Thermal Fusing Model of Conducting Particle Composites

PDF Version Also Available for Download.

Description

Composites of carbon black particles in polyethylene are known to exhibit an unusually rapid increase in resistivity as the applied field is increased, making this material useful in automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages this circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear conductors. Each conductor has a conductance that depends on its instantaneous Joule heating. It is ... continued below

Physical Description

29 p.

Creation Information

Martin, James E. June 24, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Composites of carbon black particles in polyethylene are known to exhibit an unusually rapid increase in resistivity as the applied field is increased, making this material useful in automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages this circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear conductors. Each conductor has a conductance that depends on its instantaneous Joule heating. It is shown that in the fusing regime, where the current through the composite decreases with increasing voltage, an plate-like dissipation instability develops normal to the applied field. Experimental evidence of this phenomena is described.

Physical Description

29 p.

Notes

OSTI as DE00008394

Medium: P; Size: 29 pages

Source

  • Journal Name: Journal of Applied Physcis; Other Information: Submitted to Journal of Applied Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-1591J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 8394
  • Archival Resource Key: ark:/67531/metadc786357

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 24, 1999

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 10, 2017, 7:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Martin, James E. Thermal Fusing Model of Conducting Particle Composites, article, June 24, 1999; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc786357/: accessed May 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.