Characterization of Prototype Superconducting Magnetic Quadrupolesfor the High Current Transport Experiment

PDF Version Also Available for Download.

Description

Later phases of the High Current Transport Experiment (HCX) at LBNL will employ superconducting magnetic quadrupole lenses to focus an intense, heavy-ion beam over approximately 50 lattice periods (100 quadrupoles). Here they present a characterization of a baseline quadrupole design suitable for transporting a single, low-energy ({approx} 2 MeV), high-current ({approx} 800 mA) heavy-ion (K{sup +}) beam that will be provided from an existing injector and beam matching section. For optimal performance in this application, a compact quadrupole magnet providing high focusing strength and high field quality is required. The reference parameters that they have chosen take into account magnet ... continued below

Creation Information

Lund, Steven M.; Sabbi, GianLuca & Seidl, Peter February 22, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Later phases of the High Current Transport Experiment (HCX) at LBNL will employ superconducting magnetic quadrupole lenses to focus an intense, heavy-ion beam over approximately 50 lattice periods (100 quadrupoles). Here they present a characterization of a baseline quadrupole design suitable for transporting a single, low-energy ({approx} 2 MeV), high-current ({approx} 800 mA) heavy-ion (K{sup +}) beam that will be provided from an existing injector and beam matching section. For optimal performance in this application, a compact quadrupole magnet providing high focusing strength and high field quality is required. The reference parameters that they have chosen take into account magnet development work by AML, LLNL, and MIT and result in a transport lattice well matched to programmatic needs with a lattice period of approximately 50 cm. The goal of this note is to introduce a common framework where the magnetic performance of different designs can be compared. In that regard, they try to avoid the details of an earlier parameter note [1] where provisions for tweaks in magnet excitation, cryostat assembly, etc. were discussed in fairly general terms. This note is not intended to be a final specification for the HCX quadrupoles to be constructed or to be the sole basis on which competing magnet designs will be compared. Other aspects such as prototype test results, economic considerations, and attractiveness within the context of ultimate applications in multi-beam drivers for heavy-ion fusion (i.e, compatibility with magnet arrays, etc.) will all factor in the selection of the appropriate design option. This note is organized as follows. Magnet characterizations including geometric and conductor parameters are given in Sec II. Performance parameters to be reported that quantify the magnet properties are outlined in Sec III. Supporting information is included in appendices. A reference coordinate system to be employed in field calculations is defined in Appendix A. Detailed descriptions of the methods to be used to calculate the integrated field gradient and field errors of the magnet are given in Appendix B. Finally, in Appendix C, the magnet operating point is defined.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL--58937
  • Report No.: HIFAN 1319
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/860234 | External Link
  • Office of Scientific & Technical Information Report Number: 860234
  • Archival Resource Key: ark:/67531/metadc786487

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 22, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 1, 2016, 7:17 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lund, Steven M.; Sabbi, GianLuca & Seidl, Peter. Characterization of Prototype Superconducting Magnetic Quadrupolesfor the High Current Transport Experiment, report, February 22, 2001; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc786487/: accessed January 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.