Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

PDF Version Also Available for Download.

Description

In situ bioremediation of contaminants can offer advantages in cost, speed, public acceptance, and final cleanup levels achieved relative to physical removal methods. However, microbial populations in the unsaturated zone are spatially discontinuous and sparse, especially in deep vadose zones and in arid climates with very low moisture and nutrient flux. In addition, there is a lack of knowledge on (1) the ability of microbes to colonize ''empty'' regions of the vadose zone in response to nutrient delivery and (2) how microbial colonization is controlled by hydrologic and physical features. These issues raise questions about the feasibility of deep vadose ... continued below

Physical Description

vp.

Creation Information

Brockman, Fred & Selker, John June 1, 2001.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

In situ bioremediation of contaminants can offer advantages in cost, speed, public acceptance, and final cleanup levels achieved relative to physical removal methods. However, microbial populations in the unsaturated zone are spatially discontinuous and sparse, especially in deep vadose zones and in arid climates with very low moisture and nutrient flux. In addition, there is a lack of knowledge on (1) the ability of microbes to colonize ''empty'' regions of the vadose zone in response to nutrient delivery and (2) how microbial colonization is controlled by hydrologic and physical features. These issues raise questions about the feasibility of deep vadose zone bioremediation and the accuracy of flow and transport models for vadose zone bioremediation. The goal of this research is to provide DOE with an increased understanding of the effect of interacting hydrologic and microbiological processes that control the feasibility of engineered bioremediation of chlorinated compounds in heterogeneous, microbially sparse deep vadose zones. The specific objectives are: (1) to conduct laboratory research on vadose zone microbial colonization processes as a function of hydrologic and physical features and use the information to develop an improved vadose zone reactive transport model; (2) to evaluate a gas-phase nutrient delivery approach for enhancing removal of carbon tetrachloride from the vadose zone.

Physical Description

vp.

Source

  • Other Information: PBD: 1 Jun 2001

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: EMSP-70165--2001
  • Grant Number: FG07-99ER62887
  • DOI: 10.2172/833632 | External Link
  • Office of Scientific & Technical Information Report Number: 833632
  • Archival Resource Key: ark:/67531/metadc786344

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 2001

Added to The UNT Digital Library

  • Dec. 3, 2015, 9:30 a.m.

Description Last Updated

  • April 21, 2016, 2:23 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brockman, Fred & Selker, John. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation, report, June 1, 2001; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc786344/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.