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DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors express herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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ABSTRACT 

SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, 
NO2, and CO in advanced combustion and gasification systems.  The sensors detect the 
electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to 
operate at high temperatures, elevated pressures, and corrosive environments typical of large 
power generation exhausts.  Under this research project we are developing sensors for multiple 
gas detection in a single package along with data acquisition and control software and hardware. 
The sensor package can be easily integrated into online monitoring systems for active emission 
control.  This report details the research activities performed from October 2003 to April 2004. 
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EXECUTIVE SUMMARY 

To address the critical need for on-line emission monitoring in advanced fossil fuel energy 
production systems, SRI is developing an array of miniature solid-state electrochemical sensors 
that are reliable, rugged, and inexpensive.  These sensors are based on solid-state ionic 
conducting materials and catalytic materials and could be used for on-line, real- time detection of 
O2, NOx, SOx, HC and CO in exhaust gases.  The sensors measure potential (potentiometric) 
and/or current (amperometric and voltammetric) in a solid-state electrochemical cell.  The sensor 
array will consist of a series of electrochemical cells fabricated with yttria-stabilized zirconia 
(YSZ) solid-state electrolyte and catalytic working electrodes.  Each working electrode material 
is designed to be selective to a specific gas in the gas mixture.  Selective detection of gases is 
further accomplished by application of fast-pulse voltammetric techniques on the specific 
catalytic electrodes optimized for the gas of interest.  The configuration and geometry of the 
electrode are also critical to obtain the best sensor response.  Thus, our research work included 
selection and synthesis of suitable catalytic materials for detection of NO, NO2, and CO; 
fabrication of YSZ ceramic membranes with controlled microstructure; preparation of catalytic 
electrodes; electrochemical cell design; software development for pulse voltammetry; and testing 
of sensors in a simulated exhaust environment. 

Based on literature and our previous experiments, we selected CdMnO4 and NiCrO4 as 
potential candidates for NO and NO2 detection.  These materials were prepared by solid-state 
synthetic routes, and their structures were confirmed by x-ray diffraction.  The materials were 
ball-milled for 12-24 hours to obtain fine particle sizes.  For electrode fabrication we used 
nanoparticles, which we separated from the powder by preparing slurries in terpinol and letting 
the larger particles settle down.  

YSZ membranes for the electrolyte were prepared by tape casting, a procedure similar to 
one used in commercial fabrication of multilayer capacitors.  A slip of YSZ powder in an organic 
liquid mixture was prepared with added dispersants, binders, plasticizer, and release agents.  The 
slip was then cast into a tape on a glass plate using a doctor blade.  Once the tape was dry, 
required cell geometries were cut with a laser and sintered at 1400ºC to obtain ceramic 
membranes.  The catalytic electrodes were painted on the membranes using terpinol as the 
vehicle.  The counter and reference electrodes were prepared using commercial platinum ink.  
The sensor was heated to 750ºC to sinter the electrode material.  

To run the pulse voltammetry waveforms on sensors, we developed software using 
Microsoft Visual Basic.  We interfaced PAR 283 to a computer and tested the functionality of 
the software using known aqueous solutions of Cd2+ and Pb2+.  Both the applied waveform and 
resulting currents were carefully examined to confirm the operation of the software package. 

We have built a sensor test station with multiple mass flow controllers and a programmable 
furnace. We have begun testing sensors using this setup at temperatures from 500º to 900ºC and 
will present the results of these tests in the next semi-annual report. 

We are conducting this microsensor research program in two phases.  Phase I includes the 
proof of concept and preliminary demonstration of a package with multiple sensors.  Phase II 
involves in-depth analysis and testing of sensor arrays for stability, sensitivity, and selectivity; 
prototype development and testing; and identifying pathways for use of integrated sensor 
systems in fossil fuel energy conversion systems.  The research activities in this report were 
performed as part of the Phase I effort. 
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INTRODUCTION 

The use of sensors can provide the electrical power industry with increased operational 
efficiency, reduced emissions, and lower operating costs.  Advancements in robust sensing and 
control algorithms can accelerate the time to full-scale commercial implementation of novel 
power generation technologies such as advanced combustion, gasification, and turbines.  While 
the monitoring of oxygen content is the primary method of optimization of the combustion 
process, emission control requires monitoring of NOx, SOx, CO, and hydrocarbons (HC).  For 
closed- loop control, fast-response, reliable sensors are needed near the combustion zone.  
However, the harsh conditions prevalent in the conversion of fossil fuel to energy create a barrier 
to making many of the desired measurements.  These conditions include high temperatures (up to 
1000°C), elevated pressures (up to 500 psi), corrosive environments, and high particulate 
loading.   

To address the critical need of on- line emission monitoring in advanced fossil fuel energy 
production systems, SRI proposed to develop an array of miniature solid-state electrochemical 
sensors that are reliable, rugged, and inexpensive.  These sensors are based on solid-state ionic 
conducting materials and catalytic materials and could be used for on-line, real- time detection of 
O2, NOx, SOx, HC and CO in exhaust gases.   

In general, most high-temperature gas sensors operate on the principle that change in gas 
composition is related to a corresponding change in property such as potential, current, 
capacitance, or resistance.  The proposed sensors in this research project measure potential 
(potentiometric) and/or current (amperometric and voltammetric) in a solid-state electrochemical 
cell.  The sensor array will consist of a series of electrochemical cells fabricated with yttria-
stabilized zirconia (YSZ) solid-state electrolyte and catalytic working electrodes.  Each working 
electrode material is designed to be selective to a specific gas in the gas mixture.  It is also of 
great significance that the sensor materials are stable in the operational environment for a period 
up to one year.  Gases are selectively detected by application of fast-pulse voltammetric 
techniques on the specific catalytic electrodes optimized for the gas of interest.  The 
configuration and geometry of the electrode are critical to obtain the best sensor response.  Thus, 
the research work reported here included fabrication of ceramic electrochemical cell components 
with controlled microstructure, which would increase the selectivity, sensitivity, and response 
time of the sensor. 

We are conducting this research program in two phases.  Phase I, which is the focus of this 
report, includes the proof of concept and preliminary demonstration of multiple sensors.  Phase II 
involves in-depth analysis and testing of sensor arrays for stability, sensitivity, and selectivity; 
prototype development and testing; and identifying pathways for use of integrated sensor 
systems in fossil fuel energy conversion systems.  Successful completion of this proposed 
research program will provide an economical method to monitor emission gas in fossil energy 
applications.  The ability to manufacture and install reliable sensor systems with high stability, 
high reliability, and long service life at a low cost will significantly improve clean energy 
generation technology and will help to reach the goals of the DOE NETL Instrumentation Sensor 
and Control Systems Program. 
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EXPERIMENTAL 

For initial evaluation, we selected three materials, CdMn2O4, NiCr2O4, and LaCuO4 based 
on literature and our previous experience.  In this reporting period, we made CdMn2O4 and 
NiCr2O4 by solid-state synthesis methods as explained below.   

Synthesis of CdMn2O4 
To synthesize cadmium manganate, CdO powder (6.4 g) and MnO2 powder (8.7 g) were 

mixed and ball milled for 12 hours.  The powder was pressed to a pellet and sintered at 1000ºC 
for 6 hours in a high-temperature furnace.  After sintering, the pellet was crushed, ball milled for 
12 hours, and pressed to a pellet and sintered again at 1000ºC for 6 hours.  The powder was 
analyzed by x-ray diffraction (XRD) to confirm the compound.   

Synthesis of NiCrO4 
To synthesize nickel chromate, 3.75 g of NiO and 7.6 g of Cr2O3 were mixed, ball milled for 

12 hours, and pressed to a pellet.  The pellet was sintered at 1400ºC for 6 hours in a high-
temperature furnace.  The process was repeated two times.  The formation of the compound was 
confirmed by XRD analysis.  

Fabrication of Yttria-Stabilized Zirconia Membranes 
The sensors were fabricated on YSZ membranes, which serve as the electrolyte.  The base 

zirconia discs (electrolyte) were prepared by tape casting.  The procedure is similar to the one 
used in the commercial fabrication of multi- layer capacitors.  In brief, a slip of YSZ powder in 
an organic liquid mixture of xylene and ethanol was prepared with a small amount of LCP 
Menhaden oil as a dispersant, polyvinyl butyral (PVB) as a binder, benzyl butyl phthalate (BBP) 
as a plasticizer, and polyethylene glycol (PEG) as a release agent.  The slip was then cast into a 
tape using a doctor blade.  To obtain porous ceramic layers, the slips were prepared with added 
pore formers, such as spherical carbon and graphite particles.   

Xylene and ethanol solvents vaporized from the cast tape at the ambient temperature, 
yielding a flexible dry tape that can be handled (green tape).  For some sensor designs, we 
laminated a dense YSZ layer to a porous layer.  The cells were cut from the green tape using a 
laser and heated in air at a controlled rate to 1400°C.  The temperature program involved several 
steps for solvent evaporation, binder burnout, and sintering.  The temperature program of the 
furnace is critical to obtain defect-free, flat zirconia discs.  Approximately 30% shrinkage occurs 
in the dimensions of the cells during sintering. 

Fabrication of Sensors  
We fabricated the sensor on a zirconia disc (50 µm thick and 1 cm diameter) as shown in 

Figure 1.  The membrane was painted one side with platinum ink (counter and reference 
electrodes) and on the other side with the catalytic working electrode (e.g., cadmium manganate) 
and fired at 850°C for 1 hour.  The electrical contacts to the electrodes were made with fine Pt 
wires (0.1 mm).  The sensor element was mounted to an alumina tube using a high-temperature 
cement (Aremco) as shown in Figure 2.  The sensor element end of the tube was placed in a 
high-temperature furnace.  The initial tests were performed at a temperature range of 500° to 
700°C. 
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Figure 1.  Photographs of a single sensor, Pt counter and reference electrodes (left) 
and catalytic working electrode (right). 

 

   
Figure 2.  Photographs of the sensor assembly (left) and the sensor element (right). 

 

Sensor Test Station 
Figure 3 shows the experimental setup that we built to test the sensors.  The gas flow to the 

sensor assembly is controlled by four mass flow meters.  The gas compositions can be accurately 
varied by setting the mass flow controllers to deliver the necessary flow.  The mass flow 
controller unit (Aalborg) is interfaced to the computer via RS 232 serial communication port.  
The potentiostat is interfaced to a computer with a National Instruments GPIB card.  The furnace 
is controlled by a programmable temperature controller (Eurotherm).  The sensors to be tested 
are mounted on the tip of an alumina tube (16 mm).  A second alumina tube (6 mm) is mounted 
inside the large tube for the inlet gas flow to the sensor.  The gases enter the sensor chamber 
through the inside alumina tube (6 mm) and exit through the outer tube and the T-joint. 
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Figure 3.  Experimental setup for testing sensors. 

Computer Program Development 
For the first phase of the project, we are using a commercial potentiostat (PAR Model 283) 

for waveform generation and data acquisition.  Since the commercial software package we 
bought with the instrument did not provide the flexibility for the type of experiments planned, we 
wrote the data acquisition and experimental software in our laboratory.  Initial codes for square 
wave voltammetry were developed with Microsoft Visual Basic.  The main control and data 
acquisition computer program development was completed during this reporting period.   
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RESULTS AND DISCUSSION 

In potentiometric measurements, CdMnO4 has shown selectivity to NO at 600ºC (1), and 
NiCrO4 has shown to be selective for NO2 at 650ºC (2).  Both of these compounds are insensitive 
to CO, CO2, HC, and O2 according to published literature (1-3).  In this reporting period, we 
prepared CdMn2O4 and NiCr2O4 by solid-state synthesis methods.   

Electrode Materials 
Figure 4 shows the XRD spectrum of the synthesized CdMn2O4.  It matches well with the 

library spectrum of CdMn2O4, confirming the formation of the compound by the selected 
synthetic route.  Figure 5 shows the XRD spectrum of the synthesized NiCrO4 compound, which 
matches well with the library spectrum of NiCr2O4, indicating the presence of the required oxide 
phases in the synthesized compound.  

 

 
Figure 4.  XRD spectrum of cadmium manganate (top: synthesized, bottom: library) 
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Figure 5.  XRD spectrum of nickel chromate (top: synthesized, bottom: library) 

YSZ Membrane Fabrication 
In this reporting period, we experienced an abnormally high rate of failure during the 

sintering of ceramic membranes, such as cracking and delamination of the membrane.  Thus, we 
performed thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) 
studies to develop an optimum heating profile to control the sintering of the ceramic assembly 
that would not develop cracks.  It is common knowledge that the binder removal is an important 
processing operation in the fabrication of ceramic components.  The selection of heating rates, 
hold temperatures, and hold times for binder burnout is critical to maximize the yield of final 
product with minimum furnace time. 

During heating, the organic binder (PVB), plasticizer (BBP), and release agent (PEG) either 
vaporize, decompose, or oxidize in air.  The DSC experiments showed that while BBP vaporized 
endothermically, PEG and PVB produced an exotherm, presumably due to oxidation or 
decomposition of these organic chemicals (Figure 6).  The heat released during the oxidation of 
PVB was somewhat high (9.9 kJ/mole) but not excessive, and it occurred over a wide range of 
temperature.  The heat of vaporization of BBP was very low (0.087 kJ/mole), and the heat 
released during decomposition of PPG was moderate (2.2 kJ/mole).  Both these compounds 
vaporized over a narrow temperature range. 
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Figure 6.   DSC trace of the vaporization of PPG, BBP, and PVB 

during heating (3°C/min) 

 
Figure 7 shows the mass loss that occurred during heating of these organic chemicals.  The 

TGA results can be used to determine the decomposition kinetics.  However, they can be used as 
a guide, and adjustments must be made to account for mass transfer limitations that may be 
present in thick and large samples. 

The TGA and DSC data showed that the organic chemicals in the tape begin to vaporize in 
the temperature range 150° to 270°C; the PEG and the PVB vaporize before the PVB is 
removed.  The mass loss connected with BBP and PPG occur over a narrow temperature range, 
while that of PVB is extended over a broad range of temperatures.  Studies have shown that the 
surfaces of ceramic particles may play a catalytic role in the binder burnout (4).  Hence, the data 
obtained with pure compounds must be modified in the presence of zirconia particles.   
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Figure 7.  TGA profile of plasticizer, release agent, and binder 

during heating (3°C/mi). 

 
The TGA data obtained with our tape cast samples showed a complex mass loss profile 

because PPG and BBP were being removed in the same temperature range and the 
decomposition of PVB occurred in more than one step.  However, we used the data as a guide to 
develop a preliminary heating profile.  If the vaporizing gases in the multilayer tape are not 
allowed to escape slowly, blisters and bubbles could appear during binder burnout.  They occur 
especially when the volume fraction of the binder is sufficiently high to form a continuous film.  
The heating profile was adjusted so that the mass loss rate will be in the range 0.5 to 1 wt% per 
minute.  At this rate, the binder burnout phase will be about 10 h. 

Electrode Fabrication 
We frequently observed the electrode material delamination from the YSZ electrolyte 

surface during the electrode sintering process.  This is due to thermal expansion coefficient 
mismatch of electrode/electrolyte materials.  The problem was aggravated by the need of higher 
sintering temperatures for the electrode materials with large particle size.  To address this 
problem, we lowered the sintering temperature by reducing the particle size.  Nanoparticles 
sinter at 100° to 200°C lower than the typical sintering temperature of the same material.  We 
started sintering all electrodes at 750°C for 3 hours, which appeared to produce strongly bonded 
catalytic electrodes. 
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Software Development and Testing 
The software for experiment control and data acquisition was written in Microsoft 

VisualBasic.  Figure 8 shows the graphical user interface window of the program.  All 
experimental parameters are entered from this window, and the pulse waveform is calculated for 
downloading to the potentiostat.  The waveform is displayed to visually confirm the expected 
potential range, pulse height, and time base.  Once the operator is satisfied, the waveform codes 
are downloaded to the potentiostat and the potential scan is performed.  The downloaded 
waveform codes reside in the potentiostat memory so that fast multiple scans can be performed 
for signal averaging.  The resulting current data are stored in the potentiostat during the data 
acquisition process.  Upon completion of potential scans, data are downloaded to the control 
computer and displayed and saved for further analysis.  Figure 9 shows a typical data output 
window of the program.   

 

 
Figure 8.  Graphical user interface window of the control program. 

 
Since our gas phase electrochemical cell was not well defined at this stage, we performed a 

calibration/system check with an aqueous electrochemical cell.  We prepared an electrolyte 
solution of 1 M KCl with 10-3 M Cd2+ and Pb2+.  The solution was purged with nitrogen for 30 
min and square wave voltammetry was performed using the software and experimental setup 
described above.  Figure 10 shows the resulting voltammogram for the 10-3 M Cd2+ and Pb2+ 
solution.  The position of peaks and sensitivity were as expected, and thus this test confirmed the 
operation of software and computer interfaces. 
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Figure 9. Data output window of the program. 
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Figure 10.  Square wave voltammogram for 10-3 M Cd2+ and Pb2+ solution 

obtained with the new software. 
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CONCLUSIONS 

We have completed preliminary selection of materials for catalytic electrodes NO and NO2.  
The catalytic electrodes have been fabricated with CdMn2O4 and NiCr2O4.  A test station for 
evaluation of sensor performance has been built.  We have optimized sintering profiles of YSZ 
membrane to yield pinhole-free thin electrolytes.  The typical electrolyte thickness is about 100 
to 200 µm.  We have found the sintering conditions to attach the catalytic electrode material to 
the electrolyte.   

We have completed software development and instrument interfacing for sensor testing.  We 
confirmed the operation of the software using a well-known aqueous electrochemical cell 
containing Cd2+ and Pb2+.  We have just begun testing of various sensor designs.  We plan to 
vary the geometry, methods of fabrication of electrodes, and the potential scan parameters to 
optimize the selectivity and sensitivity of sensors.  We will report our findings in the next semi-
annual report. 
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