∼ 170 cm−1. Fourier transformation of the

interferogram yields the SFG vibrational spectrum of the OTS monolayer (solid squares)

presented in Figures 3.5c and 3.6c. For comparison, we also display the SFG spectrum

of the same OTS sample obtained by the traditional sequential scheme with narrowband

picosecond input pulses (open circles).
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Figure 3.6: (a) ppp SFG interferogram from OTS on fused silica and (c) spectrum gener-
ated by Fourier transformation of the interferogram in (a). Figure (b) shows the interfero-
gram over a limited range. Figure (c) also shows the input IR spectrum measured with a
monochromator.

The spectra in Figures 3.5c and 3.6c are obtained directly from the data divided by the

SFG signal from quartz at the same frequency in the picosecond case and divided by the

IR intensity measured directly with a pyrometer (Scientech P09) and a monochromator

at the corresponding frequency in the case of FT-SFG. The strong peaks at 2879 and

2944 cm−1 in the ssp spectra are due respectively to the CH3 symmetric stretch and Fermi

resonance [161]. The ppp spectrum displays a small peak from the CH3 symmetric stretch

and a large peak at 2967 cm−1 due to the antisymmetric CH3 stretch [161]. Our measured

resonant frequencies differ slightly from an earlier assignment [161], but we believe ours are

more accurate, since Fourier-transform spectroscopies generally provide absolute frequency

calibration. The picosecond spectra shown in Figures 3.5c and 3.6c are shifted 3 cm−1 to
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lower frequencies to match the frequencies from Fourier transformation. (The reliability

of our frequency assignment is demonstrated by the results of a measurement of Fourier-

transform coherent anti-Stokes Raman scattering in acetone, in which the IR- and Raman-

active mode reported at 2925 cm−1 [162] was measured on our instrument to be centered

at 2923.4 cm−1, corresponding to a difference well below the 8 cm−1 resolution of the

interferometric measurement.) The feature at 2850 cm−1 in the ssp FT-SFG spectrum may

be due to the CH2 asymmetric stretch [38], but this must be regarded as a questionable

assignment given the signal-to-noise ratio.

The agreement between the FT-SFG and narrowband picosecond spectra is excellent

in the case of the ssp spectra. This confirms that FT-SFG yields reliable spectra, even

when implemented with a sparse, finite set of visible pulse delays. The discrepancies ob-

served in the ppp spectra can be attributed to the differences in beam angles between the

picosecond and FT-SFG measurements. In the case of ssp measurements, there is only a

single independent non-zero element (χ(2)
xxz) that contributes to the signal, so differences in

beam angles only affect the magnitude of the signal but not the relative magnitudes of the

different spectral components contributing to the signal. In contrast, all three independent

matrix elements contribute to the signal in the ppp configuration. In this case, differences

in the input angles affect not only the absolute magnitude of the signal but also the relative

magnitudes of the different spectral components, since different spectral components will

arise from different normal modes that may have different symmetries or orientations.

Although the spectra obtained by the FT-SFG approach display good accuracy and

resolution, the FT-SFG spectra took a very long time to acquire. Each interferogram shown

in Figures 3.5 and 3.6 required 15,000 seconds of data collection at the laser repetition rate

of 1 kHz (We collected 200 shots of data at each combination of visible and IR path delay). If

one can accurately and reproducibly start an interferogram at the zero path-delay-difference

position, then one can take a single-sided interferogram and reduce the data collection time

to 7,500 seconds (For demonstration of the technique with our crude interferometer, we

had to use double-sided interferograms to minimize any distortions due to zero-path-delay

errors). This is to be compared to the one order of magnitude less time required to obtain
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the equivalent spectra with the ps laser system (Each spectrum obtained with the ps system

required about 1,200 seconds of data collection time at the ps laser repetition rate of 20 Hz).

Although a comparison between such different laser systems may seem misleading, as will

be seen later, the data collection time needed for FT-SFG can compare even less favorably

to that commonly required in multichannel spectroscopy using a CCD array to detect the

SFG from a 100 fs IR pulse and a spectrally narrowed pulse of 800 nm radiation from an

equivalent kHz Ti:sapphire laser system. The long time required to obtain the FT-SFG

spectra arise from two factors. First, the 800 nm beam could not be focused very tightly on

the sample without generating a white-light continuum that overwhelmed the SFG signal.

Secondly, there are inherent signal-to-noise issues that can require longer acquisition times

than multichannel approaches with equal signal levels. Before analyzing the signal-to-noise

issues in detail, we will discuss experiments implementing FT-SFG with a stretched pulse

of 800 nm radiation.

Using a long visible pulse to upconvert the IR polarization at the sample surface is

attractive for two reasons. Firstly, because surface vibrational polarizations can easily

radiate coherently for times T ′2 of the order of 1 ps (See Figure 3.4), a picosecond pulse

with the same peak intensity as a 100 fs pulse will yield a SFG signal about T ′2
2·100 fs times

the SFG signal obtained with the 100 fs pulse. ‡ On the fused silica substrates, we found

that continuum generation occurred at about the same peak intensity for picosecond visible

pulses as for 100 fs visible pulses, so the ∼ 1 ps dephasing time of the OTS resonances

probed should give rise to ∼ 5 times as much SFG signal with picosecond visible pulses of

the same peak intensity as the 100 fs visible pulses. Secondly, the use of picosecond visible

pulses decreases the complexity of the experiment and the data acquisition time since it is

unnecessary to use multiple visible pulse delays.
‡Assume a homogeneously broadened resonance described by a Lorentzian line characterized by a ho-

mogeneous dephasing time T2. Excitation by a pulse of IR radiation much shorter than T2 creates

a polarization PIR(t) ∝ sinθIR e−t/T2 , where θIR = µ10
h̄

∫
EIR(t)dt is the Bloch vector tipping an-

gle [18]. The SFG signal is given by the interaction between this polarization and the visible field:

SSF ∝
∫∞
−∞ dt |PIR(t)Ev(t)|2. If we assume for convenience a square pulse of visible radiation from t = 0

to t = τv, we find SSF = A
(
1− e−2τv/T2

)
, where A is a just a constant of proportionality. In the alternate

limits τv ¿ T2 and τv À T2, we find that SSF is approximately 2 A τv/T2 and A, respectively.
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Figure 3.7: (a) ssp SFG interferogram from OTS on fused silica and (c) spectrum generated
by Fourier transformation of the interferogram in (a). Figure (b) is a short range from
Figure (a). Figure (c) also shows the IR spectrum obtained by Fourier transformation of
an FT-SFG interferogram obtained from a bulk crystalline quartz sample in reflection.

Figures 3.7 and 3.8 show the interferograms and spectra obtained from OTS on fused

silica by FT-SFG with a stretched visible pulse. The spectra of the infrared input were

obtained directly from FT-SFG scans on a crystalline quartz sample, for which there is only

a nonresonant response at the frequencies used in this experiment. Collecting 200 shots of

data at each IR path delay resulted in collection of approximately the same total number

of photons as in the FT-SFG implementation using 100 fs visible pulses described above.

The use of ∼ 4.3 ps visible pulses results in a FWHM of about 9.3 cm−1 for the term F̃ (ν)

of Eq. (3.34).

Figures 3.7 and 3.8 show FT-SFG spectra very similar to those obtained with narrow-
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Figure 3.8: (a) ppp interferogram from OTS on fused silica and (c) spectrum generated
by Fourier transformation of the interferogram in (a). Figure (b) is a short range from
Figure (a). Figure (c) also shows the IR spectrum obtained by Fourier transformation of
an FT-SFG interferogram obtained from a bulk crystalline quartz sample in reflection.

band picosecond SFG. As in the implementation of FT-SFG with femtosecond pulses, the

main peaks in the ssp spectrum show the same relative peak heights and shapes as in the

narrowband picosecond spectrum. Moreover, since the input angles are now the same for

the FT-SFG and picosecond spectra, the main peaks in the ppp FT-SFG spectrum also

match those of the picosecond spectrum. Compared to the picosecond spectra, there are

some discrepancies in the heights of the lower frequency peaks for the FT-SFG spectra of

Figures 3.7 and 3.8. These are attributable to two factors that diminish the signal-to-noise

ratio at the lower frequencies. Firstly, the IR spectrum was centered at about 2975 cm−1,

so that the IR spectral intensity at ∼ 2880 cm−1 was only about 25% of the peak spectral

106



intensity. The signal-to-noise ratio of the IR spectrum was about 20:1 at the peak of the

spectral intensity, which results in a SNR of about 5:1 at 2880 cm−1. Secondly, the increased

signal evident in the interferograms using stretched visible pulses compared to those using

100 fs visible pulses does not result in as much of an improvement in SNR as one would

naively expect. In the case of 100 fs visible pulses, when the IR pulses do not overlap the

SFG signal is due to up-conversion of the polarization induced by the later of the two IR

pulses and that portion of the polarization induced by the earlier IR pulse that has not

decayed away. In contrast, in the case of the stretched visible pulse, even when the two

IR beams are separated enough that there is essentially no interference between the polar-

izations induced by each IR pulse, the visible pulse upconverts the separate polarizations

induced by each IR pulse. These differences account for the fact that the interferograms

obtained with stretched visible pulses show oscillations about an approximately constant

value, whereas the interferograms obtained with 100 fs visible pulses show an increase in

the average value of the oscillations in a region about the zero delay point corresponding

roughly to a FWHM of the IR-visible cross-correlation. The extra contribution to the SFG

signal is a non-oscillatory contribution and so contributes to the noise without contributing

to the signal at the vibrational resonances. In our case, this effect will decrease the SNR

by a factor of approximately
√

2.

3.5 Signal-to-Noise Ratios in FT-SFG and Multichannel

Measurements

The time required to obtain the spectra shown in Section 3.4 greatly exceeded the time (of

order 102 s) with which spectra of other surface systems have been obtained using multichan-

nel detection of SFG produced from broadband IR and narrowband visible pulses [37, 163]

generated by kHz Ti:sapphire amplifier systems similar to ours. Therefore, a detailed com-

parison of the signal-to-noise ratios of spectra obtained by FT-SFG and multichannel de-

tection is in order. This is not a new problem, as signal-intensity-dependent noise sources

are known to degrade the signal-to-noise ratio in FTIR compared to multichannel and even
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sequential single-channel spectroscopies [164, 165, 166]. We begin with a more physically

intuitive but qualitative description.

Consider an interferogram of N steps that converts by Fourier transformation into a spec-

trum with N channels of which only M(< N) channels contain nonzero signal that is taken

to be of more or less equal magnitude in those M channels. The measured interferogram

can be regarded as a sum of an ideal, noise-free interferogram and a noise interferogram. If

the total number of signal photons in the interferogram is N , then the average signal per

step of the interferogram is 〈fn〉 = N/N . An important point to recall is that a Fourier

transform is essentially just a sum of elements (points in an interferogram), each of which is

multiplied by a complex factor of unit magnitude. In the case of the ideal interferogram, we

expect that, to within some constant factor, the Fourier transformation of the ideal inter-

ferogram will yield a spectrum with Fourier amplitudes in the M nonzero-signal channels

equal to a sum of all the photons in the interferogram divided by the number (M) of the

channels with nonzero signal:

〈Fm〉 ∼ A
N
M

= A
N

M
〈fn〉 , (3.35)

where A is a constant. Let the noise in each step of the noise interferogram be represented by

a random quantity δf with a mean square of σ2
f =

〈
δ2
f

〉
. To understand the transformation

of the noise in the interferogram into the transformed spectrum, we note that, statistically,

a random function about zero multiplied by a periodic function of unit magnitude remains

a random function of the same magnitude as the original random function. In general,

a sum of N values of a random function about zero of mean square value σ2 yields a

quantity of magnitude
√

N σ. Therefore, Fourier transformation should convert the noise

interferogram to a noise per frequency channel of σF ∼ A
√

Nσf . Fourier transformation of

the experimentally measured interferogram is expected to yield a signal-to-noise ratio of

SNRF ∼ N
M
√

Nσf

=
√

N

M

〈fn〉
σf

. (3.36)

The preceding result for the signal-to-noise ratio of a Fourier-transformed interferogram

also follows from a more thorough mathematical analysis. Consider a set of discrete signals

fn obtained from the N (assumed even) interferometer steps n, where n = −N/2,−N/2 +
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1,−N/2 + 2, ..., N/2− 1. We can define a Fourier series

Fm = Fm+Ns =
1√
N

N/2−1∑

n=−N/2

fnei2πmn/N , (3.37)

with m and s being integers varying from−N/2 to N/2−1 and from−∞ to +∞ respectively.

Comparison with Eq. (3.7) yields

Fm =
1√
N

Σ̃(mδν, δτ, T ), (3.38)

with fn = S(n δτ)δτ , T/N = δτ , δν = 1/T and mδν = ν. The discrete inverse Fourier

transform of Fm gives

fn =
1√
N

N/2−1∑

m=−N/2

Fme−i2πmn/N , (3.39)

which can be derived from Eq. (3.37) using the equality

N/2−1∑

m=−N/2

ei2πm(n−n′)/N = N δn,n′ , (3.40)

where δn,n′ = 1 if n = n′ and is zero otherwise. From Eqs. (3.37) and (3.39), we obtain the

Parseval-Rayleigh relation
N/2−1∑

m=−N/2

|Fm|2 =
N/2−1∑

n=−N/2

|fn|2. (3.41)

We separate the signal from the noise by writing

fn = f0
n + δn (3.42)

and

Fm = F 0
m + ∆m, (3.43)

where δn and ∆m are random noise and are related by the discrete Fourier transform

∆m =
1√
N

∑
m

δnei2π m n/N . (3.44)

We define the average noise in the interferogram (σf ) and spectrum (σF ) by

σ2
f = 〈δnδ∗n〉 (3.45)

and

σ2
F = 〈∆m∆∗

m〉 , (3.46)
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where the angled brackets indicate averages over the N values of n or m. We then have

σ2
F = 〈∆m∆∗

m〉

=
1

N2

∑

m,n,n′
δnδ∗n′e

−i2π m
N

(n−n′)

=
1

N2

∑

n,n′
δnδ∗n′Nδn,n′

= σ2
f . (3.47)

This result also follows from the Parseval-Rayleigh relationship of Eq. (3.41) by replacing

fn by δn and Fm by ∆m.

Except in the case of a very narrowband spectrum (i.e., a spectrum corresponding to

an interferogram that oscillates over its entire extent between some peak value and a min-

imum value much smaller than the peak value) with fluctuations determined by the signal

intensity (e.g., fluctuations due to photon counting), the amplitude of the fluctuations in

the interferogram should have very little periodicity. It is then to be expected that the

amplitude of the fluctuations in the Fourier transform of the interferogram will be evenly

distributed throughout the spectrum.

For estimation of signal-to-noise ratios, we assume a spectrum such that among the N

frequency channels, only M of them have significant amounts of signal. From Eq. (3.41),

we find

|Fm=0|2 + M〈|Fm6=0|2〉 = N〈|fn|2〉, (3.48)

where 〈|Fm6=0|2〉 is the average of |Fm6=0|2 over the M channels of significant signal. We

use the crude approximation that 〈|Fm6=0|2〉 ≈ |〈Fm6=0〉|2 and also 〈|fn|2〉 ≈ |〈fn〉|2 (An

interferogram often exhibits only weak variations of signal about the mean signal level). By

Eqs. (3.5) and (3.38), we also expect to have Fm=0 ∼ M〈Fm6=0〉. Therefore, we obtain

|〈Fm6=0〉|2 ∼ N

M(M + 1)
|〈fn〉|2. (3.49)

The signal-to-noise ratio of the significantly occupied channels in the FT spectrum is now

given by

SNRFT =
〈Fm〉
σF

≈
√

N

M(M + 1)
〈fn〉
σf

. (3.50)
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Note that 〈fn〉/σf is the average SNR of a single step in the interferogram.

One might expect intuitively that as the noise in the interferogram appears to be more

or less evenly distributed in the frequency channels of the FT spectrum, the signal in

the interferogram would also be evenly redistributed in the FT spectrum, i.e., N〈fn〉 '
Fm=0+M〈Fm6=0〉 ∼ 2M〈Fm〉. One would then have 〈Fm〉 ∼ (N/2M) 〈fn〉. This is, however,

not true because the Fourier transform is not performed on the field but on the intensity, and

the Parseval theorem here applies to intensities rather than electric fields. Consequently,

〈Fm〉 ∼
√

N/M(M + 1)〈fn〉. This difference tends to make the SNR of FT spectroscopy

inferior to that of multichannel spectroscopy, although both utilize the idea of multiplexing

(The demultiplexing is performed by FFT in FT-SFG and by a grating in multichannel

detection).

Consider obtaining a multichannel spectrum over the same measurement time as for

obtaining an interferogram with N steps and a spectrum occupying roughly M (< N)

frequency channels. Assuming the same total number of photons is acquired in the two

measurements, the total signal in both schemes is N〈fn〉. Therefore, in the case of multi-

channel detection, the signal in each frequency channel is N〈fn〉/M . Let the noise in each

channel be σM . The corresponding SNR for multi-channel detection is

SNRMC =
N〈fn〉
MσM

. (3.51)

We can now compare the SNR’s of the two approaches. First, assuming that the detector

noise dominates, we have σ2
M,MC = Nσ2

f,FT because the detector in the multi-channel case

is open N times as long as at each point in the interferogram. We then find from Eqs. (3.50)

and (3.51)

SNRMC
SNRFT

'
√

M(M + 1)
M2

∼ 1. (3.52)

Next, assuming signal intensity fluctuations due to the Poisson statistics of photon counting

are the dominant source of noise, we have σf =
√〈fn〉 and σM =

√
N〈fn〉/M and, therefore,

SNRFT ∼
√

N

M(M + 1)
〈fn〉 ∼

√
N〈fn〉
M

, (3.53)

SNRMC =

√
N〈fn〉

M
, (3.54)

111



and
SNRMC
SNRFT

∼
√

M. (3.55)

In this case, the multi-channel detection scheme is clearly more advantageous. For surface-

specific SFG with pulsed lasers, the noise experienced is usually dominated by signal fluc-

tuations due to photon counting. Note that both SNRMC and SNRFT are proportional to

the square root of the total signal N〈fn〉 and hence, the square root of the signal collection

time. In FT spectroscopy, therefore, SNRFT is independent of the number of steps N taken

as long as the data collection time remains unchanged.

We have found rough agreement between theory and experiment on the SNR in our

FT-SFG measurements. In the experiments, the step size of our interferograms (∼ λIR/10)

yields a spectral range in the Fourier transforms that is much larger than the bandwidth of

the IR beam from the OPA. The spectral density in the FT spectrum outside the bandwidth

of the IR input should be zero, but noise in the interferogram is redistributed in the FT

spectrum more or less evenly throughout the spectral range. A portion of this spectral

range in which only noise contributes to the spectral intensity is shown in Figure 3.5d.

We can estimate our SNR by the ratio of the spectral peak intensity to the average noise

in the frequency channels outside the signal bandwidth. For the largest peaks in the ssp

and ppp spectra of Figures 3.5 and 3.6, the resulting signal-to-noise ratios are 66 and 94,

respectively. To estimate the theoretically expected SNR, we note that each of the two

interferograms is made up of a total of about 3.3 × 105 signal photon counts and that

the full-width at half maxima of the two peaks in the ssp spectrum occupy a total of

about 7 units of spectral resolution, i.e., M ' 7, whereas the single large peak in the ppp

spectrum has M ' 3.5. Assuming that signal fluctuations due to the Poissonian nature

of photon counting dominate, we expect signal-to-noise ratios of about
√

3.3×105

7 = 82 and
√

3.3×105

3.5 = 164 for the largest peaks in the ssp and ppp spectra, respectively. These numbers

are within a factor of 2 of the experimental values.

As seen in Eq. (3.55), for equal total numbers of collected photons and noise dominated

by photon counting statistics, obtaining equal SNRs requires M times as much time in

a FT-SFG scheme as in a multichannel scheme. The question is then whether the signal
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level per shot in multichannel SFG is equal to that in FT-SFG despite the loss of energy in

forming the narrowband visible pulse for multichannel SFG. We assume that the irradiating

spot on the sample surface is determined by the (smaller) IR focal spot and the visible pulse

is stretched to the same picosecond pulse width in the FT case as the narrowband visible

in the multi-channel case. In both cases, the detected signal per laser shot is related to the

input IR energy per pulse, UIR, and input visible pulse intensity, Ivis, by SSF ∝ IvisUIR. If

Ivis and UIR are the same for both cases, the signal SSF should also be the same.

In real experiments with femtosecond laser systems, UIR is often limited to a few tens

of µJ, and Ivis is limited by continuum generation or damage in the medium. For typical

liquids or solids, Ivis is limited to around 101−102 GW/cm2. To achieve a peak intensity of

Ivis ∼ 50 GW/cm2 by overlapping IR and visible inputs in a 60 µm spot requires a visible

pulse energy of about 3 µJ for a 5 ps pulse, which is readily available from a kilohertz

amplifier system. Usually there is much more visible pulse energy available for up-conversion

in the FT-SFG case than in the multi-channel case, but unfortunately it does not help

SNRFT because of limitations on Ivis. For equal data collection times, multichannel SFG

with a 1 kHz, millijoule-per-pulse laser system will typically provide a better SNR than

FT-SFG.

Despite the SNR problem noted above, there are situations in which FT-SFG may be

preferable to multichannel SFG. In the case of amplifiers operating at hundreds of kilohertz,

the energy per pulse from the amplifier is about two orders of magnitude smaller than from a

1 kHz amplifier. In such cases, the visible beam used in SFG can be focused tightly without

significant danger of continuum generation or sample damage. The total number of signal

photons per pulse obtained by FT-SFG will then be a factor of approximately UFT/UMC

times the number of signal photons per pulse obtained by multi-channel detection, where

UFT and UMC are the energies of the visible pulses used in FT-SFG and multi-channel

SFG, respectively. Typically, there is of order 101 times as much energy available for

upconversion in the FT-SFG approach as in the multi-channel approach, which should

make the FT approach comparable to the multi-channel approach with regard to the time

required to obtain spectra of equal SNR. In addition, FT-SFG spectroscopy with unchirped
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femtosecond visible pulses allows for the elimination of non-resonant background from a

spectrum. By choosing visible delays such that the visible pulse does not overlap either IR

pulse (thereby eliminating any instantaneous nonlinear response) but still overlaps most of

the free-induction decay after the second IR pulse, almost all of the detected signal should

come from the resonant response. This can be useful for studying systems in which a strong

non-resonant response obscures the resonant response.

3.6 Conclusion

In summary, by use of a very simple interferometer and broadband IR and visible pulses, we

were able to demonstrate surface FT-SFG spectroscopy that has subbandwidth resolution

and yields spectra identical to those obtainable by traditional approaches with tunable

picosecond pulses. When fluctuations in the signal source (e.g., photon counting statistics)

dominate, Fourier transformation degrades the signal-to-noise ratio of the spectroscopy in

comparison with multichannel SFG spectroscopy performed with a broadband IR pulse and

a narrowband visible pulse. This diminishes its appeal for widespread use with kilohertz

laser amplifier systems. However, FT-SFG may be attractive in applications in which the

available energy from the laser is insufficient to produce continuum generation or sample

damage and when working with systems displaying a strong nonresonant response that

obscures resonant features of interest.
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[34] A. Baltuška, Z.Y. Wei, M.S. Pshenichnikov, and D.A. Wiersma. Optical pulse com-
pression to 5 fs at a 1-MHz repetition rate. Opt. Lett., 22:102, 1997.

[35] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sar-
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