2-Page Summary for Neptunium solubility in the Near-field Environment of A Proposed Yucca Mountain Repository

PDF Version Also Available for Download.

Description

The total system performance assessment (TSPA) for the proposed repository at Yucca Mountain, NV, includes a wide variety of processes to evaluate the potential release of radionuclides from the Engineered Barrier System into the unsaturated zone of the geosphere. The principal processes controlling radionuclide release and mobilization from the waste forms are captured in the model to assess the dissolved concentrations of radionuclides in the source-term. The TSPA model of the source-term incorporates the far-from-equilibrium dissolution of, for example, spent nuclear fuel (SNF) to capture bounding rates of radionuclide availability as the SNF degrades. In addition, for individual radionuclides, the ... continued below

Physical Description

2 pages

Creation Information

Sassani, D.; van Luik, A. & Summerson, J. March 29, 2005.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The total system performance assessment (TSPA) for the proposed repository at Yucca Mountain, NV, includes a wide variety of processes to evaluate the potential release of radionuclides from the Engineered Barrier System into the unsaturated zone of the geosphere. The principal processes controlling radionuclide release and mobilization from the waste forms are captured in the model to assess the dissolved concentrations of radionuclides in the source-term. The TSPA model of the source-term incorporates the far-from-equilibrium dissolution of, for example, spent nuclear fuel (SNF) to capture bounding rates of radionuclide availability as the SNF degrades. In addition, for individual radionuclides, the source-term model evaluates solubility constraints that are more indicative of longer-term, equilibrium processes that can limit the potential mass transport from the source term in those cases. These solubility limits represent phase saturation and precipitation processes that can occur either at the waste form as it alters, or at other locations in the near-field environment (e.g., within the invert) if chemical conditions are different. Identification and selection of applicable constraints for solubility-limited radionuclide concentrations is a primary focus in formulating the source-term model for the TSPA. Neptunium is a long-lived radionuclide that becomes a larger fraction of the potential dose as radioactive decay of other radionuclides proceeds. To delineate appropriate long-term source-term controls on dissolved neptunium concentrations, a number of alternative models have been defined. The models are based on data both collected within the Yucca Mountain Project and taken from published literature, and have been evaluated against independent data sets to assess their applicability. The alternative models encompass ones based on precipitation of neptunium within its own separate oxide phases (i.e., ''pure'' Np-phases), and those where neptunium is incorporated into the secondary (tertiary, quaternary, etc.) uranyl phases forming as alteration products of SNF (secondary phases). The constraints on dissolved neptunium concentrations from ''pure'' Np-phase models provide more elevated bounds compared to the values derived from models of trace incorporation of Np into secondary uranyl phases. Such secondary phase models depend on a larger set of processes and variables compared to more idealized solubility models for Np-oxides, and therefore, secondary phase models generally will have more complex bases to define adequately the expected behavior.

Physical Description

2 pages

Notes

INIS; OSTI as DE00838904

Source

  • Other Information: PBD: 29 Mar 2005

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NONE
  • Grant Number: NONE
  • DOI: 10.2172/838904 | External Link
  • Office of Scientific & Technical Information Report Number: 838904
  • Archival Resource Key: ark:/67531/metadc786502

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • March 29, 2005

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • Feb. 10, 2016, 5:47 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sassani, D.; van Luik, A. & Summerson, J. 2-Page Summary for Neptunium solubility in the Near-field Environment of A Proposed Yucca Mountain Repository, report, March 29, 2005; Las Vegas, Nevada. (digital.library.unt.edu/ark:/67531/metadc786502/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.